1
|
Xu K, Motiwala Z, Corona-Avila I, Makhanasa D, Alkahalifeh L, Khan MW. The Gut Microbiome and Its Multifaceted Role in Cancer Metabolism, Initiation, and Progression: Insights and Therapeutic Implications. Technol Cancer Res Treat 2025; 24:15330338251331960. [PMID: 40208053 PMCID: PMC12032467 DOI: 10.1177/15330338251331960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
This review summarizes the intricate relationship between the microbiome and cancer initiation and development. Microbiome alterations impact metabolic pathways, immune responses, and gene expression, which can accelerate or mitigate cancer progression. We examine how dysbiosis affects tumor growth, metastasis, and treatment resistance. Additionally, we discuss the potential of microbiome-targeted therapies, such as probiotics and fecal microbiota transplants, to modulate cancer metabolism. These interventions offer the possibility of reversing or controlling cancer progression, enhancing the efficacy of traditional treatments like chemotherapy and immunotherapy. Despite promising developments, challenges remain in identifying key microbial species and pathways and validating microbiome-targeted therapies through large-scale clinical trials. Nonetheless, the intersection of microbiome research and cancer initiation and development presents an exciting frontier for innovative therapies. This review offers a fresh perspective on cancer initiation and development by integrating microbiome insights, highlighting the potential for interdisciplinary research to enhance our understanding of cancer progression and treatment strategies.
Collapse
Affiliation(s)
- Kai Xu
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Zainab Motiwala
- Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Dhruvi Makhanasa
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Md. Wasim Khan
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Janga H, Schmerer N, Aznaourova M, Schulte LN. Non-coding RNA Networks in Infection. Methods Mol Biol 2025; 2883:53-77. [PMID: 39702704 DOI: 10.1007/978-1-0716-4290-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In the face of global health challenges posed by infectious diseases and the emergence of drug-resistant pathogens, the exploration of cellular non-coding RNA (ncRNA) networks has unveiled new dimensions in infection research. Particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have emerged as instrumental players in ensuring a balance between protection against hyper-inflammatory conditions and the effective elimination of pathogens. Specifically, ncRNAs, such as the miRNA miR-155 or the lncRNAs MaIL1 (macrophage interferon-regulatory lncRNA 1), and LUCAT1 (lung cancer-associated transcript 1) have been recurrently linked to infectious and inflammatory diseases. Together with other ncRNAs, discussed in this chapter, they form a complex regulatory network shaping the host response to pathogens. Additionally, some pathogens exploit these ncRNAs to establish and sustain infections, underscoring their dual roles in host protection and colonization. Despite the substantial progress made, the vast majority of ncRNA loci remains unexplored, with ongoing research likely to reveal novel ncRNA categories and expand our understanding of their roles in infections. This chapter consolidates current insights into ncRNA-mediated regulatory networks, highlighting their contributions to severe diseases and their potential as targets and biomarkers for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | - Nils Schmerer
- Institute for Lung Research, Philipps University, Marburg, Germany
| | | | - Leon N Schulte
- Institute for Lung Research, Philipps University, Marburg, Germany.
- German Center for Lung Research, Giessen, Germany.
| |
Collapse
|
3
|
Chen S, Lei Z, Sun T. The critical role of miRNA in bacterial zoonosis. Int Immunopharmacol 2024; 143:113267. [PMID: 39374566 DOI: 10.1016/j.intimp.2024.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The public's health and the financial sustainability of international societies remain threatened by bacterial zoonoses, with limited reliable diagnostic and therapeutic options available for bacterial diseases. Bacterial infections influence mammalian miRNA expression in host-pathogen interactions. In order to counteract bacterial infections, miRNAs participate in gene-specific expression and play important regulatory roles that rely on translational inhibition and target gene degradation by binding to the 3' non-coding region of target genes. Intriguingly, according to current studies, that exogenous miRNAs derived from plants could potentially serve as effective medicinal components sourced from traditional Chinese medicine plants. These exogenous miRNAs exhibit stable functionality in mammals and mimic the regulatory roles of endogenous miRNAs, illuminating the molecular processes behind the therapeutic effects of plants. This review details the immune defense mechanisms of inflammation, apoptosis, autophagy and cell cycle disturbance caused by some typical bacterial infections, summarizes the role of some mammalian miRNAs in regulating these mechanisms, and introduces the cGAS-STING signaling pathway in detail. Evidence suggests that this newly discovered immune defense mechanism in mammalian cells can also be affected by miRNAs. Meanwhile, some examples of transboundary regulation of mammalian mRNA and even bacterial diseases by exogenous miRNAs from plants are also summarized. This viewpoint provides fresh understanding of microbial tactics and host mechanisms in the management of bacterial illnesses.
Collapse
Affiliation(s)
- Si Chen
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
4
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
5
|
Xu H, Huang K, Shi M, Gong H, Han M, Tian W, Wang X, Zhang D. MicroRNAs in Helicobacter pylori-infected gastric cancer: Function and clinical application. Pharmacol Res 2024; 205:107216. [PMID: 38761883 DOI: 10.1016/j.phrs.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and it is associated with a combination of genetic, environmental, and microbial risk factors. Helicobacter pylori (H. pylori) is classified as a type I carcinogen, however, the exact regulatory mechanisms underlying H. pylori-induced GC are incompletely defined. MicroRNAs (miRNAs), one of small non-coding RNAs, negatively regulate gene expression through binding to their target genes. Dysregulation of miRNAs is crucial in human cancer. A noteworthy quantity of aberrant miRNAs induced by H. pylori through complex regulatory networks have been identified. These miRNAs substantially affect genetic instability, cell proliferation, apoptosis, invasion, metastasis, autophagy, chemoresistance, and the tumor microenvironment, leading to GC development and progression. Importantly, some H. pylori-associated miRNAs hold promise as therapeutic tools and biomarkers for GC prevention, diagnosis, and prognosis. Nonetheless, clinical application of miRNAs remains in its infancy with multiple issues, including sensitivity and specificity, stability, reliable delivery systems, and off-target effects. Additional research on the specific molecular mechanisms and more clinical data are still required. This review investigated the biogenesis, regulatory mechanisms, and functions of miRNAs in H. pylori-induced GC, offering novel insights into the potential clinical applications of miRNA-based therapeutics and biomarkers.
Collapse
Affiliation(s)
- Huimei Xu
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ke Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Mengyu Han
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Wenji Tian
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiaoying Wang
- Department of Emergency, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
6
|
Christodoulidis G, Koumarelas KE, Kouliou MN, Thodou E, Samara M. Gastric Cancer in the Era of Epigenetics. Int J Mol Sci 2024; 25:3381. [PMID: 38542354 PMCID: PMC10970362 DOI: 10.3390/ijms25063381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Gastric cancer (GC) remains a significant contributor to cancer-related mortality. Novel high-throughput techniques have enlightened the epigenetic mechanisms governing gene-expression regulation. Epigenetic characteristics contribute to molecular taxonomy and give rise to cancer-specific epigenetic patterns. Helicobacter pylori (Hp) infection has an impact on aberrant DNA methylation either through its pathogenic CagA protein or by inducing chronic inflammation. The hypomethylation of specific repetitive elements generates an epigenetic field effect early in tumorigenesis. Epstein-Barr virus (EBV) infection triggers DNA methylation by dysregulating DNA methyltransferases (DNMT) enzyme activity, while persistent Hp-EBV co-infection leads to aggressive tumor behavior. Distinct histone modifications are also responsible for oncogene upregulation and tumor-suppressor gene silencing in gastric carcinomas. While histone methylation and acetylation processes have been extensively studied, other less prevalent alterations contribute to the development and migration of gastric cancer via a complex network of interactions. Enzymes, such as Nicotinamide N-methyltransferase (NNMT), which is involved in tumor's metabolic reprogramming, interact with methyltransferases and modify gene expression. Non-coding RNA molecules, including long non-coding RNAs, circular RNAs, and miRNAs serve as epigenetic regulators contributing to GC development, metastasis, poor outcomes and therapy resistance. Serum RNA molecules hold the potential to serve as non-invasive biomarkers for diagnostic, prognostic or therapeutic applications. Gastric fluids represent a valuable source to identify potential biomarkers with diagnostic use in terms of liquid biopsy. Ongoing clinical trials are currently evaluating the efficacy of next-generation epigenetic drugs, displaying promising outcomes. Various approaches including multiple miRNA inhibitors or targeted nanoparticles carrying epigenetic drugs are being designed to enhance existing treatment efficacy and overcome treatment resistance.
Collapse
Affiliation(s)
- Grigorios Christodoulidis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Konstantinos-Eleftherios Koumarelas
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Marina-Nektaria Kouliou
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Eleni Thodou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| |
Collapse
|
7
|
Lei C, Xu Y, Zhang S, Huang C, Qin J. The role of microbiota in gastric cancer: A comprehensive review. Helicobacter 2024; 29:e13071. [PMID: 38643366 DOI: 10.1111/hel.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Gastric cancer (GC) continues to pose a significant global threat in terms of cancer-related fatalities. Despite notable advancements in medical research and therapies, further investigation is warranted to elucidate its underlying etiology and risk factors. Recent times have witnessed an escalated emphasis on comprehending the role of the microbiota in cancer development. METHODS This review briefly delves into recent developments in microbiome-related research pertaining to gastric cancer. RESULTS According to studies, the microbiota can influence GC growth by inciting inflammation, disrupting immunological processes, and generating harmful microbial metabolites. Furthermore, there is ongoing research into how the microbiome can impact a patient's response to chemotherapy and immunotherapy. CONCLUSION The utilization of the microbiome for detecting, preventing, and managing stomach cancer remains an active area of exploration.
