1
|
Wang Q, Wei J, He J, Ming S, Li X, Huang X, Hong Z, Wu Y. HSP70 contributes to pathogenesis of fulminant hepatitis induced by coronavirus. Int Immunopharmacol 2024; 141:112963. [PMID: 39159560 DOI: 10.1016/j.intimp.2024.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Fulminant viral hepatitis (FH) represents a significant clinical challenge, with its pathogenesis not yet fully elucidated. Heat shock protein (HSP)70, a molecular chaperone protein with a broad range of cytoprotective functions, is upregulated in response to stress. However, the role of HSP70 in FH remains to be investigated. Notably, HSP70 expression is upregulated in the livers of coronavirus-infected mice and patients. Therefore, we investigated the mechanistic role of HSP70 in coronavirus-associated FH pathogenesis. FH was induced in HSP70-deficient (HSP70 KO) mice or in WT mice treated with the HSP70 inhibitor VER155008 when infected with the mouse hepatitis virus strain A59 (MHV-A59). MHV-A59-infected HSP70 KO mice exhibited significantly reduced liver damage and mortality. This effect was attributed to decreased infiltration of monocyte-macrophages and neutrophils in the liver of HSP70 KO mice, resulting in lower levels of inflammatory cytokines such as IL-1β, TNFα, and IL-6, and a reduced viral load. Moreover, treatment with the HSP70 inhibitor VER155008 protected mice from MHV-A59-induced liver damage and FH mortality. In summary, HSP70 promotes coronavirus-induced FH pathogenesis by enhancing the infiltration of monocyte-macrophages and neutrophils and promoting the secretion of inflammatory cytokines. Therefore, HSP70 is a potential therapeutic target in viral FH intervention.
Collapse
Affiliation(s)
- Qiaohua Wang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jiayou Wei
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Siqi Ming
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, Guangdong Province 519015, China
| | - Xingyu Li
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhongsi Hong
- Center of Infectious Disease, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Yongjian Wu
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
2
|
Sæterstad S, Østvik AE, Hansen MD, Bruland T, van Beelen Granlund A. The effect of rs2910686 on ERAP2 expression in IBD and epithelial inflammatory response. J Transl Med 2024; 22:750. [PMID: 39123229 PMCID: PMC11316291 DOI: 10.1186/s12967-024-05532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND ERAP2 is an aminopeptidase involved in antigen processing and presentation, and harbor genetic variants linked to several inflammatory diseases such as Inflammatory Bowel Disease (IBD). The lack of an ERAP2 gene homologue in mice has hampered functional studies, and most human studies have focused on cells of hematopoietic origin. Using an IBD biobank as vantage point, this study explores how genetic variation in ERAP2 affects gene expression in human-derived epithelial organoids upon proinflammatory stimulation. METHODS An IBD patient cohort was genotyped with regards to two single nucleotide polymorphisms (SNP) (rs2910686/rs2248374) associated with ERAP2 expression levels, and we examined the correlation between colon gene expression and genotype, specifically aiming to establish a relationship with ERAP2 expression proficiency. Human-derived colon organoids (colonoids) with known ERAP2 genotype were established and used to explore differences in whole genome gene expression between ERAP2-deficient (n = 4) and -proficient (n = 4) donors upon pro-inflammatory encounter. RESULTS When taking rs2910686 genotype into account, ERAP2 gene expression is upregulated in the inflamed colon of IBD patients. Colonoids upregulate ERAP2 upon IFNɣ stimulation, and ERAP2 expression proficiency is dependent on rs2910686 genotype. Colonoid genotyping confirms that mechanisms independent of the frequently studied SNP rs2248374 can cause ERAP2-deficiency. A total of 586 genes involved in various molecular mechanisms are differentially expressed between ERAP2 proficient- and deficient colonoids upon proinflammatory stimulation, including genes encoding proteins with the following molecular function: catalytic activity (AOC1, CPE, ANPEP and MEP1A), regulator activity (TNFSF9, MDK, GDF15, ILR6A, LGALS3 and FLNA), transmembrane transporter activity (SLC40A1 and SLC5A1), and extracellular matrix structural constituents (FGL2, HMCN2, and MUC17). CONCLUSIONS ERAP2 is upregulated in the inflamed IBD colon mucosa, and expression proficiency is highly correlated with genotype of rs2910686. While the SNP rs2248374 is commonly used to determine ERAP2 expressional proficiency, our data confirms that mechanisms independent of this SNP can lead to ERAP2 deficiency. Our data demonstrates that epithelial ERAP2 presence affects the inflammatory response in colonoids, suggesting a pleiotropic role of ERAP2 beyond MHC class I antigen processing.
