1
|
Sen S, Parihar N, Patil PM, Upadhyayula SM, Pemmaraju DB. Revisiting the Emerging Role of Light-Based Therapies in the Management of Spinal Cord Injuries. Mol Neurobiol 2025; 62:5891-5916. [PMID: 39658774 DOI: 10.1007/s12035-024-04658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
The surge in spinal cord injuries (SCI) attracted many neurobiologists to explore the underlying complex pathophysiology and to offer better therapeutic outcomes. The multimodal approaches to therapy in SCI have proven to be effective but to a limited extent. The clinical basics involve invasive procedures and limited therapeutic interventions, and most preclinical studies and formulations are yet to be translated due to numerous factors. In recent years, photobiomodulation therapy (PBMT) has found many applications in various medical fields. In most PBMT, studies on SCI have employed laser sources in experimental animal models as a non-invasive source. PBMT has been applied in numerous facets of SCI pathophysiology, especially attenuation of neuroinflammatory cascades, enhanced neuronal regeneration, reduced apoptosis and gliosis, and increased behavioral recovery within a short span. Although PBMT is specific in modulating mitochondrial bioenergetics, innumerous molecular pathways such as JAK-STAT, PI3K-AKT, NF-κB, MAPK, JNK/TLR/MYD88, ERK/CREB, TGF-β/SMAD, GSK3β-AKT-β-catenin, and AMPK/PGC-1α/TFAM signaling pathways have been or are yet to be exploited. PMBT has been effective not only in cell-specific actions in SCI such as astrocyte activation or microglial polarization or alterations in neuronal pathology but also modulated overall pathobiology in SCI animals such as rapid behavioral recovery. The goal of this review is to summarize research that has used PBMT for various models of SCI in different animals, including clarifying its mechanisms and prospective molecular pathways that may be utilized for better therapeutic outcomes.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Nidhi Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Prathamesh Mahadev Patil
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Suryanarayana Murty Upadhyayula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Deepak B Pemmaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| |
Collapse
|
2
|
Rajamanickam G, Hu Z, Liao P. Targeting the TRPM4 Channel for Neurologic Diseases: Opportunity and Challenge. Neuroscientist 2025:10738584251318979. [PMID: 40012174 DOI: 10.1177/10738584251318979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
As a monovalent cation channel, the transient receptor potential melastatin 4 (TRPM4) channel is a unique member of the transient receptor potential family. Abnormal TRPM4 activity has been identified in various neurologic disorders, such as stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, amyotrophic lateral sclerosis, pathologic pain, and epilepsy. Following brain hypoxia/ischemia and inflammation, TRPM4 up-regulation and enhanced activity contribute to the cell death of neurons, vascular endothelial cells, and astrocytes. Enhanced ionic influx via TRPM4 leads to cell volume increase and oncosis. Depolarization of membrane potential following TRPM4 activation and interaction between TRPM4 and N-methyl-d-aspartate receptors exacerbate excitotoxicity during hypoxia. Importantly, TRPM4 expression and activity remain low in healthy neurons, making it an ideal drug target. Current approaches to inhibit or modulate the TRPM4 channel have various limitations that hamper the interpretation of TRPM4 physiology in the nervous system and potentially hinder their translation into therapy. In this review, we discuss the pathophysiologic roles of TRPM4 and the different inhibitors that modulate TRPM4 activity for potential treatment of neurologic diseases.
Collapse
Affiliation(s)
| | - Zhenyu Hu
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
3
|
Sherrod BA, Porche K, Condie CK, Dailey AT. Pharmacologic Therapy for Spinal Cord Injury. Clin Spine Surg 2024; 37:433-439. [PMID: 39264675 DOI: 10.1097/bsd.0000000000001695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Neuroprotective strategies aimed at preventing secondary neurologic injury following acute spinal cord injury remain an important area of clinical, translational, and basic science research. Despite recent advancement in the understanding of basic mechanisms of primary and secondary neurologic injury, few pharmacologic agents have shown consistent promise in improving neurologic outcomes following SCI in large randomized clinical trials. The authors review the existing literature and clinical guidelines for pharmacologic therapy investigated for managing acute SCI, including corticosteroids, GM-1 ganglioside (Sygen), Riluzole, opioid antagonists, Cethrin, minocycline, and vasopressors for mean arterial pressure augmentation. Therapies for managing secondary effects of SCI, such as bradycardia, are discussed. Current clinical trials for pharmacotherapy and cellular transplantation following acute SCI are also reviewed. Despite the paucity of current evidence for clinically beneficial post-SCI pharmacotherapy, future research efforts will hopefully elucidate promising therapeutic agents to improve neurologic function.