Collapse
Affiliation(s)
- Changzhen Lei
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yitian Xu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaopeng Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Qin
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Wang X, Dong Y, Zhang H, Zhao Y, Miao T, Mohseni G, Du L, Wang C. DNA methylation drives a new path in gastric cancer early detection: Current impact and prospects. Genes Dis 2024; 11:847-860. [PMID: 37692483 PMCID: PMC10491876 DOI: 10.1016/j.gendis.2023.02.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly cancers worldwide. Early detection offers the best chance for curative treatment and reducing its mortality. However, the optimal population-based early screening for GC remains unmet. Aberrant DNA methylation occurs in the early stage of GC, exhibiting cancer-specific genetic and epigenetic changes, and can be detected in the media such as blood, gastric juice, and feces, constituting a valuable biomarker for cancer early detection. Furthermore, DNA methylation is a stable epigenetic alteration, and many innovative methods have been developed to quantify it rapidly and accurately. Nonetheless, large-scale clinical validation of DNA methylation serving as tumor biomarkers is still lacking, precluding their implementation in clinical practice. In conclusion, after a critical analysis of the recent existing literature, we summarized the evolving roles of DNA methylation during GC occurrence, expounded the newly discovered noninvasive DNA methylation biomarkers for early detection of GC, and discussed its challenges and prospects in clinical applications.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Yaqi Dong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, Chongqing 402774, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China
| | - Tianshu Miao
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, China
| | - Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong 250033, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong 250033, China
| |
Collapse
|
9
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Chattopadhyay I, Gundamaraju R, Rajeev A. Diversification and deleterious role of microbiome in gastric cancer. Cancer Rep (Hoboken) 2023; 6:e1878. [PMID: 37530125 PMCID: PMC10644335 DOI: 10.1002/cnr2.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence factors, including cytotoxin-associated gene A (CagA), vacuolating cytotoxin (VacA), and outer membrane proteins (OMPs), all of which have been linked to the development of gastric cancer. In addition, bacteria such as Escherichia coli, Streptococcus, Clostridium, Haemophilus, Veillonella, Staphylococcus, and Lactobacillus play an important role in the development of gastric cancer. Besides, lactic acid bacteria (LAB) such as Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus were found in greater abundance in GAC patients. To identify potential diagnostic and therapeutic interventions for GC, it is essential to understand the mechanistic role of H. pylori and other bacteria that contribute to gastric carcinogenesis. Furthermore, understanding bacteria-host interactions and bacteria-induced inflammatory pathways in the host is critical for developing treatment targets for gastric cancer.
Collapse
Affiliation(s)
| | - Rohit Gundamaraju
- ER stress and Mucosal Immunology TeamSchool of Health Sciences, University of TasmaniaLauncestonTasmaniaAustralia
| | - Ashwin Rajeev
- Department of BiotechnologyCentral University of Tamil NaduThiruvarurIndia
| |
Collapse
|
11
|
Sakatani A, Hayashi Y, Saiki H, Kato M, Uema R, Inoue T, Kimura K, Yoshii S, Tsujii Y, Shinzaki S, Iijima H, Takehara T. A novel role for Helicobacter pylori cytotoxin-associated gene A in negative regulation of autophagy in human gastric cells. BMC Gastroenterol 2023; 23:326. [PMID: 37740192 PMCID: PMC10517455 DOI: 10.1186/s12876-023-02944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Autophagy plays an important role in carcinogenesis and tumor progression in many cancers, including gastric cancer. Cytotoxin-associated gene A (CagA) is a well-known virulent factor in Helicobacter pylori (H. pylori) infection that plays a critical role in gastric inflammation and gastric cancer development. However, its role in autophagy during these processes remains unclear. Therefore, we aimed to clarify the role of CagA in autophagy in CagA-related inflammation. METHODS We evaluated the autophagic index of AGS cells infected with wild-type cagA-positive H. pylori (Hp-WT) and cagA-knockout H. pylori (Hp-ΔcagA) and rat gastric mucosal (RGM1) cells transfected with CagA genes. To identify the mechanisms underlying the down regulation of autophagy in AGS cells infected with H. pylori, we evaluated protein and mRNA expression levels of autophagy core proteins using western blotting and quantitative reverse transcription-polymerase chain reaction (RT-PCR). To determine whether autophagy induced the expression of the pro-inflammatory mediator, cyclooxygenase-2 (COX-2), we evaluated COX-2 expression in AGS cells treated with an autophagy inducer and inhibitor and infected with H. pylori. In addition, we evaluated whether COX-2 protein expression in AGS cells influenced beclin-1 (BECN1) expression with si-RNA transfection when infected with H. pylori. RESULTS Autophagic flux assay using chloroquine showed that autophagy in AGS cells was significantly suppressed after H. pylori infection. The autophagic index of AGS cells infected with Hp-WT was decreased significantly when compared with that in AGS cells infected with Hp-ΔcagA. The autophagic index of RGM1 cells transfected with CagA was lower, suggesting that CagA inhibits autophagy. In addition, BECN1 expression levels in AGS cells infected with Hp-WT were reduced compared to those in AGS cells infected with Hp-ΔcagA. Furthermore, COX-2 expression in AGS cells infected with H. pylori was controlled in an autophagy-dependent manner. When AGS cells were transfected with small interfering RNA specific for BECN1 and infected with Hp-WT and Hp-ΔcagA, COX-2 was upregulated significantly in cells infected with Hp-ΔcagA. CONCLUSIONS In conclusion, the H. pylori CagA protein negatively regulated autophagy by downregulating BECN1. CagA-induced autophagy inhibition may be a causative factor in promoting pro-inflammatory mediator production in human gastric epithelial cells.
Collapse
Affiliation(s)
- Akihiko Sakatani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Hirotsugu Saiki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Minoru Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Ryotaro Uema
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Takanori Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Keiichi Kimura
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Shunsuke Yoshii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
12
|
Kashyap D, Rele S, Bagde PH, Saini V, Chatterjee D, Jain AK, Pandey RK, Jha HC. Comprehensive insight into altered host cell-signaling cascades upon Helicobacter pylori and Epstein-Barr virus infections in cancer. Arch Microbiol 2023; 205:262. [PMID: 37310490 DOI: 10.1007/s00203-023-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Cancer is characterized by mutagenic events that lead to disrupted cell signaling and cellular functions. It is one of the leading causes of death worldwide. Literature suggests that pathogens, mainly Helicobacter pylori and Epstein-Barr virus (EBV), have been associated with the etiology of human cancer. Notably, their co-infection may lead to gastric cancer. Pathogen-mediated DNA damage could be the first and crucial step in the carcinogenesis process that modulates numerous cellular signaling pathways. Altogether, it dysregulates the metabolic pathways linked with cell growth, apoptosis, and DNA repair. Modulation in these pathways leads to abnormal growth and proliferation. Several signaling pathways such RTK, RAS/MAPK, PI3K/Akt, NFκB, JAK/STAT, HIF1α, and Wnt/β-catenin are known to be altered in cancer. Therefore, this review focuses on the oncogenic roles of H. pylori, EBV, and its associated signaling cascades in various cancers. Scrutinizing these signaling pathways is crucial and may provide new insights and targets for preventing and treating H. pylori and EBV-associated cancers.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Pranit Hemant Bagde
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | | | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Solna, Sweden
| | - Hem Chandra Jha
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
- Centre for Rural Development and Technology, Indian Institute of Technology Indore, Madhya Pradesh, 453552, Indore, India.
| |
Collapse
|
13
|
Bustos-Fraga S, Salinas-Pinta M, Vicuña-Almeida Y, de Oliveira RB, Baldeón-Rojas L. Prevalence of Helicobacter pylori genotypes: cagA, vacA (m1), vacA (s1), babA2, dupA, iceA1, oipA and their association with gastrointestinal diseases. A cross-sectional study in Quito-Ecuador. BMC Gastroenterol 2023; 23:197. [PMID: 37280541 DOI: 10.1186/s12876-023-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND The most prevalent stomach infection in the world is caused by Helicobacter pylori (H. pylori). Several pathogenicity genes, including cagA, vacA, babA2, dupA, iceA, and oipA, are associated with an increased risk of gastrointestinal disease such as peptic ulcer and stomach cancer. This research aims to determine the prevalence of different H. pylori genotypes and correlate their risk in the development of gastrointestinal diseases in the Ecuadorian population. METHODS A cross-sectional research of 225 patients at the Calderón Hospital in Quito, Ecuador, was conducted. End point PCRs were run to determine the presence of 16S rRNA, cagA, vacA (m1), vacA (s1), babA2, dupA, iceA1, and oipA virulence genes. Chi-square test, odds ratios (OR) and 95% confidence intervals (CI) were utilized for the statistical analysis. RESULTS H. pylori infection was present in 62.7% of people. Peptic ulcers were seen in 22.2% and malignant lesions in 3.6% of patients. Genes oipA (93.6%), vacA (s1) (70.9%), and babA2 (70.2%) were the most prevalent. cagA/vacA (s1m1) and cagA/oipA (s1m1) combinations were found in 31.2% and 22.7% of the cases, respectively. Acute inflammation has a significant correlation with the genes cagA (OR = 4.96 95% CI: 1.1-22.41), babA2 (OR = 2.78 95% CI: 1.06-7.3), and the cagA/oipA combination (OR = 4.78, 95% CI: 1.06-21.62). Follicular hyperplasia was associated with iceA1 (OR = 3.13; 95% CI: 1.2-8.16), babA2 (OR = 2.56; 95% CI: 1.14-5.77), cagA (OR = 2.19; 95% CI: 1.06-4.52), and the cagA/oipA combination (OR = 2.32, 95% CI: 1.12-4.84). The vacA (m1) and vacA (s1m1) genes were associated with gastric intestinal metaplasia (OR = 2.71 95% CI: 1.17-6.29) (OR = 2.33 95% CI: 1.03-5.24). Finally, we showed that cagA/vacA (s1m1) gene combination increased the risk of duodenal ulcer development (OR = 2.89, 95% CI 1.10-7.58). CONCLUSION This study makes a significant contribution by offering genotypic information regarding H. pylori infection. The presence of several H. pylori genes was associated with the onset of gastrointestinal illness in the Ecuadorian population.
