1
|
Yin Z, Deng J, Zhou M, Li M, Zhou E, Liu J, Jia Z, Yang G, Jin Y. Exploration of a Novel Circadian miRNA Pair Signature for Predicting Prognosis of Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14205106. [PMID: 36291889 PMCID: PMC9600995 DOI: 10.3390/cancers14205106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the primary histological subtype of lung cancer with a markedly heterogeneous prognosis. Therefore, there is an urgent need to identify optimal prognostic biomarkers. We aimed to explore the value of the circadian miRNA (cmiRNA) pair in predicting prognosis and guiding the treatment of LUAD. We first retrieved circadian genes (Cgenes) from the CGDB database, based on which cmiRNAs were predicted using the miRDB and mirDIP databases. The sequencing data of Cgenes and cmiRNAs were retrieved from TCGA and GEO databases. Two random cmiRNAs were matched to a single cmiRNA pair. Finally, univariate Cox proportional hazard analysis, LASSO regression, and multivariate Cox proportional hazard analysis were performed to develop a prognostic signature consisting of seven cmiRNA pairs. The signature exhibited good performance in predicting the overall and progression-free survival. Patients in the high-risk group also showed lower IC50 values for several common chemotherapy and targeted medicines. In addition, we constructed a cmiRNA–Cgenes network and performed a corresponding Gene Ontology and Gene Set enrichment analysis. In conclusion, the novel circadian-related miRNA pair signature could provide a precise prognostic evaluation with the potential capacity to guide individualized treatment regimens for LUAD.
Collapse
Affiliation(s)
- Zhengrong Yin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingjing Deng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Minglei Li
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - E Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiatong Liu
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhe Jia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (G.Y.); (Y.J.)
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (G.Y.); (Y.J.)
| |
Collapse
|
2
|
Wang W, Li X, Liu C, Zhang X, Wu Y, Diao M, Tan S, Huang S, Cheng Y, You T. MicroRNA-21 as a diagnostic and prognostic biomarker of lung cancer: a systematic review and meta-analysis. Biosci Rep 2022; 42:BSR20211653. [PMID: 35441676 PMCID: PMC9093699 DOI: 10.1042/bsr20211653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The relationship between microRNA-21 (miRNA-21) and pathogenesis of lung cancer is a considerable focus of research interest. However, to our knowledge, no in-depth meta-analyses based on existing evidence to ascertain the value of miRNA-21 in diagnosis and clinical prognosis of lung cancer have been documented. METHODS We comprehensively searched all the literature pertaining to 'miRNA-21' and 'lung cancer' from four databases from the period of inception of each database until May 2020. Using specific inclusion and exclusion criteria, the literature for inclusion was identified and the necessary data extracted. RESULTS In total, 46 articles were included in the meta-analysis, among which 31 focused on diagnostic value and 15 on prognostic value. Combined sensitivity (SEN) of miRNA-21 in diagnosis of lung cancer was 0.77 (95% confidence interval (CI): 0.72-0.81), specificity (SPE) was 0.86 (95% CI: 0.80-0.90), diagnostic odds ratio (DOR) was (95% CI: 12-33), and area under the SROC curve (AUC) was 0.87 (95% CI: 0.84-0.90). No significant correlations were observed between abnormal expression of miRNA-21 and gender, smoking habits, pathological type and clinical stage of lung cancer (P>0.05). In terms of overall survival (OS), univariate analysis (hazards ratio (HR) = 1.49, 95% CI: 1.22-1.82) revealed high expression of miRNA-21 as an influencing factor for lung cancer. MiRNA-21 was confirmed as an independent risk factor for poor prognosis in multivariate analysis (HR = 1.65, 95% CI: 1.24-2.19). CONCLUSION MiRNA-21 has potential clinical value in the diagnosis and prognosis of lung cancer and may serve as an effective diagnostic marker and therapeutic target in the future.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyao Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Chengfei Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xin Zhang
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ying Wu
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Mingxin Diao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Siyu Tan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Shubin Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yin Cheng
- The First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Tao You
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Chu CY, Wang R, Liu XL. Roles of Wnt/β-catenin signaling pathway related microRNAs in esophageal cancer. World J Clin Cases 2022; 10:2678-2686. [PMID: 35434118 PMCID: PMC8968815 DOI: 10.12998/wjcc.v10.i9.2678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 10/25/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous, noncoding, single-stranded small RNAs that regulate expression of tumor suppressor genes and oncogenes and are involved in almost all tumor-related processes. MiRNA dysregulation plays an important role in the occurrence and development of esophageal cancer through specific signal pathways, including the Wnt/β-catenin signaling pathway, and is closely related to the malignant characteristics of esophageal cancer. The interaction between miRNAs and the Wnt/β-catenin signaling pathway, which is specifically expressed in esophageal cancer tissues, shows potential as a new biomarker and therapeutic target. This article reviews the role of miRNAs related to the Wnt pathway in the carcinogenesis of esophageal carcinoma and its role in Wnt signal transduction. The content of this review can be used as the basis for formulating or improving the treatment strategy of esophageal cancer.
Collapse
Affiliation(s)
- Chao-Yang Chu
- Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Rui Wang
- Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Xian-Li Liu
- Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| |
Collapse
|
4
|
Mahani M, Khakbaz F, Ju H. Hairpin oligosensor using SiQDs: Förster resonance energy transfer study and application for miRNA-21 detection. Anal Bioanal Chem 2022; 414:2505-2512. [PMID: 35099583 DOI: 10.1007/s00216-022-03891-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
MicroRNAs are known to be tumor suppressors and promoters and can be used as cancer markers. In this work, a novel oligosensor was designed using Si quantum dots (SiQDs) for the detection of miRNAs. Five-nanometer SiQDs were synthesized, with a band gap of 2.8 eV, fluorescence lifetime of 4.56 μs (τ1/2 = 3.26 μs), quantum yield of 25%, fluorescence rate constant of 6.25 × 104, and non-radiative rate constant of 1.60 × 105 s-1. They showed excellent water dispersibility, good stability (with 95% confidence for 6-month storage) without photobleaching, and high biocompatibility, with an IC50 value of 292.2 μg/L. The SiQDs and Black Hole Quencher-1 (BHQ1) were conjugated to the 5' and 3' terminals of an oligomer, respectively. The resulting hairpin molecular beacon showed resonance energy transfer efficiency of 63%. A distance of 0.91 R (Förster distance) between SiQD and BHQ1 was obtained. In the presence of a stoichiometric amount of the complementary oligonucleotide (ΔGhybridization = -35.09 kcal mol-1), 98% of the fluorescence was recovered due to loop opening of the hairpin structure. The probe showed good selectivity toward miRNA-21, with a limit of detection of 14.9 fM. The oligosensor recoveries of miRNA-21 spiked in human serum and urine were 94-98% and 93-108%, respectively.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran.
| | - Faeze Khakbaz
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Dogan F, Forsyth NR. Telomerase Regulation: A Role for Epigenetics. Cancers (Basel) 2021; 13:cancers13061213. [PMID: 33802026 PMCID: PMC8000866 DOI: 10.3390/cancers13061213] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Maintenance of telomeres is a fundamental step in human carcinogenesis and is primarily regulated by telomerase and the human telomerase reverse transcriptase gene (TERT). Improved understanding of the transcriptional control of this gene may provide potential therapeutic targets. Epigenetic modifications are a prominent mechanism to control telomerase activity and regulation of the TERT gene. TERT-targeting miRNAs have been widely studied and their function explained through pre-clinical in vivo model-based validation studies. Further, histone deacetylase inhibitors are now in pre and early clinical trials with significant clinical success. Importantly, TERT downregulation through epigenetic modifications including TERT promoter methylation, histone deacetylase inhibitors, and miRNA activity might contribute to clinical study design. This review provides an overview of the epigenetic mechanisms involved in the regulation of TERT expression and telomerase activity. Abstract Telomerase was first described by Greider and Blackburn in 1984, a discovery ultimately recognized by the Nobel Prize committee in 2009. The three decades following on from its discovery have been accompanied by an increased understanding of the fundamental mechanisms of telomerase activity, and its role in telomere biology. Telomerase has a clearly defined role in telomere length maintenance and an established influence on DNA replication, differentiation, survival, development, apoptosis, tumorigenesis, and a further role in therapeutic resistance in human stem and cancer cells including those of breast and cervical origin. TERT encodes the catalytic subunit and rate-limiting factor for telomerase enzyme activity. The mechanisms of activation or silencing of TERT remain open to debate across somatic, cancer, and stem cells. Promoter mutations upstream of TERT may promote dysregulated telomerase activation in tumour cells but additional factors including epigenetic, transcriptional and posttranscriptional modifications also have a role to play. Previous systematic analysis indicated methylation and mutation of the TERT promoter in 53% and 31%, respectively, of TERT expressing cancer cell lines supporting the concept of a key role for epigenetic alteration associated with TERT dysregulation and cellular transformation. Epigenetic regulators including DNA methylation, histone modification, and non-coding RNAs are now emerging as drivers in the regulation of telomeres and telomerase activity. Epigenetic regulation may be responsible for reversible silencing of TERT in several biological processes including development and differentiation, and increased TERT expression in cancers. Understanding the epigenetic mechanisms behind telomerase regulation holds important prospects for cancer treatment, diagnosis and prognosis. This review will focus on the role of epigenetics in telomerase regulation.