Collapse
Affiliation(s)
- Siri Sæterstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ann Elisabeth Østvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway.
- Department of Pathology, St. Olav's University Hospital, Trondheim, Norway.
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
3
|
Zhao Y, Xiang Z, Pan H, Huang X, Chen W, Huang Z. FGL2 improves experimental colitis related to gut microbiota structure and bile acid metabolism by regulating macrophage autophagy and apoptosis. Heliyon 2024; 10:e34349. [PMID: 39104498 PMCID: PMC11298944 DOI: 10.1016/j.heliyon.2024.e34349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a refractory disease with immune abnormalities and pathological changes. Intestinal macrophages are considered to be the main factor in establishing and maintaining intestinal homeostasis. The immunoregulatory and anti-inflammatory activity of fibrinogen-like protein 2 (FGL2) can regulate macrophage polarization. However, its function in IBD is unclear. In this study, we explored the effect of FGL2 on macrophage polarization, autophagy, and apoptosis in bone marrow-derived macrophages (BMDMs) treated with lipopolysaccharide (LPS) and further investigated changes in the intestinal barrier, flora, and bile acid in dextran sodium sulfate (DSS)-treated mice. Our results demonstrated that FGL2-/- weakened ERK signaling to promote M1 polarization and upregulate inflammation, autophagy, and apoptosis in LPS-stimulated BMDMs. rFGL2 treatment reversed these effects. FGL2-/- mice exhibited higher sensitivity to DSS exposure, with faster body weight loss, shorter colon lengths, and higher disease activity index (DAI) values. rFGL2 treatment protected against experimental ulcerative colitis (UC), restrained excessive autophagy, apoptosis, and improved gut barrier impairment. Gut microbiota structure and bile acid homeostasis were more unbalanced in FGL2-/- DSS mice than in wild-type (WT) DSS mice. rFGL2 treatment improved gut microbiota structure and bile acid homeostasis. Altogether, our results established that FGL2 is a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zheng Xiang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Haoran Pan
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xielin Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weizhen Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhiming Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
4
|
Chen J, Wu L, Li Y. FGL1 and FGL2: emerging regulators of liver health and disease. Biomark Res 2024; 12:53. [PMID: 38816776 PMCID: PMC11141035 DOI: 10.1186/s40364-024-00601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Liver disease is a complex group of diseases with high morbidity and mortality rates, emerging as a major global health concern. Recent studies have highlighted the involvement of fibrinogen-like proteins, specifically fibrinogen-like protein 1 (FGL1) and fibrinogen-like protein 2 (FGL2), in the regulation of various liver diseases. FGL1 plays a crucial role in promoting hepatocyte growth, regulating lipid metabolism, and influencing the tumor microenvironment (TME), contributing significantly to liver repair, non-alcoholic fatty liver disease (NAFLD), and liver cancer. On the other hand, FGL2 is a multifunctional protein known for its role in modulating prothrombin activity and inducing immune tolerance, impacting viral hepatitis, liver fibrosis, hepatocellular carcinoma (HCC), and liver transplantation. Understanding the functions and mechanisms of fibrinogen-like proteins is essential for the development of effective therapeutic approaches for liver diseases. Additionally, FGL1 has demonstrated potential as a disease biomarker in radiation and drug-induced liver injury as well as HCC, while FGL2 shows promise as a biomarker in viral hepatitis and liver transplantation. The expression levels of these molecules offer exciting prospects for disease assessment. This review provides an overview of the structure and roles of FGL1 and FGL2 in different liver conditions, emphasizing the intricate molecular regulatory processes and advancements in targeted therapies. Furthermore, it explores the potential benefits and challenges of targeting FGL1 and FGL2 for liver disease treatment and the prospects of fibrinogen-like proteins as biomarkers for liver disease, offering insights for future research in this field.