Collapse
Affiliation(s)
- Santiago Bustos-Fraga
- Departamento de Gastroenterología Clínica, Hospital General Docente de Calderón, Quito, Ecuador
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Marco Salinas-Pinta
- Instituto de Investigación en Biomedicina, Universidad Central del Ecuador, Quito, Ecuador.
| | | | | | - Lucy Baldeón-Rojas
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador
- Instituto de Investigación en Biomedicina, Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
14
|
Loe AKH, Zhu L, Kim TH. Chromatin and noncoding RNA-mediated mechanisms of gastric tumorigenesis. Exp Mol Med 2023; 55:22-31. [PMID: 36653445 PMCID: PMC9898530 DOI: 10.1038/s12276-023-00926-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly cancers in the world. It is a multifactorial disease highly influenced by environmental factors, which include radiation, smoking, diet, and infectious pathogens. Accumulating evidence suggests that epigenetic regulators are frequently altered in GC, playing critical roles in gastric tumorigenesis. Epigenetic regulation involves DNA methylation, histone modification, and noncoding RNAs. While it is known that environmental factors cause widespread alterations in DNA methylation, promoting carcinogenesis, the chromatin- and noncoding RNA-mediated mechanisms of gastric tumorigenesis are still poorly understood. In this review, we focus on discussing recent discoveries addressing the roles of histone modifiers and noncoding RNAs and the mechanisms of their interactions in gastric tumorigenesis. A better understanding of epigenetic regulation would likely facilitate the development of novel therapeutic approaches targeting specific epigenetic regulators in GC.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Lexin Zhu
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
15
|
Natsume H, Szczepaniak K, Yamada H, Iwashita Y, Gędek M, Šuto J, Ishino K, Kasajima R, Matsuda T, Manirakiza F, Nzitakera A, Wu Y, Xiao N, He Q, Guo W, Cai Z, Ohta T, Szekely T, Kadar Z, Sekiyama A, Oshima T, Yoshikawa T, Tsuburaya A, Kurono N, Wang Y, Miyagi Y, Gurzu S, Sugimura H. Non-CpG sites preference in G:C > A:T transition of TP53 in gastric cancer of Eastern Europe (Poland, Romania and Hungary) compared to East Asian countries (China and Japan). Genes Environ 2023; 45:1. [PMID: 36600315 PMCID: PMC9811704 DOI: 10.1186/s41021-022-00257-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
AIM Mutation spectrum of TP53 in gastric cancer (GC) has been investigated world-widely, but a comparison of mutation spectrum among GCs from various regions in the world are still sparsely documented. In order to identify the difference of TP53 mutation spectrum in GCs in Eastern Europe and in East Asia, we sequenced TP53 in GCs from Eastern Europe, Lujiang (China), and Yokohama, Kanagawa (Japan) and identified the feature of TP53 mutations of GC in these regions. SUBJECTS AND METHOD In total, 689 tissue samples of GC were analyzed: 288 samples from East European populations (25 from Hungary, 71 from Poland and 192 from Romania), 268 from Yokohama, Kanagawa, Japan and 133 from Lujiang, Anhui province, China. DNA was extracted from FFPE tissue of Chinese, East European cases; and from frozen tissue of Japanese GCs. PCR products were direct-sequenced by Sanger method, and in ambiguous cases, PCR product was cloned and up to 8 clones were sequenced. We used No. NC_000017.11(hg38) as the reference sequence of TP53. Mutation patterns were categorized into nine groups: six base substitutions, insertion, deletion and deletion-insertion. Within G:C > A:T mutations the mutations in CpG and non-CpG sites were divided. The Cancer Genome Atlas data (TCGA, ver.R20, July, 2019) having somatic mutation list of GCs from Whites, Asians, and other ethnicities were used as a reference for our data. RESULTS The most frequent base substitutions were G:C > A:T transition in all the areas investigated. The G:C > A:T transition in non-CpG sites were prominent in East European GCs, compared with Asian ones. Mutation pattern from TCGA data revealed the same trend between GCs from White (TCGA category) vs Asian countries. Chinese and Japanese GCs showed higher ratio of G:C > A:T transition in CpG sites and A:T > G:C mutation was more prevalent in Asian countries. CONCLUSION The divergence in mutation spectrum of GC in different areas in the world may reflect various pathogeneses and etiologies of GC, region to region. Diversified mutation spectrum in GC in Eastern Europe may suggest GC in Europe has different carcinogenic pathway of those from Asia.
Collapse
Affiliation(s)
- Hiroko Natsume
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kinga Szczepaniak
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Medical University of Warsaw, 1B Banacha Street, Warsaw, Poland
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Marta Gędek
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Medical University of Lublin, ul. Radziwiłłowska 11, wew, 5647, Lublin, Poland
| | - Jelena Šuto
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Oncology, Clinical Hospital Centre Split, Split, Croatia
| | - Keiko Ishino
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Rika Kasajima
- The Center for Cancer Genome Medicine, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Felix Manirakiza
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Augustin Nzitakera
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yijia Wu
- Lujiang People Hospital, 32 Wenmingzhong Road, Lujiang, Hefei, 231501, China
| | - Nong Xiao
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Qiong He
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Wenwen Guo
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Zhenming Cai
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, 211166, China
| | - Tsutomu Ohta
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, 1230 Miyakoda-cho, Kita-ku, Hamamatsu, Shizuoka, 431-2102, Japan
| | - Tıberiu Szekely
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Ghe Marinescu 38 Street, 540139, Targu Mures, Romania
- Department of Oncology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Ghe Marinescu 38 Street, 540139, Targu Mures, Romania
| | - Zoltan Kadar
- Department of Oncology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Ghe Marinescu 38 Street, 540139, Targu Mures, Romania
| | - Akiko Sekiyama
- Department of Clinical Laboratory, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Tsuburaya
- Department of Surgery, Ozawa Hospital, 1-1-17, Honcho, Odawara, Kanagawa, 250-0012, Japan
| | - Nobuhito Kurono
- Department of Chemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yaping Wang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Ghe Marinescu 38 Street, 540139, Targu Mures, Romania.
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higasi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
- Sasaki Foundation Sasaki Institute, 2-2, KandaSurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
16
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Yang Y, Zhang M, Wang Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:277-290. [PMID: 39036551 PMCID: PMC11256729 DOI: 10.1016/j.jncc.2022.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are key factors in chromatin packaging, and are responsible for gene regulation during cell fate determination and development. Abnormal alterations in histone modifications potentially affect the stability of the genome and disrupt gene expression patterns, leading to many diseases, including cancer. In recent years, mounting evidence has shown that various histone modifications altered by aberrantly expressed modifier enzymes contribute to tumor development and metastasis through the induction of epigenetic, transcriptional, and phenotypic changes. In this review, we will discuss the existing histone modifications, both well-studied and rare ones, and their roles in solid tumors and hematopoietic cancers, to identify the molecular pathways involved and investigate targeted therapeutic drugs to reorganize the chromatin and enhance cancer treatment efficiency. Finally, clinical inhibitors of histone modifications are summarized to better understand the developmental stage of cancer therapy in using these drugs to inhibit the histone modification enzymes.
Collapse
Affiliation(s)
| | | | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Lei C, Gong D, Zhuang B, Zhang Z. Alterations in the gastric microbiota and metabolites in gastric cancer: An update review. Front Oncol 2022; 12:960281. [PMID: 36081564 PMCID: PMC9445122 DOI: 10.3389/fonc.2022.960281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer mortality worldwide. Numerous studies have shown that the gastric microbiota can contribute to the occurrence and development of GC by generating harmful microbial metabolites, suggesting the possibility of discovering biomarkers. Metabolomics has emerged as an advanced promising analytical method for the analysis of microbiota-derived metabolites, which have greatly accelerated our understanding of host-microbiota metabolic interactions in GC. In this review, we briefly compiled recent research progress on the changes of gastric microbiota and its metabolites associated with GC. And we further explored the application of metabolomics and gastric microbiome association analysis in the diagnosis, prevention and treatment of GC.
Collapse
|
19
|
Vahidi S, Mirzajani E, Norollahi SE, Aziminezhad M, Samadani AA. Performance of DNA Methylation on the Molecular Pathogenesis of Helicobacter pylori in Gastric Cancer; targeted therapy approach. J Pharmacopuncture 2022; 25:88-100. [PMID: 35837145 PMCID: PMC9240405 DOI: 10.3831/kpi.2022.25.2.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, Gene Environment Interactions in Cardiovascular Pathophysiology (IGE-PCV), University of Lorraine, Nancy, France
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
20
|
The H. pylori CagA Oncoprotein Induces DNA Double Strand Breaks through Fanconi Anemia Pathway Downregulation and Replication Fork Collapse. Int J Mol Sci 2022; 23:ijms23031661. [PMID: 35163588 PMCID: PMC8836099 DOI: 10.3390/ijms23031661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
The proteins from the Fanconi Anemia (FA) pathway of DNA repair maintain DNA replication fork integrity by preventing the unscheduled degradation of nascent DNA at regions of stalled replication forks. Here, we ask if the bacterial pathogen H. pylori exploits the fork stabilisation machinery to generate double stand breaks (DSBs) and genomic instability. Specifically, we study if the H. pylori virulence factor CagA generates host genomic DSBs through replication fork destabilisation and collapse. An inducible gastric cancer model was used to examine global CagA-dependent transcriptomic and proteomic alterations, using RNA sequencing and SILAC-based mass spectrometry, respectively. The transcriptional alterations were confirmed in gastric cancer cell lines infected with H. pylori. Functional analysis was performed using chromatin fractionation, pulsed-field gel electrophoresis (PFGE), and single molecule DNA replication/repair fiber assays. We found a core set of 31 DNA repair factors including the FA genes FANCI, FANCD2, BRCA1, and BRCA2 that were downregulated following CagA expression. H. pylori infection of gastric cancer cell lines showed downregulation of the aforementioned FA genes in a CagA-dependent manner. Consistent with FA pathway downregulation, chromatin purification studies revealed impaired levels of Rad51 but higher recruitment of the nuclease MRE11 on the chromatin of CagA-expressing cells, suggesting impaired fork protection. In line with the above data, fibre assays revealed higher fork degradation, lower fork speed, daughter strands gap accumulation, and impaired re-start of replication forks in the presence of CagA, indicating compromised genome stability. By downregulating the expression of key DNA repair genes such as FANCI, FANCD2, BRCA1, and BRCA2, H. pylori CagA compromises host replication fork stability and induces DNA DSBs through fork collapse. These data unveil an intriguing example of a bacterial virulence factor that induces genomic instability by interfering with the host replication fork stabilisation machinery.