Collapse
Affiliation(s)
- Fatma Dogan
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
| | - Nicholas R. Forsyth
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
- School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence:
| |
Collapse
|
6
|
Zhang Z, Zhang J, Diao L, Han L. Small non-coding RNAs in human cancer: function, clinical utility, and characterization. Oncogene 2021; 40:1570-1577. [PMID: 33452456 DOI: 10.1038/s41388-020-01630-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023]
Abstract
Small non-coding RNAs (sncRNAs) play critical roles in multiple regulatory processes, including transcription, post-transcription, and translation. Emerging evidence reveals the critical roles of sncRNAs in cancer development and their potential role as biomarkers and/or therapeutic targets. In this paper, we review recent research on four sncRNA species with functional significance in cancer: small nucleolar RNAs, transfer RNA, small nuclear RNAs, and piwi-interacting RNAs. We introduce their functional roles in tumorigenesis and discuss the potential utility of sncRNAs as prognostic and diagnostic biomarkers and therapeutic targets. We further summarize approaches to characterize sncRNAs in a high-throughput manner, including the specific library construction and computational framework. Our review provides a perspective of the functions, clinical utility, and characterization of sncRNAs in cancer.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Cho WC, Kim M, Park JW, Jeong SY, Ku JL. Exosomal miR-193a and let-7g accelerate cancer progression on primary colorectal cancer and paired peritoneal metastatic cancer. Transl Oncol 2020; 14:101000. [PMID: 33352502 PMCID: PMC7758376 DOI: 10.1016/j.tranon.2020.101000] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023] Open
Abstract
A metastasis of colorectal cancer is difficult to diagnose, and has a poor prognosis. Therefore, we tried to elucidate the possibility of a diagnostic and prognostic marker. Exosomal miR-193a and let-7g were sorted by miRNA microarray. The expression of miR-193a in the PTM group was lower than that of the primary CRC group, and the expression of let-7g was higher than that of the primary CRC. MMP16 and CDKN1A expression was confirmed respectively for target genes of two miRNAs. When the mimics of these miRNAs were treated with cell lines, both MMP16 and CDKN1A decreased intracellular expression. Cell invasiveness and proliferation were decreased by miR-193a and increased by let-7g. The differences in expression of exosomal miR-193a and let-7g extracted from the plasma of patients were classified as cancer progression indicators. Furthermore, the survival rate decreased in the group with low miR-193a expression and high let-7g expression. Our study confirmed the possibility of using this as a diagnostic and prognostic marker for colorectal cancer by measuring the expression levels of exosomal miR-193a and let-7g in blood.
Collapse
Affiliation(s)
- Woo-Cheol Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Minjung Kim
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Ji Won Park
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Seung-Yong Jeong
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea.
| | - Ja-Lok Ku
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
8
|
Yang Z, Yin H, Shi L, Qian X. A novel microRNA signature for pathological grading in lung adenocarcinoma based on TCGA and GEO data. Int J Mol Med 2020; 45:1397-1408. [PMID: 32323746 PMCID: PMC7138293 DOI: 10.3892/ijmm.2020.4526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common types of lung cancer and its poor prognosis largely depends on the tumor pathological stage. Critical roles of microRNAs (miRNAs) have been reported in the tumorigenesis and progression of lung cancer. However, whether the differential expression pattern of miRNAs could be used to distinguish early-stage (stage I) from mid-late-stage (stages II–IV) LUAD tumors is still unclear. In this study, clinical information and miRNA expression profiles of patients with LUAD were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. TCGA-LUAD (n=470) dataset was used for model training and validation, and the GSE62182 (n=94) and GSE83527 (n=36) datasets were used as external independent test datasets. The diagnostic model was created through miRNA feature selection followed by SVM classifier and was confirmed by 5-fold cross-validation. A receiver operating characteristic curve was calculated to evaluate the accuracy and robustness of the model. Using the DX score and LIBSVM tool, a 16-miRNA signature that could distinguish LUAD pathological stages was identified. The area under the curve rates were 0.62 [95% confidence interval (CI): 0.56–0.67], 0.66 (95% CI: 0.54–0.76) and 0.63 (95% CI: 0.43–0.82) in TCGA-LUAD internal validation dataset, the GSE62182 external validation dataset, and the GSE83527 external validation dataset, respectively. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses suggested that the target genes of the 16-miRNA signature were mainly involved in metabolic pathways. The present findings demonstrate that a 16-miRNA signature could serve as a promising diagnostic biomarker for pathological staging in LUAD.
Collapse
Affiliation(s)
- Zhiyu Yang
- SJTU‑Yitu Joint Laboratory of Artificial Intelligence in Healthcare, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hongkun Yin
- Shanghai Yitu Healthcare Technology Co. Ltd., Shanghai 200051, P.R. China
| | - Lei Shi
- Hangzhou Yitu Healthcare Technology Co. Ltd., Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaohua Qian
- SJTU‑Yitu Joint Laboratory of Artificial Intelligence in Healthcare, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
9
|
Pan C, Luo J, Zhang J. Computational Identification of RNA-Seq Based miRNA-Mediated Prognostic Modules in Cancer. IEEE J Biomed Health Inform 2020; 24:626-633. [DOI: 10.1109/jbhi.2019.2911528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Liu F, Chen Y, Chen B, Liu C, Xing J. MiR-935 Promotes Clear Cell Renal Cell Carcinoma Migration and Invasion by Targeting IREB2. Cancer Manag Res 2019; 11:10891-10900. [PMID: 31920398 PMCID: PMC6941696 DOI: 10.2147/cmar.s232380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Clear cell renal cell carcinoma (ccRCC) has the highest rate of metastasis and invasion in RCC and is the third most common adult urinary malignancy. miRNA may serve a critical role in human cancer development and progression, has been confirmed to play a pivotal role in RCC cell invasion and migration. Since miR‑935 had been verified to be an oncogene or tumor suppressor in various cancers, the role of miR‑935 in RCC was unclear. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to verify miR-935 expression. CCK-8 assay, wound healing assay and transwell assay were used to investigate the cell proliferation, migration and invasion of miR-935. Receiver operating characteristic (ROC) curve analysis was applied to discriminate different clinical classifications. Gain or loss of function approaches were used to investigate the cell proliferation, migration and invasion of miR-935 in vitro. Bioinformatics analysis and dual-luciferase reporter assay were used to identify the target of miR-935. Results MiR-935 had a higher expression level in RCC cells and cancer tissues. MiR-935 mimics promoted cell proliferation, migration and invasion, and miR-935 inhibitor inhibited cell inhibit malignancy of cancer cells. Bioinformatics analysis and dual-luciferase reporter assay identified iron-responsive element-binding protein 2 (IREB2) as a direct target of miR-935. qRT-PCR showed IREB2 expression was downregulated in ccRCC cancer tissues and high IREB2 expression had a longer overall survival (OS) and disease-free survival (DFS). Silencing IREB2 could reverse the function of miR-935 inhibitor on cell proliferation and metastasis in renal cancer cells. Conclusion The study indicated that miR-935 may act as an oncomiRNA and influenced migration and invasion progress of ccRCC by targeting IREB2. Oncogene miR-935 may be a molecular marker and uncover new strategies for ccRCC.
Collapse
Affiliation(s)
- Fei Liu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, People's Republic of China.,Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Yuedong Chen
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Bin Chen
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| |
Collapse
|
11
|
Zografos E, Zagouri F, Kalapanida D, Zakopoulou R, Kyriazoglou A, Apostolidou K, Gazouli M, Dimopoulos MA. Prognostic role of microRNAs in breast cancer: A systematic review. Oncotarget 2019; 10:7156-7178. [PMID: 31903173 PMCID: PMC6935258 DOI: 10.18632/oncotarget.27327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play an important role in breast cancer, functioning either as potential oncogenes or tumor suppressor genes, but their role in the prognosis of patients remains unclear. The aim of the present review study is to highlight recent preclinical and clinical studies performed on both circulating and tissue-specific miRNAs and their potential role as prognostic markers in breast cancer. We systematically searched the PubMed database to explore the prognostic value of miRNAs in breast cancer. After performing the literature search and review, 117 eligible studies were identified. We found that 110 aberrantly expressed miRNAs have been associated with prognosis in breast cancer. In conclusion, the collective data presented in this review indicate that miRNAs could serve as novel prognostic tools in breast cancer, while the clinical application of these findings has yet to be verified.
Collapse
Affiliation(s)
- Eleni Zografos
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Kalapanida
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Kyriazoglou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleoniki Apostolidou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Zhang J, Luo H, Xiong Z, Wan K, Liao Q, He H. High-throughput sequencing reveals biofluid exosomal miRNAs associated with immunity in pigs. Biosci Biotechnol Biochem 2019; 84:53-62. [PMID: 31483222 DOI: 10.1080/09168451.2019.1661767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Large numbers of miRNAs are found in biofluid exosomes. We isolated ~50-200 nm diameter exosomes from four types of porcine biofluid (urine, plasma, semen, and bile) using serial centrifugation and ultracentrifugation procedures. A total of 42.15 M raw data were generated from four small RNA libraries. This produced 40.17 M map-able sequences, of which we identified 204 conserved miRNAs, and 190 novel candidate miRNAs. Furthermore, we identified 34 miRNAs specifically expressed in only one library, all with well-characterized immune-related functions. A set of five universally abundant miRNAs (miR-148a-3p, miR-21-5p, let-7f-5p, let-7i-5p, and miR-99a-5p) across all four biofluids was also found. Function enrichment analysis revealed that the target genes of the five ubiquitous miRNAs are primarily involved in immune and RNA metabolic processes. In summary, our findings suggest that porcine biofluid exosomes contain a large number of miRNAs, many of which may be crucial regulators of the immune system.