Collapse
Affiliation(s)
- Jiongming Chen
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Lei Wu
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
5
|
Yu X, Yang F, Shen Z, Zhang Y, Sun J, Qiu C, Zheng Y, Zhao W, Yuan S, Zeng D, Zhang S, Long J, Zhu M, Zhang X, Wu J, Ma Z, Zhu H, Su M, Xu J, Li B, Mao R, Su Z, Zhang J. BTLA contributes to acute-on-chronic liver failure infection and mortality through CD4 + T-cell exhaustion. Nat Commun 2024; 15:1835. [PMID: 38418488 PMCID: PMC10901893 DOI: 10.1038/s41467-024-46047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
B- and T-lymphocyte attenuator (BTLA) levels are increased in patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). This condition is characterized by susceptibility to infection and T-cell immune exhaustion. However, whether BTLA can induce T-cell immune exhaustion and increase the risk of infection remains unclear. Here, we report that BTLA levels are significantly increased in the circulating and intrahepatic CD4+ T cells from patients with HBV-ACLF, and are positively correlated with disease severity, prognosis, and infection complications. BTLA levels were upregulated by the IL-6 and TNF signaling pathways. Antibody crosslinking of BTLA activated the PI3K-Akt pathway to inhibit the activation, proliferation, and cytokine production of CD4+ T cells while promoting their apoptosis. In contrast, BTLA knockdown promoted their activation and proliferation. BTLA-/- ACLF mice exhibited increased cytokine secretion, and reduced mortality and bacterial burden. The administration of a neutralizing anti-BTLA antibody reduced Klebsiella pneumoniae load and mortality in mice with ACLF. These data may help elucidate HBV-ACLF pathogenesis and aid in identifying novel drug targets.
Collapse
Affiliation(s)
- Xueping Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China.
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, 362000, Quanzhou, China.
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Jian Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yijuan Zheng
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, 362000, Quanzhou, China
| | - Weidong Zhao
- Department of Laboratory Medicine, Clinical Medicine College, Dali University, 671000, Dali, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, 200040, Shanghai, China
| | - Dawu Zeng
- Department of Hepatology, the First Affiliated Hospital, Fujian Medical University, 350000, Fuzhou, China
| | - Shenyan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Jianfei Long
- Department of Pharmacy, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Zhenxuan Ma
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Milong Su
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, 362000, Quanzhou, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, 200040, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 200040, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Zhijun Su
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, 362000, Quanzhou, China.
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China.
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, 200040, Shanghai, China.