Collapse
|
21
|
Li N, Wang Z. Integrative Analysis of Deregulated miRNAs Reveals Candidate Molecular Mechanisms Linking H. pylori Infected Peptic Ulcer Disease with Periodontitis. DISEASE MARKERS 2022; 2022:1498525. [PMID: 35132337 PMCID: PMC8817886 DOI: 10.1155/2022/1498525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Periodontitis is a highly prevalent oral infectious disease and has been increasingly associated with H. pylori infection, gastric inflammation, and gastric cancer but little is known about epigenetic machinery underlying this potentially bidirectional association. The present study is aimed at identifying key deregulated miRNA, their associated genes, signaling pathways, and compounds linking periodontitis with H. pylori-associated peptic ulcer disease. METHODS miRNA expression datasets for periodontitis-affected and H. pylori-associated peptic ulcer disease-affected tissues were sought from the GEO database. Differentially expressed miRNA (DEmiRNAs) were identified and the overlapping, shared-DEmiRNA between both datasets were determined. Shared-DEmiRNA-target networks construction and functional analyses were constructed using miRNet 2.0, including shared-DEmiRNA-gene, shared-DEmiRNA-transcription factor (TF), and shared-DEmiRNA-compound networks. Functional enrichment analysis for shared DEmiRNA-gene and shared DEmiRNA-TF networks was performed using the KEGG, Reactome, and Geno Ontology (GO) pathways. RESULTS 11 shared-DEmiRNAs were identified, among which 9 showed similar expression patterns in both diseases, and 7 were overexpressed. miRNA hsa-hsa-mir-155-5p and hsa-mir-29a-3p were top miRNA nodes in both gene and TF networks. The topmost candidate miRNA-deregulated genes were PTEN, CCND1, MDM2, TNRC6A, and SCD while topmost deregulated TFs included STAT3, HIF1A, EZH2, CEBPA, and RUNX1. Curcumin, 5-fluorouracil, and the gallotanin 1,2,6-Tri-O-galloyl-beta-D-glucopyranose emerged as the most relevant linkage compound targets. Functional analyses revealed multiple cancer-associated pathways, PI3K pathways, kinase binding, and transcription factor binding among as enriched by the network-associated genes and TFs. CONCLUSION Integrative analysis of deregulated miRNAs revealed candidate molecular mechanisms comprising of top miRNA, their gene, and TF targets linking H. pylori-infected peptic ulcer disease with periodontitis and highlighted compounds targeting both diseases. These findings provide basis for directing future experimental research.
Collapse
Affiliation(s)
- Ning Li
- Department of Prosthetic Dentistry, The Affiliated Stomatological Hospital of Wenzhou Medical University, Longyao Avenue No. 1288, Yongzhong Street, Longwan District, Wenzhou 325000, Zhejiang Province, China
| | - Zhen Wang
- Department of Stomatology, The Quzhou Affiliated Hospital of Wenzhou Medical University (Quzhou People's Hospital), Kecheng District, Minjiang Avenue No. 100, Quzhou 332400, Zhejiang Province, China
| |
Collapse
|
22
|
Choi JM, Kim SG. Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.
Collapse
|
23
|
Prashar A, Capurro MI, Jones NL. Under the Radar: Strategies Used by Helicobacter pylori to Evade Host Responses. Annu Rev Physiol 2021; 84:485-506. [PMID: 34672717 DOI: 10.1146/annurev-physiol-061121-035930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The body depends on its physical barriers and innate and adaptive immune responses to defend against the constant assault of potentially harmful microbes. In turn, successful pathogens have evolved unique mechanisms to adapt to the host environment and manipulate host defenses. Helicobacter pylori (Hp), a human gastric pathogen that is acquired in childhood and persists throughout life, is an example of a bacterium that is very successful at remodeling the host-pathogen interface to promote a long-term persistent infection. Using a combination of secreted virulence factors, immune subversion, and manipulation of cellular mechanisms, Hp can colonize and persist in the hostile environment of the human stomach. Here, we review the most recent and relevant information regarding how this successful pathogen overcomes gastric epithelial host defense responses to facilitate its own survival and establish a chronic infection. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Akriti Prashar
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Mariana I Capurro
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Nicola L Jones
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada; .,Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Abstract
Gastric cancer (GC) is one of the most common malignant tumors. The mechanism of how GC develops is vague, and therapies are inefficient. The function of microRNAs (miRNAs) in tumorigenesis has attracted the attention from many scientists. During the development of GC, miRNAs function in the regulation of different phenotypes, such as proliferation, apoptosis, invasion and metastasis, drug sensitivity and resistance, and stem-cell-like properties. MiRNAs were evaluated for use in diagnostic and prognostic predictions and exhibited considerable accuracy. Although many problems exist for the application of therapy, current studies showed the antitumor effects of miRNAs. This paper reviews recent advances in miRNA mechanisms in the development of GC and the potential use of miRNAs in the diagnosis and treatment of GC.
Collapse
|
25
|
Wang C, Hu Y, Yang H, Wang S, Zhou B, Bao Y, Huang Y, Luo Q, Yang C, Xie X, Yang S. Function of Non-coding RNA in Helicobacter pylori-Infected Gastric Cancer. Front Mol Biosci 2021; 8:649105. [PMID: 34046430 PMCID: PMC8144459 DOI: 10.3389/fmolb.2021.649105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive system. Its occurrence and development are the result of a combination of genetic, environmental, and microbial factors. Helicobacter pylori infection is a chronic infection that is closely related to the occurrence of gastric tumorigenesis. Non-coding RNA has been demonstrated to play a very important role in the organism, exerting a prominent role in the carcinogenesis, proliferation, apoptosis, invasion, metastasis, and chemoresistance of tumor progression. H. pylori infection affects the expression of non-coding RNA at multiple levels such as genetic polymorphisms and signaling pathways, thereby promoting or inhibiting tumor progression or chemoresistance. This paper mainly introduces the relationship between H. pylori-infected gastric cancer and non-coding RNA, providing a new perspective for gastric cancer treatment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yulu Bao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chuan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xia Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
26
|
Gregorova J, Vychytilova-Faltejskova P, Sevcikova S. Epigenetic Regulation of MicroRNA Clusters and Families during Tumor Development. Cancers (Basel) 2021; 13:1333. [PMID: 33809566 PMCID: PMC8002357 DOI: 10.3390/cancers13061333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding single-stranded RNA molecules regulating gene expression on a post-transcriptional level based on the seed sequence similarity. They are frequently clustered; thus, they are either simultaneously transcribed into a single polycistronic transcript or they may be transcribed independently. Importantly, microRNA families that contain the same seed region and thus target related signaling proteins, may be localized in one or more clusters, which are in a close relationship. MicroRNAs are involved in basic physiological processes, and their deregulation is associated with the origin of various pathologies, including solid tumors or hematologic malignancies. Recently, the interplay between the expression of microRNA clusters and families and epigenetic machinery was described, indicating aberrant DNA methylation or histone modifications as major mechanisms responsible for microRNA deregulation during cancerogenesis. In this review, the most studied microRNA clusters and families affected by hyper- or hypomethylation as well as by histone modifications are presented with the focus on particular mechanisms. Finally, the diagnostic and prognostic potential of microRNA clusters and families is discussed together with technologies currently used for epigenetic-based cancer therapies.
Collapse
Affiliation(s)
- Jana Gregorova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Petra Vychytilova-Faltejskova
- Department of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic;
| | - Sabina Sevcikova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Clinical Hematology, University Hospital Brno, 625 00 Brno, Czech Republic
| |
Collapse
|
27
|
Crowley E, Hussey S. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:275-292.e12. [DOI: 10.1016/b978-0-323-67293-1.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Chen P, Guo H, Wu X, Li J, Duan X, Ba Q, Wang H. Epigenetic silencing of microRNA-204 by Helicobacter pylori augments the NF-κB signaling pathway in gastric cancer development and progression. Carcinogenesis 2020; 41:430-441. [PMID: 31873718 DOI: 10.1093/carcin/bgz143] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori infection induces gastric cancer (GC) development through a progressive cascade; however, the roles of the microRNAs that are involved in the cascade and the underlying mechanisms are still unclear. Here, we found that microRNA-204 was suppressed in gastric mucosal cells in response to H.pylori infection and downregulated in GC tissues due to aberrant methylation of the promoter of its host gene, TRPM3. Helicobacter pylori induced a progressive downregulation of microRNA-204 from superficial gastritis to intestinal metaplasia, with an accompanying increment of the methylated levels of CpG sites in the TRPM3 promoter. With the GC cellular models of AGS, MGC-803 or BGC-823, we found that microRNA-204 suppressed the tumor necrosis factor (TNF)-α-induced activation of NF-κB signaling pathways and, in animal models, inhibited tumor growth and metastasis. The conditional supernatant of microRNA-204 overexpression GC cells led to reduced tube formation of human umbilical vein endothelial cells. A target gene for microRNA-204 was BIRC2, and in GC cells, BIRC2 knockdown recapitulated the biological phenotype of microRNA-204 overexpression. BIRC2 overexpression promoted the metastasis of GC cells and rescued the inhibition activities of microRNA-204 on cell migration and the NF-κB signaling pathway. Moreover, lower microRNA-204 and higher BIRC2 expression levels were associated with a poorer prognosis of GC patients. These results demonstrate that epigenetic silencing of microRNA-204 induced by H.pylori infection augments the NF-κB signaling pathway in H.pylori-induced gastritis and GC, potentially providing novel intervention targets for these diseases. MicroRNA-204 was epigenetically down-regulated by H. pylori infection in gastric mucosal cells. It led to enhanced BIRC2 expression level and BIRC2/TNF-a/NF-kB signaling pathway activities, which promoted angiogenesis and metastasis of gastric cancer cells.