Collapse
|
4
|
Picard E, Youale J, Hyman MJ, Xie E, Achiedo S, Kaufmann GT, Moir J, Daruich A, Crisanti P, Torriglia A, Polak M, Behar-Cohen F, Skondra D, Berdugo M. Glyburide confers neuroprotection against age-related macular degeneration (AMD). Transl Res 2024; 272:81-94. [PMID: 38815899 DOI: 10.1016/j.trsl.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Glyburide, a sulfonylurea drug used to treat type 2 diabetes, boasts neuroprotective effects by targeting the sulfonylurea receptor 1 (SUR1) and associated ion channels in various cell types, including those in the central nervous system and the retina. Previously, we demonstrated that glyburide therapy improved retinal function and structure in a rat model of diabetic retinopathy. In the present study, we explore the application of glyburide in non-neovascular ("dry") age-related macular degeneration (AMD), another progressive disease characterized by oxidative stress-induced damage and neuroinflammation that trigger cell death in the retina. We show that glyburide administration to a human cone cell line confers protection against oxidative stress, inflammasome activation, and apoptosis. To corroborate our in vitro results, we also conducted a case-control study, controlling for AMD risk factors and other diabetes medications. It showed that glyburide use in patients reduces the odds of new-onset dry AMD. A positive dose-response relationship is observed from this analysis, in which higher cumulative doses of glyburide further reduce the odds of new-onset dry AMD. In the quest for novel therapies for AMD, glyburide emerges as a promising repurposable drug given its known safety profile. The results from this study provide insights into the multifaceted actions of glyburide and its potential as a neuroprotective agent for retinal diseases; however, further preclinical and clinical studies are needed to validate its therapeutic potential in the context of degenerative retinal disorders such as AMD.
Collapse
Affiliation(s)
- Emilie Picard
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| | - Jenny Youale
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| | - Max J Hyman
- enter for Health and the Social Sciences, University of Chicago, Chicago, Illinois
| | - Edward Xie
- Stony Brook University Hospital, Stony Brook, NY
| | - Seiki Achiedo
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| | | | - John Moir
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Alejandra Daruich
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France; AP-HP, Service d'Ophtalmologie, Hôpital universitaire Necker-Enfants Malades, Paris, France
| | - Patricia Crisanti
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| | - Alicia Torriglia
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| | - Michel Polak
- AP-HP, Service d'endocrinologie, diabétologie et gynécologie pédiatriques, Hôpital universitaire Necker-Enfants Malades, Paris, France; Inserm U1016, Institut Cochin, Paris, France; Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Francine Behar-Cohen
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France; AP-HP, OphtalmoPôle, Hôpital Cochin, Department of Ophthalmology and Visual Science, Paris, France.
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois
| | - Marianne Berdugo
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| |
Collapse
|
5
|
Beyer F, Oppermann J, Prasse T, Müller LP, Eysel P, Bredow J. How Preoperative Closed Reduction and Time to Surgery Impact Postoperative Palmar Inclination in Distal Radius Fractures. J Clin Med 2024; 13:2316. [PMID: 38673588 PMCID: PMC11051345 DOI: 10.3390/jcm13082316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Background: The anatomical reconstruction of the wrist is the aim when treating distal radius fractures. Current literature on the importance of preoperative reduction in fractures that are treated operatively is limited. Methods: This study investigated the effect of the preoperative closed reduction of distal radius fractures on the day of trauma and the time to surgery on postoperative palmar inclination. A total of eighty patients (48 females and 32 males, mean age 55.6 years) were studied retrospectively. All patients were treated with an open reduction and internal fixation. The palmar inclination angle was measured using X-rays by two investigators, and the interobservers and pre- and post-reduction parameters were compared. Results: When the surgical management of closed distal radius fractures is required, neither initial repositioning nor a delay of up to 14 days to the surgical treatment influences postoperative palmar inclination. Conclusions: The significance of preoperative reduction of distal radius fractures without neurovascular or extensive soft tissue damage is limited and is not leading to improved outcomes. When surgery is about to be performed, surgeons should carefully consider if reduction is really vital preoperatively. Level of evidence: III.