- Department of Infectious Diseases, Jing'An Branch of Huashan Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
6
|
Galpin KJC, Rodriguez GM, Maranda V, Cook DP, Macdonald E, Murshed H, Zhao S, McCloskey CW, Chruscinski A, Levy GA, Ardolino M, Vanderhyden BC. FGL2 promotes tumour growth and attenuates infiltration of activated immune cells in melanoma and ovarian cancer models. Sci Rep 2024; 14:787. [PMID: 38191799 PMCID: PMC10774293 DOI: 10.1038/s41598-024-51217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
The tumour microenvironment is infiltrated by immunosuppressive cells, such as regulatory T cells (Tregs), which contribute to tumour escape and impede immunotherapy outcomes. Soluble fibrinogen-like protein 2 (sFGL2), a Treg effector protein, inhibits immune cell populations, via receptors FcγRIIB and FcγRIII, leading to downregulation of CD86 in antigen presenting cells and limiting T cell activation. Increased FGL2 expression is associated with tumour progression and poor survival in several different cancers, such as glioblastoma multiforme, lung, renal, liver, colorectal, and prostate cancer. Querying scRNA-seq human cancer data shows FGL2 is produced by cells in the tumour microenvironment (TME), particularly monocytes and macrophages as well as T cells and dendritic cells (DCs), while cancer cells have minimal expression of FGL2. We studied the role of FGL2 exclusively produced by cells in the TME, by leveraging Fgl2 knockout mice. We tested two murine models of cancer in which the role of FGL2 has not been previously studied: epithelial ovarian cancer and melanoma. We show that absence of FGL2 leads to a more activated TME, including activated DCs (CD86+, CD40+) and T cells (CD25+, TIGIT+), as well as demonstrating for the first time that the absence of FGL2 leads to more activated natural killer cells (DNAM-1+, NKG2D+) in the TME. Furthermore, the absence of FGL2 leads to prolonged survival in the B16F10 melanoma model, while the absence of FGL2 synergizes with oncolytic virus to prolong survival in the ID8-p53-/-Brca2-/- ovarian cancer model. In conclusion, targeting FGL2 is a promising cancer treatment strategy alone and in combination immunotherapies.
Collapse
Affiliation(s)
- Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Vincent Maranda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Elizabeth Macdonald
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shan Zhao
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Andrzej Chruscinski
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gary A Levy
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
7
|
Cai A, Shen J, Yang X, Shao X, Gu L, Mou S, Che X. Dapagliflozin alleviates renal inflammation and protects against diabetic kidney diseases, both dependent and independent of blood glucose levels. Front Immunol 2023; 14:1205834. [PMID: 38022502 PMCID: PMC10665888 DOI: 10.3389/fimmu.2023.1205834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide. Therefore, efforts to understand DKD pathophysiology and prevent its development at the early phase are highly warranted. Methods Here, we analyzed kidneys from healthy mice, diabetic mice, and diabetic mice treated with the sodium-glucose cotransporter 2 inhibitor dapagliflozin using ATAC and RNA sequencing. The findings were verified at the protein levels and in cultured cells. Results Our combined method of ATAC and RNA sequencing revealed Csf2rb, Btla, and Isg15 as the key candidate genes associated with hyperglycemia, azotemia, and albuminuria. Their protein levels were altered together with multiple other inflammatory cytokines in the diabetic kidney, which was alleviated by dapagliflozin treatment. Cell culture of immortalized renal tubular cells and macrophages unraveled that dapagliflozin could directly effect on these cells in vitro as an anti-inflammatory agent independent of glucose concentrations. We further proved that dapagliflozin attenuated ischemia/reperfusion-induced chronic kidney injury and renal inflammation in mice. Discussion Overall, our data emphasize the importance of inflammatory factors to the pathogenesis of DKD, and provide valuable mechanistic insights into the renoprotective role of dapagliflozin.
Collapse
Affiliation(s)
| | | | | | | | - Leyi Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiajing Che
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Yu L, Sun M, Zhang Q, Zhou Q, Wang Y. Harnessing the immune system by targeting immune checkpoints: Providing new hope for Oncotherapy. Front Immunol 2022; 13:982026. [PMID: 36159789 PMCID: PMC9498063 DOI: 10.3389/fimmu.2022.982026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
With the goal of harnessing the host's immune system to provide long-lasting remission and cures for various cancers, the advent of immunotherapy revolutionized the cancer therapy field. Among the current immunotherapeutic strategies, immune checkpoint blockades have greatly improved the overall survival rates in certain patient populations. Of note, CTLA4 and PD-1/PD-L1 are two major non-redundant immune checkpoints implicated in promoting cancer immune evasion, and ultimately lead to relapse. Antibodies or inhibitors targeting these two c+heckpoints have achieved some encouraging clinical outcomes. Further, beyond the canonical immune checkpoints, more inhibitory checkpoints have been identified. Herein, we will summarize recent progress in immune checkpoint blockade therapies, with a specific focus on key pre-clinical and clinical results of new immune checkpoint therapies for cancer. Given the crucial roles of immune checkpoint blockade in oncotherapy, drugs targeting checkpoint molecules expressed by both cancer and immune cells are in clinical trials, which will be comprehensively summarized in this review. Taken together, investigating combinatorial therapies targeting immune checkpoints expressed by cancer cells and immune cells will greatly improve immunotherapies that enhance host elimination of tumors.