Collapse
Affiliation(s)
- Peizhan Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - He Guo
- Key Laboratory of Food Safety Research, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, P. R. China
| | - Xuming Wu
- Nantong Center for Disease Control and Prevention, Nantong, P.R. China.,Nantong Tumor Hospital, Nantong, P. R. China
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Xiaohua Duan
- Key Laboratory of Food Safety Research, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, P. R. China
| | - Qian Ba
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Food Safety Research, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
29
|
Shen L, Zeng J, Ma L, Li S, Chen C, Jia J, Liang X. Helicobacter pylori Induces a Novel NF-kB/LIN28A/let-7a/hTERT Axis to Promote Gastric Carcinogenesis. Mol Cancer Res 2020; 19:74-85. [PMID: 33004623 DOI: 10.1158/1541-7786.mcr-19-0678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/18/2019] [Accepted: 09/28/2020] [Indexed: 11/16/2022]
Abstract
Reactivated telomerase is a crucial event in the development and progression of a variety of tumors. However, how telomerase is activated in gastric carcinogenesis has not been fully uncovered yet. Here, we identified a key role of the NF-κB/LIN28A/let-7a axis to promote human telomerase reverse transcriptase (hTERT) expression for gastric cancer initiation. Mechanistically, LIN28A expression was upregulated by H. pylori-induced NF-κB activation. And LIN28A, in turn, suppressed let-7a expression, forming the NF-κB/LIN28A/let-7a axis to regulate gene expression upon H. pylori infection. Of note, we first discovered hTERT as a direct target of let-7a, which inhibited hTERT expression by binding to its 3'UTR of mRNA. Therefore, H. pylori-triggered let-7a downregulation enhanced hTERT protein translation, resulting in telomerase reactivation. Furthermore, hTERT enhanced LIN28A expression, forming the positive feedback regulation between hTERT and NF-κB/LIN28A/let-7a axis to maintain the sustained overexpression of hTERT in gastric cancer. IMPLICATIONS: The NF-κB/LIN28A/Let-7a axis was crucial for the overexpression of hTERT upon H. pylori infection during gastric cancer development and may serve as a potential target to suppress hTERT expression for gastric cancer prevention and treatment.
Collapse
Affiliation(s)
- Li Shen
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Jiping Zeng
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Lin Ma
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Shuyan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China.,Cancer Research Laboratory, Shandong University-Karolinska Institutet collaborative Laboratory, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Xiuming Liang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China. .,Cancer Research Laboratory, Shandong University-Karolinska Institutet collaborative Laboratory, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
30
|
Schaalan M, Mohamed W, Fathy S. MiRNA-200c, MiRNA-139 and ln RNA H19; new predictors of treatment response in H-pylori- induced gastric ulcer or progression to gastric cancer. Microb Pathog 2020; 149:104442. [PMID: 32795593 DOI: 10.1016/j.micpath.2020.104442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Recent evidence indicates that the pathogenesis of gastric ulcer and progression to gastric cancer could be attributed to altered inflammatory/immunological response and associated differential non-coding RNAs expression signatures. However, co-expression profiling of lncRNA-miRNAs in GU/GC patients are scarcely focused on. Therefore, in the present study the expression of H19 and related miRNAs including miR-139, and miR-200 were assayed in the plasma samples of treatment responsive GU vs nonresponsive GC patients. This study is a case-control study carried out on 130 subjects recruited from the Gastrointestinal Endoscopy Unit in Al-Kasr Al-Aini Hospital, in Egypt. All recruited patients were diagnosed with H-pylori infection, 50 of them were gastric cancer patients (GC), with previous H-pylori induced gastric ulcer but were treatment non-respondent. Real-time PCR was performed to evaluate the expression level of serum non-coding RNA; miRNA-200c, miR-139, Ln RNA H19 in patients with peptic ulcer treatment non-respondent, who progressed to GC vs non-progressed gastric ulcer patients (GU) (n = 50), and compared to early diagnosed H-pylori-gastric ulcer patients (n = 30). The association between these miRNAs and the FGF-18/FGF-R signaling indicators of H-pylori-GC pathogenesis were then investigated. RESULTS: showed that the H19 level was significantly elevated while miR-139 and miR-200c expression were significantly down-regulated in GC patients, compared to GU participants (P < 0.01). The herein investigated ncRNAs are correlated to the disease duration with Ln H19 being significantly correlated with all inflammatory markers; TNF-α, INF-γ, TAC, MMP-9, and FGF18/FGFR2. A significant correlation was also observed between miRNA 200c and each of miRNA 139 and FGFR2. Moreover, ROC analysis revealed that miRNA 200c showed the highest AUC (0.906) and 81.2% sensitivity and 100% specificity. Moreover, the combined analysis of miRNA 200c/miRNA 139 revealed superior AUC (0.96) and 93% sensitivity and 100% specificity, than each separately. As for discriminative accuracy between stages III to IV of gastric cancer, LncRNA H19 showed the highest diagnostic accuracy (95.5%), specificity (100%), and sensitivity (90.9%). The current study demonstrated that the combination of serum miRNA 200c/miRNA 139 expression levels (down-regulation) could provide a new potential prognostic panel for GU predictive response and potential sequelae. In conclusion, LncRNA H19 and related miRNAs, miRNA 200c/miRNA 139, could serve as a potential diagnostic biomarker for early gastric cancer diagnosis.
Collapse
Affiliation(s)
- Mona Schaalan
- Department of Clinical Pharmacy, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Waleed Mohamed
- Department of Internal Medicine, Kasr El Aini Teaching Hospitals, Cairo University, Cairo, Egypt.
| | - Shimaa Fathy
- Department of Clinical Pharmacy, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| |
Collapse
|
31
|
Sallas ML, Zapparoli D, Dos Santos MP, Pereira JN, Orcini WA, Peruquetti RL, Chen ES, de Arruda Cardoso Smith M, Payão SLM, Rasmussen LT. Dysregulated Expression of Apoptosis-Associated Genes and MicroRNAs and Their Involvement in Gastric Carcinogenesis. J Gastrointest Cancer 2020; 52:625-633. [PMID: 32583363 DOI: 10.1007/s12029-019-00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Analyze the expression of caspase-9, Smac/DIABLO, XIAP, let-7a, and let-7b in patients with normal gastric tissue, chronic gastritis, and gastric adenocarcinoma. METHODS The expression of caspase-9, Smac/DIABLO, XIAP, let-7a, and let-7b by qRT-PCR was analyzed in 158 samples from 53 patients with normal gastric mucosa, 86 with chronic gastritis, and 19 with gastric cancer. RESULTS The comparison between the gastric cancer and the control group revealed a decreased expression of caspase-9 in gastric cancer tissues; considering the Helicobacter pylor presence, comparable results were revealed. Smac/DIABLO was increased in gastric cancer cells, while XIAP demonstrated no significant difference in the gene expression. The microRNA analysis revealed a decreased expression of let-7a and let-7b in samples positive to H. pylori infection and in gastric cancer group, regardless of the presence of the bacterium. CONCLUSION Our study provided some evidence of low activity of the intrinsic apoptosis pathway, as well as the influence of H. pylori on let-7a and let-7b expression.
Collapse
Affiliation(s)
| | - Diana Zapparoli
- Universidade do Sagrado Coração (USC), Bauru, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Osadchuk AM, Davydkin IL, Gricenko TA, Osadchuk MA. [General and particular issues of etiopathogenesis of peptic ulcer and gastric cancer: current status of the problem]. TERAPEVT ARKH 2020; 92:97-103. [PMID: 32598726 DOI: 10.26442/00403660.2020.02.000485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 12/16/2022]
Abstract
The development of peptic ulcer (PU) and gastric cancer (GC) is the result of the interaction of various internal and external factors. Moreover, if the role ofHelicobacter pylori(H. pylori) in the development of diseases of the stomach is fully established, the significance of many other factors continues to be discussed. Serious controversy is caused by the participation of various strains ofH. pyloriin the development of PU and GC. First of all, these are Vac- and Cag-positive strains ofH. pylori. The role of genetic human polymorphism in the development of this pathology is debatable. Especially the interleukin genes and necrotizing tumor factor alpha. The role of environmental factors in the formation of PU and GC is not fully understood. So, the role of alcohol, occupational hazards and drugs in the development of these diseases continues to be discussed. Further study of risk factors for various diseases of the stomach will optimize their prevention and treatment. The review presents a modern view of individual issues in the pathogenesis of PU and GC.
Collapse
Affiliation(s)
| | | | | | - M A Osadchuk
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
33
|
Anauate AC, Leal MF, Calcagno DQ, Gigek CO, Karia BTR, Wisnieski F, dos Santos LC, Chen ES, Burbano RR, Smith MAC. The Complex Network between MYC Oncogene and microRNAs in Gastric Cancer: An Overview. Int J Mol Sci 2020; 21:ijms21051782. [PMID: 32150871 PMCID: PMC7084225 DOI: 10.3390/ijms21051782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the advancements in cancer treatments, gastric cancer is still one of the leading causes of death worldwide. In this context, it is of great interest to discover new and more effective ways of treating this disease. Accumulated evidences have demonstrated the amplification of 8q24.21 region in gastric tumors. Furthermore, this is the region where the widely known MYC oncogene and different microRNAs are located. MYC deregulation is key in tumorigenesis in various types of tissues, once it is associated with cell proliferation, survival, and drug resistance. microRNAs are a class of noncoding RNAs that negatively regulate the protein translation, and which deregulation is related with gastric cancer development. However, little is understood about the interactions between microRNAs and MYC. Here, we overview the MYC role and its relationship with the microRNAs network in gastric cancer aiming to identify potential targets useful to be used in clinic, not only as biomarkers, but also as molecules for development of promising therapies.