Collapse
Affiliation(s)
- Frank Beyer
- Department of Orthopedics and Trauma Surgery, Krankenhaus Porz am Rhein, Urbacher Weg 19, 51149 Cologne, Germany;
| | - Johannes Oppermann
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (J.O.); (T.P.); (L.P.M.); (P.E.)
| | - Tobias Prasse
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (J.O.); (T.P.); (L.P.M.); (P.E.)
| | - Lars Peter Müller
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (J.O.); (T.P.); (L.P.M.); (P.E.)
| | - Peer Eysel
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (J.O.); (T.P.); (L.P.M.); (P.E.)
| | - Jan Bredow
- Department of Orthopedics and Trauma Surgery, Krankenhaus Porz am Rhein, Urbacher Weg 19, 51149 Cologne, Germany;
| |
Collapse
|
6
|
Guha L, Kumar H. Drug Repurposing for Spinal Cord Injury: Progress Towards Therapeutic Intervention for Primary Factors and Secondary Complications. Pharmaceut Med 2023; 37:463-490. [PMID: 37698762 DOI: 10.1007/s40290-023-00499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/13/2023]
Abstract
Spinal cord injury (SCI) encompasses a plethora of complex mechanisms like the involvement of major cell death pathways, neurodegeneration of spinal cord neurons, overexpression of glutaminergic transmission and inflammation cascade, along with different co-morbidities like neuropathic pain, urinary and sexual dysfunction, respiratory and cardiac failures, making it one of the leading causes of morbidity and mortality globally. Corticosteroids such as methylprednisolone and dexamethasone, and non-steroidal anti-inflammatory drugs such as naproxen, aspirin and ibuprofen are the first-line treatment options for SCI, inhibiting primary and secondary progression by preventing inflammation and action of reactive oxygen species. However, they are constrained by a short effective drug administration window and their pharmacological action being limited to symptomatic relief of the secondary effects related to spinal cord injury only. Although post-injury rehabilitation treatments may enable functional recovery, they take a long time to show results. Drug repurposing might be an innovative method for expanding therapy alternatives, utilising drugs that are already approved by various esteemed federal agencies throughout the world. Reutilising a drug molecule to treat SCI can eliminate the need for expensive and lengthy drug discovery processes and pave the way for new therapeutic approaches in SCI. This review summarises marketed drugs that could be repurposed based on their safety and efficacy data. We also discuss their mechanisms of action and provide a list of repurposed drugs under clinical trials for SCI therapy.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Opposite Air Force Station, Palaj, P.O-382355, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Opposite Air Force Station, Palaj, P.O-382355, Gandhinagar, Gujarat, India.
| |
Collapse
|
7
|
Almeida F, Marques S, Santos A, Prins C, Cardoso F, Heringer L, Mendonça H, Martinez A. Molecular approaches for spinal cord injury treatment. Neural Regen Res 2023; 18:23-30. [PMID: 35799504 PMCID: PMC9241396 DOI: 10.4103/1673-5374.344830] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury. Many strategies are tested in preclinical studies that focus on ameliorating the functional outcomes after spinal cord injury. Among these, molecular compounds are currently being used for neurological recovery, with promising results. These molecules target the axon collapsed growth cone, the inhibitory microenvironment, the survival of neurons and glial cells, and the re-establishment of lost connections. In this review we focused on molecules that are being used, either in preclinical or clinical studies, to treat spinal cord injuries, such as drugs, growth and neurotrophic factors, enzymes, and purines. The mechanisms of action of these molecules are discussed, considering traumatic spinal cord injury in rodents and humans.