Collapse
Affiliation(s)
- Jie Zhang
- College of Animal Science, Southwest University, Chongqing, China
| | - Hui Luo
- College of Animal Science, Southwest University, Chongqing, China
| | - Zibiao Xiong
- College of Animal Science, Southwest University, Chongqing, China
| | - Kun Wan
- College of Animal Science, Southwest University, Chongqing, China
| | - Qinfeng Liao
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Hang He
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| |
Collapse
|
13
|
Soeda N, Iinuma H, Suzuki Y, Tsukahara D, Midorikawa H, Igarashi Y, Kumata Y, Horikawa M, Kiyokawa T, Fukagawa T, Fukushima R. Plasma exosome-encapsulated microRNA-21 and microRNA-92a are promising biomarkers for the prediction of peritoneal recurrence in patients with gastric cancer. Oncol Lett 2019; 18:4467-4480. [PMID: 31611956 PMCID: PMC6781766 DOI: 10.3892/ol.2019.10807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
In patients with gastric cancer (GC), peritoneal recurrence is a common risk and associated with poor prognosis. A novel biomarker for the prediction of high-risk peritoneal recurrence in patients with GC is desirable. The present study investigated the effectiveness of exosome-encapsulated microRNAs (ex-miRNAs) as minimally invasive biomarkers in patients with GC that received curative surgery. Recurrence-specific ex-miRNAs were selected following comparison of miRNA microarray data from patients with TNM stage II GC with peritoneal recurrence (n=3) and without peritoneal recurrence following curative surgery (n=3), and three healthy volunteers. In this analysis, exosome-encapsulated miRNA-21 (ex-miR-21) and exosomal miR-92a (ex-miR-92a) exhibited the greatest alterations in expression patterns. Using plasma exosome samples collected from another 129 patients with stage II and III GC, the present study investigated the potential value of ex-miR-21 and ex-miR-92a as biomarkers. Ex-miRNA levels were measured using TaqMan miRNA assays. Ex-miR-21 levels were significantly higher and ex-miR-92a levels were significantly lower in samples from patients with GC compared with healthy controls. The overall survival (OS) and peritoneal recurrence-free survival (PRFS) were poorer in stage II and III patients with high ex-miR-21 levels than in patients with low miR-21 levels. OS and PRFS of stage II and III patients with low ex-miR92a levels were significantly worse than those with high ex-miR92a levels. Cox multivariate analyses indicated that ex-miR-21 and ex-miR-92a were independent prognostic factors for OS and PRFS in stage II and III GC. A negative correlation was detected between expression levels of miR-21 and programmed cell death protein 4 mRNA, and miR-92a and prostaglandin E receptor 4 mRNA. Therefore, ex-miR-21 and ex-miR-92a may function as effective and minimally invasive biomarkers for the prediction of peritoneal recurrence and the prognosis of patients with stage II/III GC.
Collapse
Affiliation(s)
- Naruyoshi Soeda
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Hisae Iinuma
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Yusuke Suzuki
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Daisuke Tsukahara
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Hironori Midorikawa
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Yuichi Igarashi
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Yoshimasa Kumata
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Masahiro Horikawa
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Takashi Kiyokawa
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Takeo Fukagawa
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Ryoji Fukushima
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| |
Collapse
|
14
|
Ji D, Zhan T, Li M, Yao Y, Jia J, Yi H, Qiao M, Xia J, Zhang Z, Ding H, Song C, Han Y, Gu J. Enhancement of Sensitivity to Chemo/Radiation Therapy by Using miR-15b against DCLK1 in Colorectal Cancer. Stem Cell Reports 2018; 11:1506-1522. [PMID: 30449704 PMCID: PMC6294114 DOI: 10.1016/j.stemcr.2018.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Chemo-/radiotherapy resistance is the main cause accounting for most treatment failure in colorectal cancer (CRC). Tumor-initiating cells (TICs) are the culprit leading to CRC chemo-/radiotherapy resistance. The underlying regulation mechanism of TICs in CRC remains unclear. Here we discovered that miR-15b expression positively correlated with therapeutic outcome in CRC. Expression of miR-15b in pretreatment biopsy tissue samples predicted tumor regression grade (TRG) in rectal cancer patients after receiving neoadjuvant radiotherapy (nRT). Expression of miR-15b in post-nRT tissue samples was associated with therapeutic outcome. DCLK1 was identified as the direct target gene for miR-15b and its suppression was associated with self-renewal and tumorigenic properties of DCLK1+ TICs. We identified B lymphoma Mo-MLV insertion region l homolog (BMI1) as a downstream target regulated by miR-15b/DCLK1 signaling. Thus, miR-15b may serve as a valuable marker for prognosis and therapeutic outcome prediction. DCLK1 could be a potential therapeutic target to overcome chemo-/radioresistance in CRC.
Collapse
Affiliation(s)
- Dengbo Ji
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Tiancheng Zhan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Ming Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Yunfeng Yao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Jinying Jia
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Haizhao Yi
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Meng Qiao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Jinhong Xia
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Zhiqian Zhang
- Department of Cell Biology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Huirong Ding
- Central Laboratory, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Can Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Beijing 100084, China
| | - Yong Han
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China; Peking-Tsinghua Center for Life Sciences, Beijing 100084, China; Peking University S.G. Hospital, Beijing 100144, China.
| |
Collapse
|
15
|
Rouigari M, Dehbashi M, Ghaedi K, Pourhossein M. Targetome Analysis Revealed Involvement of MiR-126 in Neurotrophin Signaling Pathway: A Possible Role in Prevention of Glioma Development. CELL JOURNAL 2018; 20:150-156. [PMID: 29633591 PMCID: PMC5893285 DOI: 10.22074/cellj.2018.4901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/14/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVES For the first time, we used molecular signaling pathway enrichment analysis to determine possible involvement of miR-126 and IRS-1 in neurotrophin pathway. MATERIALS AND METHODS In this prospective study, Validated and predicted targets (targetome) of miR-126 were collected following searching miRtarbase (http://mirtarbase.mbc.nctu.edu.tw/) and miRWalk 2.0 databases, respectively. Then, approximate expression of miR-126 targeting in Glioma tissue was examined using UniGene database (http://www.ncbi. nlm.nih.gov/unigene). In silico molecular pathway enrichment analysis was carried out by DAVID 6.7 database (http://david. abcc.ncifcrf.gov/) to explore which signaling pathway is related to miR-126 targeting and how miR-126 attributes to glioma development. RESULTS MiR-126 exerts a variety of functions in cancer pathogenesis via suppression of expression of target gene including PI3K, KRAS, EGFL7, IRS-1 and VEGF. Our bioinformatic studies implementing DAVID database, showed the involvement of miR-126 target genes in several signaling pathways including cancer pathogenesis, neurotrophin functions, Glioma formation, insulin function, focal adhesion production, chemokine synthesis and secretion and regulation of the actin cytoskeleton. CONCLUSIONS Taken together, we concluded that miR-126 enhances the formation of glioma cancer stem cell probably via down regulation of IRS-1 in neurotrophin signaling pathway.
Collapse
Affiliation(s)
- Maedeh Rouigari
- Isfahan Neuroscience Research Center (INRC), Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Dehbashi
- Isfahan Neuroscience Research Center (INRC), Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Genetics Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Cell and Molecular Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Meraj Pourhossein
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences Isfahan, Iran
- Department of Food Science and Technology, Food Security Research Center, School of Nutrition and Food Science, Isfahan, Iran.
| |
Collapse
|
16
|
Plasma miRNA-122-5p and miRNA-151a-3p identified as potential biomarkers for liver injury among CHB patients with PNALT. Hepatol Int 2018; 12:277-287. [PMID: 29881991 DOI: 10.1007/s12072-018-9871-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/16/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Plasma microRNA (miRNA) levels may be altered during pathological processes; therefore, they may potentially serve as biomarkers for the diagnosis and prognosis of human diseases. This study aimed to explore whether plasma miRNAs may serve as new biomarkers for liver injury among chronic hepatitis B (CHB) patients with normal or nearly normal alanine aminotransferase (ALT) levels. METHODS Plasma miRNAs from each of three independent groups (no prominent liver injury and persistently normal ALT levels, NPNALT; significant liver injury with persistently normal ALT levels, SPNALT; and healthy) were profiled by miRNA microarray analysis. Differentially expressed miRNAs were then validated by a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. The area under the receiver operating characteristic (AUC) curve was used to analyze the candidate miRNAs validated by qRT-PCR for diagnostic accuracy. RESULTS Twenty differentially expressed miRNAs were identified by microarray analysis. Seven miRNAs with elevated serum levels were validated by qRT-PCR analysis, and four of them were significantly different between the SPNALT and NPNALT groups. The AUCs of hsa-miR-122-5p and hsa-miR-151-3p were 0.877 (cutoff value = 13.38; 95% CI 0.792-0.963; sensitivity = 83.3%, specificity = 80%) and 0.882 (cutoff value = 7.4; 95% CI 0.797-0.966; sensitivity = 83.3%, specificity = 73.3%), respectively, indicating early liver injury. However, there was no significant correlation of miRNAs with either necroinflammation or fibrosis. CONCLUSION Serum hsa-miR-122-5p and hsa-miR-151-3p may function as new biomarkers for liver injury in SPNALT patients. With these two biomarkers, we may be able to identify a subset of patients who are experiencing liver injury but have normal ALT levels for further evaluation with a biopsy procedure.