Collapse
Affiliation(s)
- Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Bruno Takao Real Karia
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Gastroenterologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Leonardo Caires dos Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Rommel Rodríguez Burbano
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém PA 66075-110, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém PA 66063-240, Brazil
| | - Marília Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
34
|
Pero R, Angrisano T, Brancaccio M, Falanga A, Lombardi L, Natale F, Laneri S, Lombardo B, Galdiero S, Scudiero O. Beta-defensins and analogs in Helicobacter pylori infections: mRNA expression levels, DNA methylation, and antibacterial activity. PLoS One 2019; 14:e0222295. [PMID: 31537016 PMCID: PMC6752957 DOI: 10.1371/journal.pone.0222295] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial peptides can protect the gastric mucosa from bacteria, but Helicobacter pylori (H. pylori) can equally colonize the gastric apparatus. To understand beta-defensin function in H. pylori-associated chronic gastritis, we investigated susceptibility, human beta-defensin mRNA expression, and DNA methylation changes to promoters in the gastric mucosa with or without H. pylori infection. We studied the expression of HBD2 (gene name DEFB4A), HBD3 (DEFB103A), and HBD4 (DEFB104) using real-time PCR in 15 control and 10 H. pylori infection patient gastric specimens. This study demonstrates that H. pylori infection is related to gastric enhancement of inducible HBD2, but inducible HBD3 and HBD4 expression levels remained unchanged. HBD2 gene methylation levels were overall higher in H. pylori-negative samples than in H. pylori-positive samples. We also assessed antimicrobial susceptibility using growth on blood agar. The H. pylori strain Tox+ was susceptible to all defensins tested and their analogs (3N, 3NI). These results show that HBD2 is involved in gastritis development driven by H. pylori, which facilitates the creation of an epigenetic field during H. pylori-associated gastric tumorigenesis.
Collapse
Affiliation(s)
- Raffaela Pero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- * E-mail: (RP); (OS)
| | - Tiziana Angrisano
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Mariarita Brancaccio
- Dipartimento di Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Annarita Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Lucia Lombardi
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Francesco Natale
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Barbara Lombardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Napoli, Italy
| | - Stefania Galdiero
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Olga Scudiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Napoli, Italy
- * E-mail: (RP); (OS)
| |
Collapse
|
35
|
Yu M, Wang X, Ling F, Wang H, Zhang P, Shao S. Atractylodes lancea volatile oils attenuated helicobacter pylori NCTC11637 growth and biofilm. Microb Pathog 2019; 135:103641. [PMID: 31330262 DOI: 10.1016/j.micpath.2019.103641] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/03/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023]
Abstract
Atractylodes lancea is a traditional Chinese perennial herb, which has been used for treating gastrointestinal diseases in traditional medicine. The aim of this study was to investigate the effect of Atractylodes lancea volatile oils on the planktonic growth and biofilm formation of Helicobacter pylori (H. pylori). Firstly, the minimal inhibitory concentration (MIC) of the volatile oils against H. pylori were determined using broth dilution method. SPSS17.0 was used to account 50% inhibiting concentration (IC50). Moreover, the anti-biofilm activity of the volatile oils was determined by crystal violet measurement and fluorescence microscope. Finally, gastric epithelial cells (GES-1 cells) were co-incubated with H. pylori with or without volatile oils treated. Real-time PCR and western blot were performed to detect the translocation of virulence factor Cag A. We found that Atractylodes lancea volatile oils inhibited the growth of H. pylori in a concentration dependent manner. The MIC and IC50 of volatile oils against H. pylori were 7.5 mg/mL and 2.181 mg/mL respectively. Fluorescence microscopy and crystal violet measurement indicated that volatile oils at sub-MIC concentration could reduce biofilm formation of H. pylori. In addition, volatile oils decreased the translocation of Cag A and reduced inflammatory cytokine IL-8 in GES-1 cells. Our results suggested that Atractylodes lancea volatile oils could be a potential compound of a novel class of H. pylori inhibitors with anti-H. pylori effects.
Collapse
Affiliation(s)
- Min Yu
- Department of Clinical Laboratory, The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China; Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaochun Wang
- Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Ling
- Department of Clinical Laboratory, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Hua Wang
- Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ping Zhang
- Department of Clinical Laboratory, The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Shihe Shao
- Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
36
|
Alarcón-Millán J, Martínez-Carrillo DN, Peralta-Zaragoza O, Fernández-Tilapa G. Regulation of GKN1 expression in gastric carcinogenesis: A problem to resolve (Review). Int J Oncol 2019; 55:555-569. [PMID: 31322194 DOI: 10.3892/ijo.2019.4843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/04/2019] [Indexed: 11/05/2022] Open
Abstract
Gastrokine 1 (GKN1) is a protein expressed on the surface mucosa cells of the gastric antrum and fundus, which contributes to maintaining gastric homeostasis, inhibits inflammation and is a tumor suppressor. The expression of GKN1 decreases in mucosa that are either inflamed or infected by Helicobacter pylori, and is absent in gastric cancer. The measurement of circulating GKN1 concentration, the protein itself, or the mRNA in gastric tissue may be of use for the early diagnosis of cancer. The mechanisms that modulate the deregulation or silencing of GKN1 expression have not been completely described. The modification of histones, methylation of the GKN1 promoter, or proteasomal degradation of the protein have been detected in some patients; however, these mechanisms do not completely explain the absence of GKN1 or the reduction in GKN1 levels. Only NKX6.3 transcription factor has been shown to be a positive modulator of GKN1 transcription, although others also have an affinity with sequences in the promoter of this gene. While microRNAs (miRNAs) are able to directly or indirectly regulate the expression of genes at the post‑transcriptional level, the involvement of miRNAs in the regulation of GKN1 has not been reported. The present review analyzes the information reported on the determination of GKN1 expression and the regulation of its expression at the transcriptional, post‑transcriptional and post‑translational levels; it proposes an integrated model that incorporates the regulation of GKN1 expression via transcription factors and miRNAs in H. pylori infection.
Collapse
Affiliation(s)
- Judit Alarcón-Millán
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Dinorah Nashely Martínez-Carrillo
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, México
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| |
Collapse
|
37
|
Ou Y, Ren H, Zhao R, Song L, Liu Z, Xu W, Liu Y, Wang S. Helicobacter pylori CagA promotes the malignant transformation of gastric mucosal epithelial cells through the dysregulation of the miR-155/KLF4 signaling pathway. Mol Carcinog 2019; 58:1427-1437. [PMID: 31162747 DOI: 10.1002/mc.23025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022]
Abstract
The Helicobacter pylori (H. pylori) cytotoxin-associated gene A (CagA) and Krüppel-like transcription factor (KLF4) were both closely associated with the development and progression of gastric cancer (GC). However, the nature of the interactions between CagA and KLF4 in GC development has not been elucidated. Therefore, we focused on the CagA-mediated promotion of the malignant transformation of gastric epithelial cells. Herein, we first examined the expression of KLF4 in both human cancer and paracarcinoma tissues with or without H. pylori infection and found that KLF4 expression was significantly decreased in H. pylori-positive GC cells compared with the H. pylori-negative GC cells. Further functional studies revealed that the increased expression of CagA could suppress KLF4 expression and promote the malignant transformation of normal epithelial cells. Subsequently, we found that CagA could upregulate miR-155 and further restrict the expression of downstream KLF4. More importantly, the overexpression of miR-155 in GES-1 promoted epithelial-mesenchymal transition and eventually facilitated tumor growth in vivo. Overall, the identification of the CagA/miR-155/KLF4 signaling pathway provided a new insight into the development and treatment of GC.
Collapse
Affiliation(s)
- Yang Ou
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Haifeng Ren
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Rongrong Zhao
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Le Song
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Zhengxia Liu
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Wenting Xu
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Yakun Liu
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Siying Wang
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
38
|
Zou D, Xu L, Li H, Ma Y, Gong Y, Guo T, Jing Z, Xu X, Zhang Y. Role of abnormal microRNA expression in Helicobacter pylori associated gastric cancer. Crit Rev Microbiol 2019; 45:239-251. [PMID: 30776938 DOI: 10.1080/1040841x.2019.1575793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have shown that Helicobacter pylori (HP) infection is a risk factor for gastric cancer (GC). HP infection may induce the release of pro-inflammatory mediators, and abnormally increase the level of reactive oxygen species (ROS), nitric oxide (NO), and cytokines in mucosal epithelial cells of the stomach. However, the specific mechanism underlying the pathogenesis of HP-associated GC is still poorly understood. Recent studies have revealed that abnormal microRNA expression may affect the proliferation, differentiation, and apoptosis of mucosal epithelial cells of the stomach to further influence GC occurrence, development, and metastasis. Herein, we summarize the role of abnormal microRNAs in the regulation of HP-associated GC progression. Abnormal microRNA expression in HP-positive GC may be a biomarker for GC diagnosis, occurrence, and development as well as its targeted treatment and prognosis.
Collapse
Affiliation(s)
- Dan Zou
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| | - Ling Xu
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Heming Li
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,c Department of Oncology , Affiliated Zhongshan Hospital of Dalian University , Dalian , China
| | - Yanju Ma
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,d Department of Medical Oncology , Cancer Hospital of China Medical University , Shenyang , China
| | - Yuehua Gong
- e Department of Tumor Etiology and Screening Department of Cancer Institute and General Surgery, First Hospital of China Medical University , Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department , Shenyang , China
| | - Tianshu Guo
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Zhitao Jing
- f Department of Neurosurgery , First Hospital of China Medical University , Shenyang , China
| | - Xiuying Xu
- g Department of Gastroenterology , First Hospital of China Medical University , Shenyang , China
| | - Ye Zhang
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
39
|
Muhammad JS, Eladl MA, Khoder G. Helicobacter pylori-induced DNA Methylation as an Epigenetic Modulator of Gastric Cancer: Recent Outcomes and Future Direction. Pathogens 2019; 8:23. [PMID: 30781778 PMCID: PMC6471032 DOI: 10.3390/pathogens8010023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is ranked fifth in cancer list and has the third highest mortality rate. Helicobacter pylori is a class I carcinogen and a predominant etiological factor of gastric cancer. H. pylori infection may induce carcinogenesis via epigenetic alterations in the promoter region of various genes. H. pylori is known to induce hypermethylation-silencing of several tumor suppressor genes in H. pylori-infected cancerous and H. pylori-infected non-cancerous gastric mucosae. This article presents a review of the published literature mainly from the last year 15 years. The topic focuses on H. pylori-induced DNA methylation linked to gastric cancer development. The authors have used MeSH terms "Helicobacter pylori" with "epigenetic," "DNA methylation," in combination with "gastric inflammation", gastritis" and "gastric cancer" to search SCOPUS, PubMed, Ovid, and Web of Science databases. The success of epigenetic drugs such as de-methylating agents in the treatment of certain cancers has led towards new prospects that similar approaches could also be applied against gastric cancer. However, it is very important to understand the role of all the genes that have already been linked to H. pylori-induced DNA methylation in order to in order to evaluate the potential benefits of epigenetic drugs.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE.