Collapse
|
8
|
Malomo T, Allard Brown A, Bale K, Yung A, Kozlowski P, Heran M, Streijger F, Kwon BK. Quantifying Intraparenchymal Hemorrhage after Traumatic Spinal Cord Injury: A Review of Methodology. J Neurotrauma 2022; 39:1603-1635. [PMID: 35538847 DOI: 10.1089/neu.2021.0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intraparenchymal hemorrhage (IPH) after a traumatic injury has been associated with poor neurological outcomes. Although IPH may result from the initial mechanical trauma, the blood and its breakdown products have potentially deleterious effects. Further, the degree of IPH has been correlated with injury severity and the extent of subsequent recovery. Therefore, accurate evaluation and quantification of IPH following traumatic spinal cord injury (SCI) is important to define treatments' effects on IPH progression and secondary neuronal injury. Imaging modalities, such as magnetic resonance imaging (MRI) and ultrasound (US), have been explored by researchers for the detection and quantification of IPH following SCI. Both quantitative and semiquantitative MRI and US measurements have been applied to objectively assess IPH following SCI, but the optimal methods for doing so are not well established. Studies in animal SCI models (rodent and porcine) have explored US and histological techniques in evaluating SCI and have demonstrated the potential to detect and quantify IPH. Newer techniques using machine learning algorithms (such as convolutional neural networks [CNN]) have also been studied to calculate IPH volume and have yielded promising results. Despite long-standing recognition of the potential pathological significance of IPH within the spinal cord, quantifying IPH with MRI or US is a relatively new area of research. Further studies are warranted to investigate their potential use. Here, we review the different and emerging quantitative MRI, US, and histological approaches used to detect and quantify IPH following SCI.
Collapse
Affiliation(s)
- Toluyemi Malomo
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aysha Allard Brown
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsten Bale
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manraj Heran
- Department of Radiology, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, and Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms232213833. [PMID: 36430308 PMCID: PMC9698625 DOI: 10.3390/ijms232213833] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.
Collapse
Affiliation(s)
- Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
10
|
Lam CY, Koljonen PA, Yip CCH, Su IYW, Hu Y, Wong YW, Cheung KMC. Functional recovery priorities and community rehabilitation service preferences of spinal cord injury individuals and caregivers of Chinese ethnicity and cultural background. Front Neurol 2022; 13:941256. [PMID: 35989936 PMCID: PMC9382587 DOI: 10.3389/fneur.2022.941256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Spinal cord injury (SCI) causes significant and permanent disability affecting motor, sensory and autonomic functions. We conducted a survey on the priorities of functional recovery and preferences for community rehabilitation services in a cohort of Chinese individuals with SCI as well as the primary caregivers. The study also investigated their views on advanced technology and research. Methods An online platform with a self-administered questionnaire was used to collect the opinions of clients that received services from an SCI follow-up clinic, a self-help association, or a non-government organization from 1 September-31 December 2021. Results Eighty-seven subjects (74 individuals with SCI-48 tetraplegic, 26 paraplegic, and 13 caregivers) responded to the survey. Recovery of arm/hand function was given the highest priority among tetraplegics, followed by upper trunk/body strength and balance, and bladder/bowel function. Sexual function had a significant lower ranking than all priority areas except normal sensation (p < 0.05). Paraplegics viewed bladder/bowel function as the most important area of functional recovery, followed by walking movement, upper trunk/body strength and balance, elimination of chronic pain, and regaining normal sensation. There was no statistically significant difference among the top priority areas (p > 0.05). In contrast to previous studies done in Western populations, the study revealed that sexual function was ranked as the lowest by all 3 groups of respondents (tetraplegics, paraplegics, and caregivers). The majority of participants thought community rehabilitation services were inadequate. Most of the respondents were interested to try advanced technology which would facilitate their daily life and rehabilitation. About half of the individuals with SCI thought advance in technology and research could bring significant improvement in their quality of life in the coming 10 years. Conclusion This survey is the first study specifically looking into the recovery and rehabilitation priorities of a Chinese population of individuals with SCI. This is also the first study to investigate the priorities of the primary caregivers of SCI individuals. The findings are useful as a reference for planning of future research and provision of rehabilitation services for the SCI community locally and in other parts of China.