Collapse
|
17
|
Yoshikawa M, Iinuma H, Umemoto Y, Yanagisawa T, Matsumoto A, Jinno H. Exosome-encapsulated microRNA-223-3p as a minimally invasive biomarker for the early detection of invasive breast cancer. Oncol Lett 2018; 15:9584-9592. [PMID: 29805680 DOI: 10.3892/ol.2018.8457] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/16/2018] [Indexed: 12/21/2022] Open
Abstract
Patients diagnosed preoperatively with ductal carcinoma in situ (DCIS) breast cancer have the potential to develop invasive ductal carcinoma (IDC). The present study investigated the usefulness of exosome-encapsulated microRNA-223-3p (miR-223-3p) as a biomarker for detecting IDC in patients initially diagnosed with DCIS by biopsy. The potential association between miR-223-3p and clinicopathological characteristics was examined in patients with breast cancer. Exosomes of 185 patients with breast cancer were separated from plasma by ultracentrifugation. Initially a microRNA (miRNA) microarray was examined to reveal the invasion specific miRNAs using exosomes collected from 6 patients with breast cancer, including 3 DCIS patients, 3 IDC patients and 3 healthy controls. In the miR microarray analysis the miR-223-3p levels of IDC patients demonstrated the highest fold-change compared with those in the DCIS patients and healthy controls. The potential of miR-223-3p for cell proliferation and cell invasion were examined in vitro using MCF7 cells transfected with the miR-223-3p gene. MCF7 cells transfected with the miR-223-3p gene significantly promoted cell proliferation and cell invasive ability (P<0.05). The plasma exosomal miR-223-3p levels of the other 179 patients with breast cancer and 20 healthy controls were measured using TaqMan miR assays. The exosomal miR-223-3p levels of the patients with breast cancer were significantly increased compared with the healthy controls (P<0.01). A statistically significant association was observed between the exosomal miR-223-3p levels and histological type, pT stage, pN stage, pathological stage, lymphatic invasion and nuclear grade (P<0.05). The exosomal miR-223-3p levels of IDC patients (stage I) and upstaged IDC patients (stage I) were significantly higher compared with the DCIS patients (P<0.05). These results suggest that exosomal miR-223-3p may be a useful preoperative biomarker to identify the invasive lesions of DCIS patients diagnosed by biopsy. In addition, plasma exosome-encapsulated miR-223-3p level was significantly associated with the malignancy of breast cancer.
Collapse
Affiliation(s)
- Mio Yoshikawa
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Hisae Iinuma
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Yasuko Umemoto
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Takako Yanagisawa
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Akiko Matsumoto
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Hiromitsu Jinno
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| |
Collapse
|
18
|
Yu M, Guo D, Cao Z, Xiao L, Wang G. Inhibitory Effect of MicroRNA-107 on Osteosarcoma Malignancy Through Regulation of Wnt/β-catenin Signaling in Vitro. Cancer Invest 2018; 36:175-184. [PMID: 29565702 DOI: 10.1080/07357907.2018.1439055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Miao Yu
- Spine Department, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, P.R. China
| | - Danqing Guo
- Spine Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Zhenglin Cao
- Spine Department, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, P.R. China
| | - Longyi Xiao
- Spine Department, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, P.R. China
| | - Gang Wang
- Spine Department, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, P.R. China
| |
Collapse
|
19
|
Laengsri V, Kerdpin U, Plabplueng C, Treeratanapiboon L, Nuchnoi P. Cervical Cancer Markers: Epigenetics and microRNAs. Lab Med 2018; 49:97-111. [DOI: 10.1093/labmed/lmx080] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Vishuda Laengsri
- Center for Research & Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microscopy, Mahidol University, Bangkok, Thailand
| | - Usanee Kerdpin
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Chotiros Plabplueng
- Center for Research & Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microscopy, Mahidol University, Bangkok, Thailand
| | - Lertyot Treeratanapiboon
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Pornlada Nuchnoi
- Center for Research & Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microscopy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Zammit V, Baron B, Ayers D. MiRNA Influences in Neuroblast Modulation: An Introspective Analysis. Genes (Basel) 2018; 9:genes9010026. [PMID: 29315268 PMCID: PMC5793179 DOI: 10.3390/genes9010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common occurring solid paediatric cancer in children under the age of five years. Whether of familial or sporadic origin, chromosome abnormalities contribute to the development of NB and cause dysregulation of microRNAs (miRNAs). MiRNAs are small non-coding, single stranded RNAs that target messenger RNAs at the post-transcriptional levels by repressing translation within all facets of human physiology. Such gene 'silencing' activities by miRNAs allows the development of regulatory feedback loops affecting multiple functions within the cell, including the possible differentiation of neural stem cell (NSC) lineage selection. Neurogenesis includes stages of self-renewal and fate specification of NSCs, migration and maturation of young neurones, and functional integration of new neurones into the neural circuitry, all of which are regulated by miRNAs. The role of miRNAs and their interaction in cellular processes are recognised aspects of cancer genetics, and miRNAs are currently employed as biomarkers for prognosis and tumour characterisation in multiple cancer models. Consequently, thorough understanding of the mechanisms of how these miRNAs interplay at the transcriptomic level will definitely lead to the development of novel, bespoke and efficient therapeutic measures, with this review focusing on the influences of miRNAs on neuroblast modulations leading to neuroblastoma.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, PTA1010 G'Mangia, Malta.
- School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
21
|
Gabra MM, Salmena L. microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front Oncol 2017; 7:255. [PMID: 29164055 PMCID: PMC5674931 DOI: 10.3389/fonc.2017.00255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Up until the early 2000s, a functional role for microRNAs (miRNAs) was yet to be elucidated. With the advent of increasingly high-throughput and precise RNA-sequencing techniques within the last two decades, it has become well established that miRNAs can regulate almost all cellular processes through their ability to post-transcriptionally regulate a majority of protein-coding genes and countless other non-coding genes. In cancer, miRNAs have been demonstrated to play critical roles by modifying or controlling all major hallmarks including cell division, self-renewal, invasion, and DNA damage among others. Before the introduction of anthracyclines and cytarabine in the 1960s, acute myeloid leukemia (AML) was considered a fatal disease. In decades since, prognosis has improved substantially; however, long-term survival with AML remains poor. Resistance to chemotherapy, whether it is present at diagnosis or induced during treatment is a major therapeutic challenge in the treatment of this disease. Certain mechanisms such as DNA damage response and drug targeting, cell cycling, cell death, and drug trafficking pathways have been shown to be further dysregulated in treatment resistant cancers. miRNAs playing key roles in the emergence of these drug resistance phenotypes have recently emerged and replacement or inhibition of these miRNAs may be a viable treatment option. Herein, we describe the roles miRNAs can play in drug resistant AML and we describe miRNA-transcript interactions found within other cancer states which may be present within drug resistant AML. We describe the mechanisms of action of these miRNAs and how they can contribute to a poor overall survival and outcome as well. With the precision of miRNA mimic- or antagomir-based therapies, miRNAs provide an avenue for exquisite targeting in the therapy of drug resistant cancers.
Collapse
Affiliation(s)
- Martino Marco Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
22
|
Chen X, Liu X, He B, Pan Y, Sun H, Xu T, Hu X, Wang S. MiR-216b functions as a tumor suppressor by targeting HMGB1-mediated JAK2/STAT3 signaling way in colorectal cancer. Am J Cancer Res 2017; 7:2051-2069. [PMID: 29119054 PMCID: PMC5665852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023] Open
Abstract
MiR-216b is implicated in the development of multiple types of cancers, however, a role for miR-216b in colorectal cancer (CRC) remains elusive. The present study aimed to investigate the function and underlying mechanism of miR-216b in human CRC. In this study, we found miR-216b in CRC tissues and cell lines was markedly decreased compared with corresponding adjacent normal tissues (ANTs) and colonic mucosal epithelial cell line (FHC), and was obviously associated with the TNM stage, lymph node metastases, differentiation and poor overall survival (OS) (P<0.05). Furthermore, we demonstrated that miR-216b inhibited cell proliferation, migration, invasion and angiogenesis by targeting HMGB1 which was highly expressed in CRC. Additionally, we proved that miR-216b promoted the development and progression of CRC, at least partially through HMGB1-mediated JAK2/STAT3 pathway. Lastly, we showed that plasma miR-216b expression was reduced in CRC when compared to healthy controls and might be a potential diagnostic biomarker for CRC. The findings indicated that miR-216b might function as a suppressor in CRC and could serve as a promising diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Xiaoxiang Chen
- Medical College, Southeast UniversityNanjing 210009, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Xiuxiu Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Shukui Wang
- Medical College, Southeast UniversityNanjing 210009, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| |
Collapse
|
23
|
Tsukamoto M, Iinuma H, Yagi T, Matsuda K, Hashiguchi Y. Circulating Exosomal MicroRNA-21 as a Biomarker in Each Tumor Stage of Colorectal Cancer. Oncology 2017; 92:360-370. [PMID: 28376502 DOI: 10.1159/000463387] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We clarified the predictive and prognostic value of circulating plasma exosomal microRNA-21 (miR-21) in each TNM stage of colorectal cancer (CRC) patients. METHODS The microRNA (miRNA) profiles of the plasma exosomes, primary tumor tissues, and liver metastasis tissues from the same CRC patients were examined using a microarray. For validation analysis, the plasma exosome samples from 326 CRC patients were measured by TaqMan miRNA assays. RESULTS In the miRNA microarray analyses, miR-21 showed the highest upregulation in exosomes, primary tumor tissues, and liver metastasis tissues. Significant correlations were demonstrated between exosomal miR-21 and tissue miR-21 levels. As for the relationship to the pathological condition, exosomal miR-21 showed a significant association with liver metastasis and TNM stage. The overall survival (OS) rates and disease-free survival (DFS) rates in high-exosomal-miR-21 patients were significantly worse than those in low-miR-21 patients. Exosomal miR-21 levels were an independent prognostic factor for OS and DFS in CRC patients with TNM stage II or III, and for OS in patients with TNM stage IV. CONCLUSION Plasma exosomal miR-21 levels are a useful biomarker for the prediction of recurrence and poor prognosis in CRC patients with TNM stage II, III, or IV.