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE.
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE.
| |
Collapse
|
40
|
Li T, Shao W, Li S, Ma L, Zheng L, Shang W, Jia X, Sun P, Liang X, Jia J. H. pylori infection induced BMAL1 expression and rhythm disorder aggravate gastric inflammation. EBioMedicine 2019; 39:301-314. [PMID: 30502053 PMCID: PMC6354571 DOI: 10.1016/j.ebiom.2018.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Rhythm abnormalities are crucial for diverse diseases. However, their role in disease progression induced by Helicobacter pylori (H. pylori) remains elusive. METHODS H. pylori infection was used in in vivo and in vitro experiments to examine its effect on rhythmic genes. The GEO database was used to screen H. pylori affecting rhythm genes, and the effect of rhythm genes on inflammatory factors. Chromatin immunoprecipitation and dual luciferase assays were used to further find out the regulation between molecules. Animal models were used to confirm the relationship between rhythm genes and H. pylori-induced inflammation. FINDINGS BMAL1 disorders aggravate inflammation induced by H. pylori. Specifically, H. pylori induce BMAL1 expression in vitro and in vivo through transcriptional activation of LIN28A, breaking the circadian rhythm. Mechanistically, LIN28A binds to the promoter region of BMAL1 and directly activates its transcription under H. pylori infection. BMAL1 in turn functions as a transcription factor and enhances the expression of proinflammatory cytokine TNF-α, thereby promoting inflammation. Of note, BMAL1 dysfunction in the rhythm disorder animal model aggravates inflammatory response induced by H. pylori infection in vivo. INTERPRETATION These findings in this study imply the pathogenic relationship between BMAL1 and H. pylori. BMAL1 may serve as a potential diagnostic marker and therapeutic target for the early diagnosis and treatment of diseases related to H. pylori infection. FUND: National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Wei Shao
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Shuyan Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Lin Ma
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Lixin Zheng
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Wenjing Shang
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaxia Jia
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Pengpeng Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiuming Liang
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Cancer Research Laboratory, Shandong University, Karolinska Institutet collaborative Laboratory, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China.
| | - Jihui Jia
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Cancer Research Laboratory, Shandong University, Karolinska Institutet collaborative Laboratory, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
41
|
Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267-302. [PMID: 31123893 DOI: 10.1007/978-3-030-15138-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1β and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1β plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1β production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.
Collapse
|
42
|
Fattahi S, Kosari‐Monfared M, Ghadami E, Golpour M, Khodadadi P, Ghasemiyan M, Akhavan‐Niaki H. Infection‐associated epigenetic alterations in gastric cancer: New insight in cancer therapy. J Cell Physiol 2018; 233:9261-9270. [DOI: 10.1002/jcp.27030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Gastric cancer risk is higher for malignancies motivated by bacterial and viral infections. Epigenetic abnormalities including DNA methylation, histone modifications, and noncoding RNAs are important regulatory key players in gastric cancer development in infected patients. Epigenetic memory restoration is an extremely interesting phenomenon which should be considered in therapeutic approaches. In vitro and in vivo antiviral treatments in combination with epigenetic therapeutic strategies along with standard chemotherapy revealed promising outcomes in gastric cancer prevention and treatment. This review summarizes our current understanding of the gastric cancer infections and epigenetic alterations caused by these agents. We focus on studies highlighting recent advances in epigenetic restoration by target specific drugs and present also a comprehensive overview of effective antiviral drug treatments against gastric cancer.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
- North Research Center, Pasteur Institute Amol Iran
| | | | - Elham Ghadami
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| | - Monireh Golpour
- Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science Sari Iran
| | - Parastoo Khodadadi
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| | - Mohammad Ghasemiyan
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| | - Haleh Akhavan‐Niaki
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| |
Collapse
|
43
|
Aguilar C, Mano M, Eulalio A. MicroRNAs at the Host-Bacteria Interface: Host Defense or Bacterial Offense. Trends Microbiol 2018; 27:206-218. [PMID: 30477908 DOI: 10.1016/j.tim.2018.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
MicroRNAs are a class of small noncoding RNAs that act as major post-transcriptional regulators of gene expression. They are currently recognized for their important role in the intricate interaction between host and bacterial pathogens, either as part of the host immune response to neutralize infection, or as a molecular strategy employed by bacteria to hijack host pathways for their own benefit. Here, we summarize recent advances on the function of miRNAs during infection of mammalian hosts by bacterial pathogens, highlighting key cellular pathways. In addition, we discuss emerging themes in this field, including the participation of miRNAs in host-microbiota crosstalk and cell-to-cell communication.
Collapse
Affiliation(s)
- Carmen Aguilar
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany; RNA & Infection Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
44
|
Nagai K, Hayashi Y, Honma K, Sakatani A, Yoshii S, Fujinaga T, Maekawa A, Tsujii Y, Hiyama S, Shinzaki S, Watabe K, Iijima H, Tsujii M, Mizushima T, Morii E, Takehara T. Adenoma of colorectal laterally spreading tumor nongranular type with biological phenotypic features similar to cancer. J Gastroenterol Hepatol 2018; 33:1853-1863. [PMID: 29767452 DOI: 10.1111/jgh.14284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/03/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Colorectal laterally spreading tumors (LSTs) are morphologically subdivided into granular (LST-G) and nongranular (LST-NG) categories. We aimed to elucidate the differences in oncogenic characteristics between the two types. METHODS Laterally spreading tumors resected by endoscopic submucosal dissection and surgery from March 2009 to May 2017 were examined for p53 positivity, Ki-67 labeling index (LI), microvessel density, degree of fibrosis, intensities of inducible nitric oxide synthase (iNOS) and nitrotyrosine (NT), and expression of acid mucins. We compared these factors between adenomas, noninvasive cancers, and invasive cancers, both LST-G and LST-NG. RESULTS Ninety-three LST-G (53 adenomas [LST-GA] and 40 cancers [LST-GC]) and 55 LST-NG (24 adenomas [LST-NGA] and 31 cancers [LST-NGC]) were evaluated. Although p53 positivity was lower in LST-GA than in LST-NGA (P < 0.001), there was no difference between LST-GC and LST-NGC. Ki-67 LI was higher in LST-NGA than in LST-GA (P < 0.001) and higher in LST-NGC than in LST-GC of noninvasive cancers (P < 0.001). Microvessel density and degree of fibrosis were higher in LST-NGA than in LST-GA (P < 0.001), and intensities of iNOS and NT were also higher in LST-NGA than in LST-GA (P < 0.001). Expression of acid mucins was lower in LST-NGA than in LST-GA (P < 0.001). Although there were significant differences in p53 positivity, Ki-67 LI, microvessel density, degree of fibrosis, intensities of iNOS and NT, and expression of acid mucins between LST-GA and LST-NGA, these factors were only slightly different between LST-GC and LST-NGC of invasive cancers. CONCLUSIONS Unlike LST-GA, LST-NGA possessed phenotypic features similar to cancer.
Collapse
Affiliation(s)
- Kengo Nagai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichiro Honma
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiko Sakatani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shunsuke Yoshii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuji Fujinaga
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akira Maekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Hiyama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Watabe
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiko Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
45
|
Pang Y, Liu J, Li X, Xiao G, Wang H, Yang G, Li Y, Tang SC, Qin S, Du N, Zhang H, Liu D, Sun X, Ren H. MYC and DNMT3A-mediated DNA methylation represses microRNA-200b in triple negative breast cancer. J Cell Mol Med 2018; 22:6262-6274. [PMID: 30324719 PMCID: PMC6237581 DOI: 10.1111/jcmm.13916] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/09/2018] [Accepted: 08/26/2018] [Indexed: 12/16/2022] Open
Abstract
Triple‐negative breast cancer (TNBC) is the most aggressive breast cancer subtype with a poor prognosis. The microRNA‐200 (miR‐200) family has been associated with breast cancer metastasis. However, the epigenetic mechanisms underlying miR‐200b repression in TNBC are not fully elucidated. In this study, we found that MYC proto‐oncogene, bHLH transcription factor (MYC) and DNA methyltransferase 3A (DNMT3A) were highly expressed in TNBC tissues compared with other breast cancer subtypes, while miR‐200b expression was inhibited significantly. We demonstrated that MYC physically interacted with DNMT3A in MDA‐MB‐231 cells. Furthermore, we demonstrated that MYC recruited DNMT3A to the miR‐200b promoter, resulting in proximal CpG island hypermethylation and subsequent miR‐200b repression. MiR‐200b directly inhibited DNMT3A expression and formed a feedback loop in TNBC cells. MiR‐200b overexpression synergistically repressed target genes including zinc‐finger E‐box‐binding homeobox factor 1, Sex determining region Y‐box 2 (SOX2), and CD133, and inhibited the migration, invasion and mammosphere formation of TNBC cells. Our findings reveal that MYC can collaborate with DNMT3A on inducing promoter methylation and miR‐200b silencing, and thereby promotes the epithelial to mesenchymal transition and mammosphere formation of TNBC cells.