Collapse
Affiliation(s)
- Chor Yin Lam
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, Hospital Authority, Hong Kong, Hong Kong SAR, China
| | - Christopher Chun Hei Yip
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | - Yong Hu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yat Wa Wong
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, Hospital Authority, Hong Kong, Hong Kong SAR, China
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
11
|
Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel-Part 2: TRPM4 in Health and Disease. Pharmaceuticals (Basel) 2021; 15:ph15010040. [PMID: 35056097 PMCID: PMC8779181 DOI: 10.3390/ph15010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+ sensitive and permeable for monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions; it regulates membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the currently available knowledge about the physiological and pathophysiological roles of TRPM4 in various tissues. These include the physiological functions of TRPM4 in the cells of the Langerhans islets of the pancreas, in various immune functions, in the regulation of vascular tone, in respiratory and other neuronal activities, in chemosensation, and in renal and cardiac physiology. TRPM4 contributes to pathological conditions such as overactive bladder, endothelial dysfunction, various types of malignant diseases and central nervous system conditions including stroke and injuries as well as in cardiac conditions such as arrhythmias, hypertrophy, and ischemia-reperfusion injuries. TRPM4 claims more and more attention and is likely to be the topic of research in the future.
Collapse
|
12
|
Jha RM, Rani A, Desai SM, Raikwar S, Mihaljevic S, Munoz-Casabella A, Kochanek PM, Catapano J, Winkler E, Citerio G, Hemphill JC, Kimberly WT, Narayan R, Sahuquillo J, Sheth KN, Simard JM. Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. Int J Mol Sci 2021; 22:11899. [PMID: 34769328 PMCID: PMC8584331 DOI: 10.3390/ijms222111899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease-providing an overview of the journey from patch-clamp experiments to phase III trials.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Shashvat M. Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Amanda Munoz-Casabella
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Ethan Winkler
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy;
- Neurointensive Care Unit, Department of Neuroscience, San Gerardo Hospital, ASST—Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Raj Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY 11549, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain;
- Neurotraumatology and Neurosurgery Research Unit, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
14
|
Morse LR, Field-Fote EC, Contreras-Vidal J, Noble-Haeusslein LJ, Rodreick M, Shields RK, Sofroniew M, Wudlick R, Zanca JM. Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research. J Neurotrauma 2021; 38:1251-1266. [PMID: 33353467 PMCID: PMC11984770 DOI: 10.1089/neu.2020.7174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The spinal cord injury (SCI) research community has experienced great advances in discovery research, technology development, and promising clinical interventions in the past decade. To build upon these advances and maximize the benefit to persons with SCI, the National Institutes of Health (NIH) hosted a conference February 12-13, 2019 titled "SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research." The purpose of the conference was to bring together a broad range of stakeholders, including researchers, clinicians and healthcare professionals, persons with SCI, industry partners, regulators, and funding agency representatives to break down existing communication silos. Invited speakers were asked to summarize the state of the science, assess areas of technological and community readiness, and build collaborations that could change the trajectory of research and clinical options for people with SCI. In this report, we summarize the state of the science in each of five key domains and identify the gaps in the scientific literature that need to be addressed to move the field forward.
Collapse
Affiliation(s)
- Leslie R. Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Edelle C. Field-Fote
- Shepherd Center, Atlanta, Georgia, USA
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jose Contreras-Vidal
- Laboratory for Non-Invasive Brain Machine Interfaces, NSF IUCRC BRAIN, Cullen College of Engineering, University of Houston, Houston, Texas, USA
| | - Linda J. Noble-Haeusslein
- Departments of Neurology and Psychology and the Institute of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | | | - Richard K. Shields
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael Sofroniew
- Department of Neurobiology, University of California, Los Angeles, California, USA
| | - Robert Wudlick
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Jeanne M. Zanca
- Spinal Cord Injury Research, Kessler Foundation, West Orange, New Jersey, USA
- Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
15
|
Baroncini A, Maffulli N, Eschweiler J, Tingart M, Migliorini F. Pharmacological management of secondary spinal cord injury. Expert Opin Pharmacother 2021; 22:1793-1800. [PMID: 33899630 DOI: 10.1080/14656566.2021.1918674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Secondary spinal cord injury (SCI) sets on immediately after trauma and, despite prompt treatment, may become chronic. SCI is a complex condition and presents numerous challenges to patients and physicians alike, also considering the lack of an approved pharmacological therapy.Areas covered: This review describes the pathophysiological mechanisms leading to secondary SCI to highlight possible targets for pharmacological therapy. Furthermore, an extensive search of the literature on different databases (PubMed, Google scholar, Embase, and Scopus) and of the current clinical trials (clinicaltrials.gov) was performed to investigate the current outlook for the pharmacological management of SCI. Only drugs with performed or ongoing clinical trials were considered.Expert opinion: Pharmacological therapy aims to improve motor and sensory function in patients. Overall, drugs are divided into neuroprotective compounds, which aim to limit the damage induced by the pro-inflammatory and pro-apoptotic milieu of SCI, and neuroregenerative drugs, which induce neuronal and axonal regrowth. While many compounds have been trialed with promising results, none has yet completed a stage III trial and has been approved for the pharmacological management of SCI.