Collapse
Affiliation(s)
- Mitsuo Tsukamoto
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
24
|
Dejima H, Iinuma H, Kanaoka R, Matsutani N, Kawamura M. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 2017; 13:1256-1263. [PMID: 28454243 PMCID: PMC5403401 DOI: 10.3892/ol.2017.5569] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/09/2016] [Indexed: 12/27/2022] Open
Abstract
Predictive biomarkers for the recurrence of non-small cell lung cancer (NSCLC) in patients who have received curative resection are important for cancer treatment. The functional microRNAs (miRNAs/miRs) in the exosomes of plasma and serum samples are of interest as stable and non-invasive biomarkers for recurrence in cancer patients. The aim of the present study was to clarify the usefulness of plasma exosomal miRNAs as biomarkers for the prediction of recurrence in NSCLC following curative resection. First, microarray-based expression profiling of miRNAs derived from exosomes in the plasma of 6 patients was employed to identify a biomarker that distinguishes between patients with and without NSCLC recurrence. In the miRNA microarray analyses, the exosomal miR-21 and miR-4257 levels of the NSCLC patients showed marked upregulation in those individuals with recurrence compared with those without recurrence and healthy individuals. These two miRNAs were thus selected as recurrence-specific biomarkers and their potential was evaluated in a separate cohort of 195 NSCLC patients. In comparison to the levels in 30 healthy individuals, exosomal miR-21 and miR-4257 levels showed a significant increase in the NSCLC patients (P<0.01). When evaluating the clinicopathological significance of these miRNAs, exosomal miR-21 showed a significant association with tumor size and tumor-node-metastasis (TNM) stage (P<0.05). Exosomal miR-4257 showed a significant association with histological type, lymphatic invasion and TNM stage (P<0.05). The disease-free survival (DFS) rates of high exosomal miR-21 patients were significantly worse than those of low exosomal miR-21 patients (P<0.05), and the DFS rates of patients with high exosomal miR-4257 levels were significantly worse than those with low exosomal miR-4257 levels (P<0.01). In the Cox multivariate analysis, plasma exosomal miR-21 and miR-4257 expression showed a significance association with DFS (P<0.05). These results suggest that plasma exosomal miR-21 and mir-4257 expression has potential as a predictive biomarker for recurrence in NSCLC patients who have received curative resection.
Collapse
Affiliation(s)
- Hitoshi Dejima
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Hisae Iinuma
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Rie Kanaoka
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Noriyuki Matsutani
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Masafumi Kawamura
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| |
Collapse
|
25
|
Wang F, Ma Y, Wang H, Qin H. Reciprocal regulation between microRNAs and epigenetic machinery in colorectal cancer. Oncol Lett 2017; 13:1048-1057. [PMID: 28454212 DOI: 10.3892/ol.2017.5593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/24/2016] [Indexed: 12/23/2022] Open
Abstract
Epigenetics encompasses changes in DNA methylation, histone and chromatin structure, and non-coding RNAs, specifically microRNA (miRNA) expression. Recent advances in the rapidly evolving field of colorectal cancer (CRC) epigenetics have revealed a complicated network of reciprocal interconnections between miRNAs and other epigenetic machinery. On the one hand, miRNA expression may be regulated by epigenetic mechanisms including DNA methylation and histone modifications. However, miRNAs may affect the epigenetic machinery by directly targeting its enzymatic components. In this study, we focus on the colorectal miRNA expression profile and further illustrate the reciprocal regulation in CRC, with the aim of offering new insights into the strategies of combatting the disease.
Collapse
Affiliation(s)
- Feng Wang
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Yanlei Ma
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huanlong Qin
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
26
|
Wang S, Ma G, Zhu H, Lv C, Chu H, Tong N, Wu D, Qiang F, Gong W, Zhao Q, Tao G, Zhou J, Zhang Z, Wang M. miR-107 regulates tumor progression by targeting NF1 in gastric cancer. Sci Rep 2016; 6:36531. [PMID: 27827403 PMCID: PMC5101511 DOI: 10.1038/srep36531] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
Our previous genome-wide miRNA microarray study revealed that miR-107 was upregulated in gastric cancer (GC). In this study we aimed to explore its biological role in the pathogenesis of GC. Integrating in silico prediction algorithms with western blotting assays revealed that miR-107 inhibition enhanced NF1 (neurofibromin 1) mRNA and protein levels, suggesting that NF1 is one of miR-107 targets in GC. Luciferase reporter assay revealed that miR-107 suppressed NF1 expression by binding to the first potential binding site within the 3′-UTR of NF1 mRNA. mRNA stable assay indicated this binding could result in NF1 mRNA instability, which might contribute to its abnormal protein expression. Functional analyses such as cell growth, transwell migration and invasion assays were used to investigate the role of interaction between miR-107 and its target on GC development and progression. Moreover, We investigated the association between the clinical phenotype and the status of miR-107 expression in 55 GC tissues, and found the high expression contributed to the tumor size and depth of invasion. The results exhibited that down regulation of miR-107 opposed cell growth, migration, and invasion, whereas NF1 repression promoted these phenotypes. Our findings provide a mechanism by which miR-107 regulates NF1 in GC, as well as highlight the importance of interaction between miR-107 and NF1 in GC development and progression.
Collapse
Affiliation(s)
- Shizhi Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haixia Zhu
- Core Laboratory, Nantong Tumor Hospital, Nantong, China
| | - Chunye Lv
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Tong
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Wu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fulin Qiang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Core Laboratory, Nantong Tumor Hospital, Nantong, China
| | - Weida Gong
- Department of General Surgery, Yixing Cancer Hospital, Yixing, China
| | - Qinghong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoquan Tao
- Department of General Surgery, Huai-An First People's Hospital Affiliated to Nanjing Medical University, Huai-An, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Wu S, Kim TK, Wu X, Scherler K, Baxter D, Wang K, Krasnow RE, Reed T, Dai J. Circulating MicroRNAs and Life Expectancy Among Identical Twins. Ann Hum Genet 2016; 80:247-56. [PMID: 27402348 PMCID: PMC5757377 DOI: 10.1111/ahg.12160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022]
Abstract
Human life expectancy is influenced not only by longevity assurance mechanisms and disease susceptibility loci but also by the environment, gene-environment interactions, and chance. MicroRNAs (miRNAs) are a class of small noncoding RNAs closely related to genes. Circulating miRNAs have been shown as promising noninvasive biomarkers in the development of many pathophysiological conditions. However, the concentration of miRNA in the circulation may also be affected by environmental factors. We used a next-generation sequencing platform to assess the association of circulating miRNA with life expectancy, for which deaths are due to all causes independent of genes. In addition, we showed that miRNAs are present in 41-year archived plasma samples, which may be useful for both life expectancy and all-cause mortality risk assessment. Plasma miRNAs from nine identical male twins were profiled using next-generation sequencing. The average absolute difference in the minimum life expectancy was 9.68 years. Intraclass correlation coefficients were above 0.4 for 50% of miRNAs. Comparing deceased twins with their alive co-twin brothers, the concentrations were increased for 34 but decreased for 30 miRNAs. Identical twins discordant in life expectancy were dissimilar in the majority of miRNAs, suggesting that environmental factors are pivotal in miRNAs related to life expectancy.
Collapse
Affiliation(s)
- Shenghui Wu
- Department of Epidemiology and Biostatistics, School of Medicine, The University of Texas Health Science Center at San Antonio, Laredo, TX, USA
| | | | - Xiaogang Wu
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Kai Wang
- Institute for Systems Biology, Seattle, WA, USA
| | - Ruth E Krasnow
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Terry Reed
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jun Dai
- Department of Public Health, Des Moines University, Des Moines, IA, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Center for Translational and Clinical Cardiovascular Research (VTRACC), Institute of Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
28
|
Lewis KA, Tollefsbol TO. Regulation of the Telomerase Reverse Transcriptase Subunit through Epigenetic Mechanisms. Front Genet 2016; 7:83. [PMID: 27242892 PMCID: PMC4860561 DOI: 10.3389/fgene.2016.00083] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Chromosome-shortening is characteristic of normal cells, and is known as the end replication problem. Telomerase is the enzyme responsible for extending the ends of the chromosomes in de novo synthesis, and occurs in germ cells as well as most malignant cancers. There are three subunits of telomerase: human telomerase RNA (hTERC), human telomerase associated protein (hTEP1), or dyskerin, and human telomerase reverse transcriptase (hTERT). hTERC and hTEP1 are constitutively expressed, so the enzymatic activity of telomerase is dependent on the transcription of hTERT. DNA methylation, histone methylation, and histone acetylation are basic epigenetic regulations involved in the expression of hTERT. Non-coding RNA can also serve as a form of epigenetic control of hTERT. This epigenetic-based regulation of hTERT is important in providing a mechanism for reversibility of hTERT control in various biological states. These include embryonic down-regulation of hTERT contributing to aging and the upregulation of hTERT playing a critical role in over 90% of cancers. Normal human somatic cells have a non-methylated/hypomethylated CpG island within the hTERT promoter region, while telomerase-positive cells paradoxically have at least a partially methylated promoter region that is opposite to the normal roles of DNA methylation. Histone acetylation of H3K9 within the promoter region is associated with an open chromatin state such that transcription machinery has the space to form. Histone methylation of hTERT has varied control of the gene, however. Mono- and dimethylation of H3K9 within the promoter region indicate silent euchromatin, while a trimethylated H3K9 enhances gene transcription. Non-coding RNAs can target epigenetic-modifying enzymes, as well as transcription factors involved in the control of hTERT. An epigenetics diet that can affect the epigenome of cancer cells is a recent fascination that has received much attention. By combining portions of this diet with epigenome-altering treatments, it is possible to selectively regulate the epigenetic control of hTERT and its expression.