Collapse
Affiliation(s)
- Yamei Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jian Liu
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiang Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Guodong Xiao
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Huangzhen Wang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Department of Surgical Oncology, Baoji Central Hospital, Baoji, Shaanxi Province, China
| | - Ganghua Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yanbo Li
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shou-Ching Tang
- Breast Cancer Program and Interdisciplinary Translational Research Team, Georgia Regents University Cancer Center, Augusta, Georgia.,Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Sida Qin
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Henggang Zhang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Department of Thoracic Surgery and Oncology, People's Hospital of Hanzhong City, Hanzhong, Shaanxi Province, China
| | - Dapeng Liu
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
46
|
Lim JH, Kim SG, Choi JM, Yang HJ, Kim JS, Jung HC. Helicobacter pylori Is Associated with miR-133a Expression through Promoter Methylation in Gastric Carcinogenesis. Gut Liver 2018; 12:58-66. [PMID: 28950691 PMCID: PMC5753685 DOI: 10.5009/gnl17263] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/04/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022] Open
Abstract
Background/Aims To investigate whether Helicobacter pylori eradication can reverse epigenetic silencing of microRNAs (miRNAs) which are associated with H. pylori-induced gastric carcinogenesis. Methods We examined expression and promoter methylation of miR-34b/c, miR-133a, let-7a, and let-7i in gastric cancer cell line, before/after demethylation. Among them, epigenetically controlled miRNAs were identified. Their expression and promoter methylation was examined in human tissues of H. pylori-positive gastric cancer (T), H. pylori-positive gastritis (H), and H. pylori-negative controls (C). We also compared changes of miRNA expression and promoter methylation in H. pylori-positive patients who were endoscopically treated for early gastric cancer, between baseline and 1 year later according to eradication status. Results In gastric cancer cell line, miR-34b/c and miR-133a showed epigenetic silencing. In human tissues, miR-34b/c and miR-133a showed serial increase of promoter methylation in order of C, H, and T (all, p<0.01), and the miR-133a expression showed serial decrease (C vs H, p=0.02; H vs T, p=0.01; C vs T, p<0.01) while miR-34b and miR-34c expressions did not. H. pylori eradication induced decrease of methylation (p<0.01) and increase of miR-133a expression (p=0.03), compared with noneradication group. Conclusions This result suggests H. pylori eradication could reverse methylation-silencing of miR-133a which is involved in H. pylori-induced gastric carcinogenesis.
Collapse
Affiliation(s)
- Joo Hyun Lim
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Gyun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Min Choi
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Hyo-Joon Yang
- Division of Gastroenterology, Department of Internal Medicine and Gastrointestinal Cancer Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Chae Jung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Chang WL, Yeh YC, Sheu BS. The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J Biomed Sci 2018; 25:68. [PMID: 30205817 PMCID: PMC6131906 DOI: 10.1186/s12929-018-0466-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
Although most H. pylori infectors are asymptomatic, some may develop serious disease, such as gastric adenocarcinoma, gastric high-grade B cell lymphoma and peptic ulcer disease. Epidemiological and basic studies have provided evidence that infection with H. pylori carrying specific virulence factors can lead to more severe outcome. The virulence factors that are associated with gastric adenocarcinoma development include the presence, expression intensity and types of cytotoxin-associated gene A (CagA, especially EPIYA-D type and multiple copies of EPIYA-C) and type IV secretion system (CagL polymorphism) responsible for its translocation into the host cells, the genotypes of vacuolating cytotoxin A (vacA, s1/i1/m1 type), and expression intensity of blood group antigen binding adhesin (BabA, low-producer or chimeric with BabB). The presence of CagA is also related to gastric high-grade B cell lymphoma occurrence. Peptic ulcer disease is closely associated with cagA-genopositive, vacA s1/m1 genotype, babA2-genopositive (encodes BabA protein), presence of duodenal ulcer promoting gene cluster (dupA cluster) and induced by contact with epithelium gene A1 (iceA1), and expression status of outer inflammatory protein (OipA). The prevalence of these virulence factors is diverse among H. pylori isolated from different geographic areas and ethnic groups, which may explain the differences in disease incidences. For example, in East Asia where gastric cancer incidence is highest worldwide, almost all H. pylori isolates were cagA genopositive, vacA s1/i1/m1 and BabA-expressing. Therefore, selection of appropriate virulence markers and testing methods are important when using them to determine risk of diseases. This review summarizes the evidences of H. pylori virulence factors in relation with gastroduodenal diseases and discusses the geographic differences and appropriate methods of analyzing these virulence markers.
Collapse
Affiliation(s)
- Wei-Lun Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan, Taiwan
| | - Yi-Chun Yeh
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan, Taiwan. .,Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.
| |
Collapse
|
48
|
Adamopoulos PG, Tsiakanikas P, Scorilas A. Kallikrein-related peptidases and associated microRNAs as promising prognostic biomarkers in gastrointestinal malignancies. Biol Chem 2018; 399:821-836. [DOI: 10.1515/hsz-2017-0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Gastrointestinal (GI) malignancies represent a wide spectrum of diseases of the GI tract and its accessory digestive organs, including esophageal (EC), gastric (GC), hepatocellular, pancreatic (PC) and colorectal cancers (CRC). Malignancies of the GI system are responsible for nearly 30% of cancer-related morbidity and approximately 40% of cancer-related mortality, worldwide. For this reason, the discovery of novel prognostic biomarkers that can efficiently provide a better prognosis, risk assessment and prediction of treatment response is an imperative need. Human kallikrein-related peptidases (KLKs) are a subgroup of trypsin and chymotrypsin-like serine peptidases that have emerged as promising prognosticators for many human types of cancer, being aberrantly expressed in cancerous tissues. The aberrant expression of KLKs in human malignancies is often regulated by KLK/microRNAs (miRNAs) interactions, as many miRNAs have been found to target KLKs and therefore alter their expression levels. The biomarker utility of KLKs has been elucidated not only in endocrine-related human malignancies, including those of the prostate and breast, but also in GI malignancies. The main purpose of this review is to summarize the existing information regarding the prognostic significance of KLKs in major types of GI malignancies and highlight the regulatory role of miRNAs on the expression levels of KLKs in these types of cancer.
Collapse
Affiliation(s)
- Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| |
Collapse
|
49
|
miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther 2018; 3:14. [PMID: 29844933 PMCID: PMC5968033 DOI: 10.1038/s41392-018-0006-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022] Open
Abstract
Pathogenic bacteria cause various infections worldwide, especially in immunocompromised and other susceptible individuals, and are also associated with high infant mortality rates in developing countries. MicroRNAs (miRNAs), small non-coding RNAs with evolutionarily conserved sequences, are expressed in various tissues and cells that play key part in various physiological and pathologic processes. Increasing evidence implies roles for miRNAs in bacterial infectious diseases by modulating inflammatory responses, cell penetration, tissue remodeling, and innate and adaptive immunity. This review highlights some recent intriguing findings, ranging from the correlation between aberrant expression of miRNAs with bacterial infection progression to their profound impact on host immune responses. Harnessing of dysregulated miRNAs in bacterial infection may be an approach to improving the diagnosis, prevention and therapy of infectious diseases. Changes in production of tiny cellular RNAs in response to bacterial infection could guide the development of better diagnostics and therapies. MicroRNAs regulate other genes by binding to messenger RNA strands and controlling their translation into proteins. Xikun Zhou, Min Wu and colleagues of the University of North Dakota have now reviewed current knowledge about how microRNA levels shift during infection with various bacterial pathogens. These microRNAs can modulate the immune response as well as pathways that influence metabolic activity and cell survival. Increasing studies have indicated that shifts in microRNA levels in response to different infections could provide a potential bacterial ‘fingerprint’ for achieving accurate diagnosis. With deeper insight into how different microRNAs influence infection, it might one day day become possible to target these molecules with ‘antisense’ or ‘agonist’ drugs that modulate their activity.
Collapse
|
50
|
Takahashi Y, Uno K, Iijima K, Abe Y, Koike T, Asano N, Asanuma K, Shimosegawa T. Acidic bile salts induces mucosal barrier dysfunction through let-7a reduction during gastric carcinogenesis after Helicobacter pylori eradication. Oncotarget 2018; 9:18069-18083. [PMID: 29719591 PMCID: PMC5915058 DOI: 10.18632/oncotarget.24725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/24/2018] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) after eradication for Helicobacter pylori (H.pylori) increases, but its carcinogenesis is not elucidated. It is mainly found in acid non-secretion areas (ANA), as mucosal regeneration in acid secretory areas (AA) after eradication changes the acidity and bile toxicity of gastric juice. We aimed to clarify the role of barrier dysfunction of ANA by the stimulation of pH3 bile acid cocktail (ABC) during carcinogenesis. We collected 18 patients after curative endoscopic resection for GC, identified later than 24 months after eradication, and took biopsies by Congo-red chromoendoscopy to distinguish AA and ANA (UMIN00018967). The mucosal barrier function was investigated using a mini-Ussing chamber system and molecular biological methods. The reduction in mucosal impedance in ANA after stimulation was significantly larger than that in AA, 79.6% vs. 87.9%, respectively. The decrease of zonula occludens-1 (ZO-1) and let-7a and the increase of snail in ANA were significant compared to those in AA. In an in vitro study, the restoration of ZO-1 and let-7a as well as the induction of snail were observed after stimulation. High mobility group A2 (HMGA2)-snail activation, MTT proliferation, and cellular infiltration capacity were significantly increased in AGS transfected with let-7a inhibitor, and vice versa. Accordingly, using a mini-Ussing chamber system for human biopsy specimens followed by an in vitro study, we demonstrated for the first time that the exposure of acidic bile salts to ANA might cause serious barrier dysfunction through the let-7a reduction, promoting epithelial-mesenchymal transition during inflammation-associated carcinogenesis even after eradication.
Collapse
Affiliation(s)
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | | | - Yasuhiko Abe
- Department of The Second Internal Medicine, Yamagata University, Miyagi, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | | | | |
Collapse
|