Collapse
Affiliation(s)
- Alice Baroncini
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent, UK.,Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Filippo Migliorini
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| |
Collapse
|
16
|
Zou Y. Targeting axon guidance cues for neural circuit repair after spinal cord injury. J Cereb Blood Flow Metab 2021; 41:197-205. [PMID: 33167744 PMCID: PMC7812507 DOI: 10.1177/0271678x20961852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/02/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
At least two-thirds of spinal cord injury cases are anatomically incomplete, without complete spinal cord transection, although the initial injuries cause complete loss of sensory and motor functions. The malleability of neural circuits and networks allows varied extend of functional restoration in some individuals after successful rehabilitative training. However, in most cases, the efficiency and extent are both limited and uncertain, largely due to the many obstacles of repair. The restoration of function after anatomically incomplete injury is in part made possible by the growth of new axons or new axon branches through the spared spinal cord tissue and the new synaptic connections they make, either along the areas they grow through or in the areas they terminate. This review will discuss new progress on the understanding of the role of axon guidance molecules, particularly the Wnt family proteins, in spinal cord injury and how the knowledge and tools of axon guidance can be applied to increase the potential of recovery. These strategies, combined with others, such as neuroprotection and rehabilitation, may bring new promises. The recovery strategies for anatomically incomplete spinal cord injuries are relevant and may be applicable to traumatic brain injury and stroke.
Collapse
Affiliation(s)
- Yimin Zou
- Neurobiology Section, Biological Sciences
Division, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Torregrossa F, Sallì M, Grasso G. Emerging Therapeutic Strategies for Traumatic Spinal Cord Injury. World Neurosurg 2020; 140:591-601. [PMID: 32797989 DOI: 10.1016/j.wneu.2020.03.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 01/18/2023]
Abstract
Spinal cord injury (SCI) is a debilitating neurologic condition with tremendous socioeconomic impact on affected individuals and the health care system. The treatment of SCI principally includes surgical treatment and marginal pharmacologic and rehabilitation therapies targeting secondary events with minor clinical improvements. This unsuccessful result mainly reflects the complexity of SCI pathophysiology and the diverse biochemical and physiologic changes that occur in the injured spinal cord. Once the nervous system is injured, cascades of cellular and molecular events are triggered at varying times. Although the cascade of tissue reactions and cell injury develops over a period of days or weeks, the most extensive cell death in SCI occurs within hours of trauma. This situation suggests that early intervention is likely to be the most promising approach to rescue the cord from further and irreversible cell damage. Over the past decades, a wealth of research has been conducted in preclinical and clinical studies with the hope to find new therapeutic strategies. Researchers have identified several targets for the development of potential therapeutic interventions (e.g., neuroprotection, replacement of cells lost, removal of inhibitory molecules, regeneration, and rehabilitation strategies to induce neuroplasticity). Most of these treatments have passed preclinical and initial clinical evaluations but have failed to be strongly conclusive in the clinical setting. This narrative review provides an update of the many therapeutic interventions after SCI, with an emphasis on the underlying pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Fabio Torregrossa
- Neurosurgical Unit, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Marcello Sallì
- Department of Neurosensory and Motor Surgery, University of Palermo, Palermo, Italy
| | - Giovanni Grasso
- Neurosurgical Unit, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
| |
Collapse
|