Collapse
Affiliation(s)
- Kayla A Lewis
- Department of Biology, University of Alabama at Birmingham, Birmingham AL, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, BirminghamAL, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, BirminghamAL, USA
| |
Collapse
|
29
|
Yang DS. Novel prediction of anticancer drug chemosensitivity in cancer cell lines: evidence of moderation by microRNA expressions. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4780-6. [PMID: 25571061 DOI: 10.1109/embc.2014.6944693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objectives of this study are (1) to develop a novel "moderation" model of drug chemosensitivity and (2) to investigate if miRNA expression moderates the relationship between gene expression and drug chemosensitivity, specifically for HSP90 inhibitors applied to human cancer cell lines. A moderation model integrating the interaction between miRNA and gene expressions was developed to examine if miRNA expression affects the strength of the relationship between gene expression and chemosensitivity. Comprehensive datasets on miRNA expressions, gene expressions, and drug chemosensitivities were obtained from National Cancer Institute's NCI-60 cell lines including nine different cancer types. A workflow including steps of selecting genes, miRNAs, and compounds, correlating gene expression with chemosensitivity, and performing multivariate analysis was utilized to test the proposed model. The proposed moderation model identified 12 significantly-moderating miRNAs: miR-15b*, miR-16-2*, miR-9, miR-126*, miR-129*, miR-138, miR-519e*, miR-624*, miR-26b, miR-30e*, miR-32, and miR-196a, as well as two genes ERCC2 and SF3B1 which affect chemosensitivities of Tanespimycin and Alvespimycin - both HSP90 inhibitors. A bootstrap resampling of 2,500 times validates the significance of all 12 identified miRNAs. The results confirm that certain miRNA and gene expressions interact to produce an effect on drug response. The lack of correlation between miRNA and gene expression themselves suggests that miRNA transmits its effect through translation inhibition/control rather than mRNA degradation. The results suggest that miRNAs could serve not only as prognostic biomarkers for cancer treatment outcome but also as interventional agents to modulate desired chemosensitivity.
Collapse
|
30
|
He S, Zhang DC, Wei C. MicroRNAs as biomarkers for hepatocellular carcinoma diagnosis and prognosis. Clin Res Hepatol Gastroenterol 2015; 39:426-34. [PMID: 25746139 DOI: 10.1016/j.clinre.2015.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/30/2014] [Accepted: 01/12/2015] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world, and it is the second leading cause of cancer-related deaths. Despite improvements in HCC therapy, the overall survival rate is still very low because of the late detection of the tumors. Thus, early detection of HCC offers the best chance of survival for patients. MicroRNAs (miRNAs) are evolutionarily conserved small noncoding RNAs involved in the regulation of gene expression and protein translation. Many studies have shown that they played a very important role in cancer progresses and outcomes. The aberrant expression of miRNAs is common in various human malignancies and it modulates cancer-associated genomic regions or fragile sites. As for the relationship between miRNAs and HCC, several studies have demonstrated that the aberrant expression of specific miRNAs can be detected in HCC patients' serum and plasma or HCC cells and tissues, and miRNAs have shown great promise as diagnostic and prognostic markers for HCC. In the present review, we discussed the applications of miRNAs as biomarkers for HCC diagnosis and prognosis, and the association between miRNAs polymorphisms and the risk of HCC as well.
Collapse
Affiliation(s)
- Song He
- Maanshan Center for Clinical Laboratory, Maanshan Municipal Hospital Group, 45, Hubei Road, 243000 Maanshan, China.
| | - De-Chun Zhang
- Molecular Medicine & Tumor Research Center, Chongqing Medical University, Chongqing, China
| | - Cheng Wei
- Maanshan Center for Clinical Laboratory, Maanshan Municipal Hospital Group, 45, Hubei Road, 243000 Maanshan, China
| |
Collapse
|
31
|
Fang Y, Sun B, Li Z, Chen Z, Xiang J. MiR-622 inhibited colorectal cancer occurrence and metastasis by suppressing K-Ras. Mol Carcinog 2015; 55:1369-77. [PMID: 26333174 DOI: 10.1002/mc.22380] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 01/22/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide, with many oncogenes and anti-oncogenes involved. MicroRNAs (miRNAs) are a class of small, noncoding RNA molecules that can adjust downstream targets. Accumulating evidence has revealed that microRNAs govern the occurrence and development of cancer. Here, we studied the role of miR-622 in CRC and clarified the underlying mechanism. We detected that miR-622 was down-regulated in colorectal tumor tissues and cell lines and that miR-622 was lower in metastatic CRC tissues compared with that in non-metastatic specimens. Furthermore, we confirmed that miR-622 inhibited tumor proliferation and migration in vitro. Through dual-luciferase reporter assay, we found kirsten rat sarcoma (K-Ras) gene was the direct target of miR-622. More importantly, K-Ras overexpression can rescue the inhibitory effect of miR-622 on CRC development. All these data were validated in colon xenograft tumor model. MiR-622-K-Ras signal pathway was a potentially new direction in the development of screening target and therapeutic treatments for CRC. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yantian Fang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, China.,Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Sun
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenyang Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zongyou Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Ding W, Xin J, Jiang L, Zhou Q, Wu T, Shi D, Lin B, Li L, Li J. Characterisation of peripheral blood mononuclear cell microRNA in hepatitis B-related acute-on-chronic liver failure. Sci Rep 2015; 5:13098. [PMID: 26267843 PMCID: PMC4533317 DOI: 10.1038/srep13098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B-related acute-on-chronic liver failure (HBV-ACLF) is a life-threatening condition and the mechanisms of its development and progression remain unclear. The aim of this study was to define the characteristics of peripheral blood mononuclear cell microRNAs in patients with HBV-ACLF. In this study, novel microRNA (miRNA) biomarkers of peripheral blood mononuclear cells (PBMCs) in patients with HBV-ACLF were characterised by high-throughput sequencing and validated by quantitative real-time polymerase chain reaction (qRT-PCR). The results showed 78 miRNAs were significantly differentially expressed in patients with HBV-ACLF compared to patients with chronic hepatitis B (CHB) and healthy controls. Among patients with HBV-ACLF, 17 dysregulated miRNAs increased or decreased more than 4-fold, of which eight miRNAs had higher expression levels than median level. qRT-PCR validation demonstrated that six miRNAs (hsa-miR-21-5p, hsa-miR-34c-5p, hsa-miR-143-3p, hsa-miR-143-5p, hsa-miR-374a-3p and hsa-miR-542-3p) may be useful as novel biomarkers for the diagnosis of HBV-ACLF. Five novel miRNAs (L-miR-1~5) were detected and two (L-miR-1 and L-miR-3) were significantly differentially expressed in patients with HBV-ACLF. Conclusions: The miRNA expression profile of PBMCs is altered in patients with HBV-ACLF, and a signature of six miRNAs may be a promising biomarker for HBV-ACLF progression.
Collapse
Affiliation(s)
- Wenchao Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine. 79 Qingchun Rd., Hangzhou, 310003. China.,Systems Biology Division, Zhejiang-California International Nanosystems Institute, Zhejiang University
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Longyan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Tianzhou Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Biaoyang Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine. 79 Qingchun Rd., Hangzhou, 310003. China.,Systems Biology Division, Zhejiang-California International Nanosystems Institute, Zhejiang University
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine. 79 Qingchun Rd., Hangzhou, 310003. China
| |
Collapse
|
33
|
Differentially expressed microRNAs in maternal plasma for the noninvasive prenatal diagnosis of Down syndrome (trisomy 21). BIOMED RESEARCH INTERNATIONAL 2014; 2014:402475. [PMID: 25478570 PMCID: PMC4244954 DOI: 10.1155/2014/402475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Most developmental processes are under the control of small regulatory RNAs called microRNAs (miRNAs). We hypothesize that different fetal developmental processes might be reflected by extracellular miRNAs in maternal plasma and may be utilized as biomarkers for the noninvasive prenatal diagnosis of chromosomal aneuploidies. In this proof-of-concept study, we report on the identification of extracellular miRNAs in maternal plasma of Down syndrome (DS) pregnancies. METHODS Using high-throughput quantitative PCR (HT-qPCR), 1043 miRNAs were investigated in maternal plasma via comparison of seven DS pregnancies with age and fetal sex matched controls. RESULTS Six hundred and ninety-five miRNAs were identified. Thirty-six significantly differentially expressed mature miRNAs were identified as potential biomarkers. Hierarchical cluster analysis of these miRNAs resulted in the clear discrimination of DS from euploid pregnancies. Gene targets of the differentially expressed miRNAs were enriched in signaling pathways such as mucin type-O-glycans, ECM-receptor interactions, TGF-beta, and endocytosis, which have been previously associated with DS. CONCLUSIONS miRNAs are promising and stable biomarkers for a broad range of diseases and may allow a reliable, cost-efficient diagnostic tool for the noninvasive prenatal diagnosis of DS.
Collapse
|
34
|
Hong L, Han Y, Zhang H, Zhao Q, Wu K, Fan D. Prognosis-related microRNAs in esophageal cancer. Expert Opin Biol Ther 2014; 14:483-9. [PMID: 24506707 DOI: 10.1517/14712598.2014.882896] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Despite improvements in detection, surgical resection and adjuvant therapy, the prognosis of esophageal cancer (EC) patients is dismal. A number of microRNAs (miRNAs) are related with the prognosis of EC. AREAS COVERED This review summarises the recent advances in prognosis-related miRNAs in EC and also analyses the molecular functions that they provide. This study further envisages future developments in the potential clinical applications of these miRNAs. EXPERT OPINION Altered miRNA expression of cancer tissues is useful for predicting the prognosis of EC patients. Individual circulating miRNAs have the potential to be used as novel biomarkers. Continued basic studies are warranted to gain more mechanistic insights into the functional effect of prognosis-related miRNAs on EC. More clinical trials should be performed to promote the clinical use of prognosis-related miRNAs.
Collapse
Affiliation(s)
- Liu Hong
- Fourth Military Medical University, Xijing Hospital, Xijing Hospital of Digestive Diseases , Xi'an 710032, Shaanxi Province , China +86 29 84773974 ; +86 29 82539041 ; ,
| | | | | | | | | | | |
Collapse
|
35
|
Macha MA, Seshacharyulu P, Krishn SR, Pai P, Rachagani S, Jain M, Batra SK. MicroRNAs (miRNAs) as biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr Pharm Des 2014; 20:5287-97. [PMID: 24479799 DOI: 10.2174/1381612820666140128213117] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/12/2014] [Indexed: 12/19/2022]
Abstract
Gastrointestinal (GI) cancers remain one of the most common malignancies and are the second common cause of cancer deaths worldwide. The limited effectiveness of therapy for patients with advanced stage and recurrent disease is a reflection of an incomplete understanding of the molecular basis of GI carcinogenesis. Major advancements have improved our understanding of pathology and pathogenesis of GI cancers, but high mortality rates, unfavorable prognosis and lack of clinical predictive biomarkers provide an impetus to investigate new sensitive and specific diagnostic and prognostic markers for GI cancers. MicroRNAs (miRNAs) are short (19-24 nucleotides) noncoding RNA molecules that regulate gene expression at the posttranscriptional level thus playing an important role in modulating various biological processes including, but not limited to developmental processes, proliferation, apoptosis, metabolism, differentiation, epithelial-mechenchymal transition and are involved in the initiation and progression of various human cancers. Unique miRNA expression profiles have been observed in various cancer types at different stages, suggesting their potential as diagnostic and prognostic biomarkers. Due to their tumor-specific and tissue-specific expression profiles, stability, robust clinical assays for detection in serum as well as in formalin-fixed tissue samples, miRNAs have emerged as attractive candidates for diagnostic and prognostic applications. This review summarizes recent research supporting the utility of miRNAs as novel diagnostic and prognostic tools for GI cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, USA
| |
Collapse
|
36
|
Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B, Kurochkin IV. Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. PeerJ 2013; 1:e201. [PMID: 24255815 PMCID: PMC3828613 DOI: 10.7717/peerj.201] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/13/2013] [Indexed: 12/21/2022] Open
Abstract
Exosomes are nanosized (30–100 nm) membrane vesicles secreted by most cell types. Exosomes have been found to contain various RNA species including miRNA, mRNA and long non-protein coding RNAs. A number of cancer cells produce elevated levels of exosomes. Because exosomes have been isolated from most body fluids they may provide a source for non-invasive cancer diagnostics. Transcriptome profiling that uses deep-sequencing technologies (RNA-Seq) offers enormous amount of data that can be used for biomarkers discovery, however, in case of exosomes this approach was applied only for the analysis of small RNAs. In this study, we utilized RNA-Seq technology to analyze RNAs present in microvesicles secreted by human breast cancer cell lines. Exosomes were isolated from the media conditioned by two human breast cancer cell lines, MDA-MB-231 and MDA-MB-436. Exosomal RNA was profiled using the Ion Torrent semiconductor chip-based technology. Exosomes were found to contain various classes of RNA with the major class represented by fragmented ribosomal RNA (rRNA), in particular 28S and 18S rRNA subunits. Analysis of exosomal RNA content revealed that it reflects RNA content of the donor cells. Although exosomes produced by the two cancer cell lines shared most of the RNA species, there was a number of non-coding transcripts unique to MDA-MB-231 and MDA-MB-436 cells. This suggests that RNA analysis might distinguish exosomes produced by low metastatic breast cancer cell line (MDA-MB-436) from that produced by highly metastatic breast cancer cell line (MDA-MB-231). The analysis of gene ontologies (GOs) associated with the most abundant transcripts present in exosomes revealed significant enrichment in genes encoding proteins involved in translation and rRNA and ncRNA processing. These GO terms indicate most expressed genes for both, cellular and exosomal RNA. For the first time, using RNA-seq, we examined the transcriptomes of exosomes secreted by human breast cancer cells. We found that most abundant exosomal RNA species are the fragments of 28S and 18S rRNA subunits. This limits the number of reads from other RNAs. To increase the number of detectable transcripts and improve the accuracy of their expression level the protocols allowing depletion of fragmented rRNA should be utilized in the future RNA-seq analyses on exosomes. Present data revealed that exosomal transcripts are representative of their cells of origin and thus could form basis for detection of tumor specific markers.
Collapse
Affiliation(s)
- Piroon Jenjaroenpun
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore
| | - Yuliya Kremenska
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore
| | - Vrundha M Nair
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore.,Interdisciplinary Research Centre, Malankara Catholic College, Mariagiri, Kaliakkavilai, Tamil Nadu, India
| | - Maksym Kremenskoy
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore
| | - Baby Joseph
- Interdisciplinary Research Centre, Malankara Catholic College, Mariagiri, Kaliakkavilai, Tamil Nadu, India
| | - Igor V Kurochkin
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore
| |
Collapse
|
37
|
Xu X, Yang X, Xing C, Zhang S, Cao J. miRNA: The nemesis of gastric cancer (Review). Oncol Lett 2013; 6:631-641. [PMID: 24137382 PMCID: PMC3789097 DOI: 10.3892/ol.2013.1428] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022] Open
Abstract
microRNAs (miRNAs) are a group of small non-coding RNAs that are ~22 (18 to 25) nucleotides (nt) long and have been associated with a variety of diseases, including cancer. Increasing evidence indicates that miRNAs are essential in the development, diagnosis, treatment and prognosis of a variety of tumors. The utility of miRNAs as biomarkers for diagnosis and of target molecules for the treatment of cancers is increasingly being recognized. With the discovery of circulating miRNAs, a non-invasive approach for the diagnosis and treatment of cancer has been identified. This review summarizes the role of miRNAs in the development of different tumors, as well as a variety of other biological events. Moreover, this review focuses on analyzing the function and mechanism of gastric cancer-related miRNAs and investigates the importance of circulating miRNAs in gastric cancer, as well as their origin. Finally, this review lists a number of the problems that must be solved prior to miRNAs being used as reliable non-invasive tools for the diagnosis, treatment and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China
| | | | | | | | | |
Collapse
|
38
|
Kala R, Peek GW, Hardy TM, Tollefsbol TO. MicroRNAs: an emerging science in cancer epigenetics. J Clin Bioinforma 2013; 3:6. [PMID: 23497588 PMCID: PMC3608239 DOI: 10.1186/2043-9113-3-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/04/2013] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs (miRNAs) are remarkable molecules that appear to have a fundamental role in the biology of the cell. They constitute a class of non-protein encoding RNA molecules which have now emerged as key players in regulating the activity of mRNA. miRNAs are small RNAmolecules around 22 nucleotides in length, which affect the activity of specific mRNA, directly degrading it and/or preventing its translation into protein. The science of miRNAs holds them as candidate biomarkers for the early detection and management of cancer. There is also considerable excitement for the use of miRNAs as a novel class of therapeutic targets and as a new class of therapeutic agents for the treatment of cancers. From a clinical perspective, miRNAs can induce a number of effects and may have a diverse application in biomedical research. This review highlights the general mode of action of miRNAs, their biogenesis, the effect of diet on miRNA expression and the impact of miRNAs on cancer epigenetics and drug resistance in various cancers. Further we also provide emphasis on bioinformatics software which can be used to determine potential targets of miRNAs.
Collapse
Affiliation(s)
- Rishabh Kala
- Department of Biology, University of Alabama Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
39
|
Zhao Y, Schetter AJ, Yang GB, Nguyen G, Mathé EA, Li P, Cai H, Yu L, Liu F, Hang D, Yang H, Wang XW, Ke Y, Harris CC. microRNA and inflammatory gene expression as prognostic marker for overall survival in esophageal squamous cell carcinoma. Int J Cancer 2012; 132:2901-9. [PMID: 23175214 DOI: 10.1002/ijc.27954] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/05/2012] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) and inflammatory genes have a role in the initiation and development of esophageal squamous cell carcinoma (ESCC). In our study, we examined the potential of using miRNA and inflammatory gene expression patterns as prognostic classifiers for ESCC. Five miRNAs and 25 inflammatory-related genes were measured by quantitative reverse transcriptase PCR in tumor tissues and adjacent noncancerous tissues from 178 Chinese patients with ESCC. The expression levels of miR-21 (p = 0.027), miR-181b (p = 0.002) and miR-146b (p = 0.021) in tumor tissue and miR-21 (p = 0.003) in noncancerous tissue were associated with overall survival of patients. These data were combined to generate a miRNA risk score that was significantly associated with worse prognosis (p = 0.0001), suggesting that these miRNAs may be useful prognostic classifiers for ESCC. To construct an inflammatory gene prognostic classifier, we divided the population into training (n = 124) and test cohorts (n = 54). The expression levels of CRY61, CTGF and IL-18 in tumor tissue and VEGF in adjacent noncancerous tissue were modestly associated with prognosis in the training cohort |Z-score| > 1.5 and were subsequently used to construct a Cox regression-based inflammatory risk score (IRS). IRS was significantly associated with survival in both the training cohort (p = 0.002) and the test cohort (p = 0.005). Furthermore, Cox regression models combining both miRNA risk score and IRS performed significantly better than models with either alone (p < 0.001 likelihood ratio test). Therefore, miRNA and inflammatory gene expression patterns, alone or in combination, have potential as prognostic classifiers for ESCC and may help to guide therapeutic decisions.
Collapse
Affiliation(s)
- Yiqiang Zhao
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kunte DP, DelaCruz M, Wali RK, Menon A, Du H, Stypula Y, Patel A, Backman V, Roy HK. Dysregulation of microRNAs in colonic field carcinogenesis: implications for screening. PLoS One 2012; 7:e45591. [PMID: 23049818 PMCID: PMC3458063 DOI: 10.1371/journal.pone.0045591] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/23/2012] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) screening tests often have a trade-off between efficacy and patient acceptability/cost. Fecal tests (occult blood, methylation) engender excellent patient compliance but lack requisite performance underscoring the need for better population screening tests. We assessed the utility of microRNAs (miRNAs) as markers of field carcinogenesis and their potential role for CRC screening using the azoxymethane (AOM)-treated rat model. We found that 63 miRNAs were upregulated and miR-122, miR-296-5p and miR-503# were downregulated in the uninvolved colonic mucosa of AOM rats. We monitored the expression of selected miRNAs in colonic biopsies of AOM rats at 16 weeks and correlated it with tumor development. We noted that the tumor bearing rats had significantly greater miRNA modulation compared to those without tumors. The miRNAs showed good diagnostic performance with an area under the receiver operator curve (AUROC) of >0.7. We also noted that the miRNA induction in the colonic mucosa was mirrorred in the mucus layer fecal colonocytes isolated from AOM rat stool and the degree of miRNA induction was greater in the tumor bearing rats compared to those without tumors. Lastly, we also noted significant miRNA modulation in the Pirc rats- the genetic model of colon carcinogenesis, both in the uninvolved colonic mucosa and the fecal colonocytes. We thus demonstrate that miRNAs are excellent markers of field carcinogenesis and could accurately predict future neoplasia. Based on our results, we propose an accurate, inexpensive, non-invasive miRNA test for CRC risk stratification based on rectal brushings or from abraded fecal colonocytes.
Collapse
Affiliation(s)
- Dhananjay P. Kunte
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, United States of America
| | - Mart DelaCruz
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, United States of America
| | - Ramesh K. Wali
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, United States of America
| | - Ashwaty Menon
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, United States of America
| | - Hongyan Du
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, United States of America
| | - Yolanda Stypula
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Amir Patel
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, United States of America
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Hemant K. Roy
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Yu M, Grady WM. Therapeutic targeting of the phosphatidylinositol 3-kinase signaling pathway: novel targeted therapies and advances in the treatment of colorectal cancer. Therap Adv Gastroenterol 2012; 5:319-37. [PMID: 22973417 PMCID: PMC3437536 DOI: 10.1177/1756283x12448456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the USA, and more effective treatment of CRC is therefore needed. Advances in our understanding of the molecular pathogenesis of this malignancy have led to the development of novel molecule-targeted therapies. Among the most recent classes of targeted therapies being developed are inhibitors targeting the phosphatidylinositol 3-kinase (PI3K) signaling pathway. As one of the most frequently deregulated pathways in several human cancers, including CRC, aberrant PI3K signaling plays an important role in the growth, survival, motility and metabolism of cancer cells. Targeting this pathway therefore has considerable potential to lead to novel and more effective treatments for CRC. Preclinical and early clinical studies have revealed the potential efficacy of drugs that target PI3K signaling for the treatment of CRC. However, a major challenge that remains is to study these agents in phase III clinical trials to see whether these early successes translate into better patient outcomes. In this review we focus on providing an up-to-date assessment of our current understanding of PI3K signaling biology and its deregulation in the molecular pathogenesis of CRC. Advances in available agents and challenges in targeting the PI3K signaling pathway in CRC treatment will be discussed and placed in the context of the currently available therapies for CRC.
Collapse
Affiliation(s)
- Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William M. Grady
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N. D4-100, Seattle, WA 98109, USA; Department of Medicine, University of Washington Medical School, Seattle, WA, USA
| |
Collapse
|
42
|
Blitzblau RC, Weidhaas JB. MicroRNA Binding-Site Polymorphisms as Potential Biomarkers of Cancer Risk. Mol Diagn Ther 2012; 14:335-42. [DOI: 10.1007/bf03256390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Hori SS, Gambhir SS. Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci Transl Med 2012; 3:109ra116. [PMID: 22089452 DOI: 10.1126/scitranslmed.3003110] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Most clinical blood biomarkers lack the necessary sensitivity and specificity to reliably detect cancer at an early stage, when it is best treatable. It is not yet clear how early a clinical blood assay can be used to detect cancer or how biomarker-based strategies can be improved to enable earlier detection of smaller tumors. To address these issues, we developed a mathematical model describing dynamic plasma biomarker kinetics in relation to the growth of a tumor, beginning with a single cancer cell. To exemplify a realistic scenario in which biomarker is shed by both cancerous and noncancerous cells, we primed the model on ovarian tumor growth and CA125 shedding data, for which tumor growth parameters and shedding rates are readily available in published literature. We found that a tumor could grow unnoticed for more than 10.1 years and reach a volume of about π/6(25.36 mm)(3), corresponding to a spherical diameter of about 25.36 mm, before becoming detectable by current clinical blood assays. Model parameters were perturbed over log orders of magnitude to quantify ideal shedding rates and identify other blood-based strategies required for early submillimeter tumor detectability. The detection times we estimated are consistent with recently published tumor progression time lines based on clinical genomic sequencing data for several cancers. Here, we rigorously showed that shedding rates of current clinical blood biomarkers are likely 10(4)-fold too low to enable detection of a developing tumor within the first decade of tumor growth. The model presented here can be extended to virtually any solid cancer and associated biomarkers.
Collapse
Affiliation(s)
- Sharon S Hori
- Department of Radiology, Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305-5427, USA
| | | |
Collapse
|
44
|
Ajit SK. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. SENSORS 2012; 12:3359-69. [PMID: 22737013 PMCID: PMC3376561 DOI: 10.3390/s120303359] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023]
Abstract
Small noncoding microRNAs (miRNAs) are important regulators of post-transcriptional gene regulation and have altered the prevailing view of a linear relationship between gene and protein expression. Aberrant miRNA expression is an emerging theme for a wide variety of diseases, highlighting the fundamental role played by miRNAs in both physiological and pathological states. The identification of stable miRNAs in bodily fluids paved the way for their use as novel biomarkers amenable to clinical diagnosis in translational medicine. Identification of miRNAs in exosomes that are functional upon delivery to the recipient cells has highlighted a novel method of intercellular communication. Delivery of miRNAs to recipient cells via blood, with functional gene regulatory consequences, opens up novel avenues for target intervention. Exosomes thus offer a novel strategy for delivering drugs or RNA therapeutic agents. Though much work lies ahead, circulating miRNAs are unequivocally ushering in a new era of novel biomarker discovery, intercellular communication mechanisms, and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Seena K Ajit
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
45
|
Wang ZX, Bian HB, Wang JR, Cheng ZX, Wang KM, De W. Prognostic significance of serum miRNA-21 expression in human non-small cell lung cancer. J Surg Oncol 2011; 104:847-51. [PMID: 21721011 DOI: 10.1002/jso.22008] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/08/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND Deregulation of microRNAs (miRNAs) plays important roles in tumor progression. The aim of this study was to investigate miR-21 expression in serum of non-small cell lung cancer (NSCLC) and its correlation with prognosis of NSCLC patients. METHODS Dysregulated miRNAs in NSCLC serum were identified by microarray. MiR-21 expression in NSCLC and control serum was detected by TaqMan RT-PCR assay. The correlation of serum miR-21 with clinicopathological factors of NSCLC patients was analyzed. Furthermore, the prognostic significance of serum miR-21 was analyzed by using Kaplan-Meier curves with log-rank tests and a Cox proportional hazard model. RESULTS The level of miR-21 expression was higher in NSCLC serum samples than in control serum samples (P < 0.01). High serum miR-21 was significantly correlated with tumor-node metastases stage and lymph node metastasis of NSCLC patients (P = 0.016 and 0.026, respectively). The 3-year actuarial overall survival rates in NSCLC patients with high serum miR-21 expression (39.8%) was significantly shorter than those with low serum miR-21 expression (58.2%; P < 0.001). Furthermore, univariate and multivariate analyses for overall survival showed that serum miR-21 expression was an independent prognostic factor for NSCLC patients (P = 0.015, RR = 2.01, 95% CI: 1.78-3.26). CONCLUSION Serum miR-21 expression might be useful as a prognostic marker for NSCLC patients.
Collapse
Affiliation(s)
- Zhao-Xia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | | | | | | | | | | |
Collapse
|
46
|
Sandberg AA, Meloni-Ehrig AM. Cytogenetics and genetics of human cancer: methods and accomplishments. CANCER GENETICS AND CYTOGENETICS 2010; 203:102-126. [DOI: 10.1016/j.cancergencyto.2010.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 09/22/2010] [Accepted: 10/07/2010] [Indexed: 12/31/2022]
|