Collapse
Affiliation(s)
- Lu Yu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Li X, Gao Q, Wu W, Hai S, Hu J, You J, Huang D, Wang H, Wu D, Han M, Xi D, Yan W, Chen T, Luo X, Ning Q, Wang X. FGL2-MCOLN3-Autophagy Axis-Triggered Neutrophil Extracellular Traps Exacerbate Liver Injury in Fulminant Viral Hepatitis. Cell Mol Gastroenterol Hepatol 2022; 14:1077-1101. [PMID: 35926777 PMCID: PMC9490102 DOI: 10.1016/j.jcmgh.2022.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Fulminant viral hepatitis (FVH) is a life-threatening disease, but its pathogenesis is not fully understood. Neutrophil extracellular traps (NETs) were an unrecognized link between inflammation and coagulation, which are 2 main features of FVH. Here, we investigated the role and mechanism of NETs in the pathogenesis of FVH. METHODS A mouse model of FVH was established by murine hepatitis virus strain-3 infection. Liver leukocytes of infected or uninfected mice were used for single-cell RNA sequencing and whole-transcriptome sequencing. NETs depletion was achieved using DNase 1. Acetaminophen was used to establish a mouse model of non-virus-caused acute liver failure. Clinically, NETs-related markers in liver, plasma, and peripheral neutrophils were assessed in patients with hepatitis B virus (HBV)-related acute liver injury. RESULTS Increased hepatic NETs formation was observed in murine hepatitis virus strain-3-infected mice, but not in acetaminophen-treated mice. NETs depletion improved the liver damage and survival rate in FVH by inhibiting hepatic fibrin deposition and inflammation. An adoptive transfer experiment showed that neutrophil-specific fibrinogen-like protein 2 (FGL2) promoted NETs formation. FGL2 was found to directly interact with mucolipin 3, which regulated calcium influx and initiated autophagy, leading to NETs formation. Clinically, increased plasma NETs level was associated with coagulation dysfunction in patients with HBV acute liver injury. Colocalization of FGL2, NETs, and fibrin in liver was observed in these patients. CONCLUSIONS NETs aggravated liver injury in FVH by promoting fibrin deposition and inflammation. NETs formation was regulated by the FGL2-mucolipin 3-autophagy axis. Targeting NETs may provide a new strategy for the treatment of FVH.
Collapse
Affiliation(s)
- Xitang Li
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Gao
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhui Wu
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suping Hai
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junjian Hu
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie You
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Da Huang
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongwu Wang
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Di Wu
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meifang Han
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dong Xi
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiming Yan
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Chen
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoping Luo
- Department and Institute of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Ning
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaojing Wang
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; National Medical Center for Major Public Health Events, Wuhan, China; State Key Laboratory for Zoonotic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Wojciechowicz K, Spodzieja M, Lisowska KA, Wardowska A. The role of the BTLA-HVEM complex in the pathogenesis of autoimmune diseases. Cell Immunol 2022; 376:104532. [PMID: 35537322 DOI: 10.1016/j.cellimm.2022.104532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
|
11
|
Xiao F, Wang HW, Hu JJ, Tao R, Weng XX, Wang P, Wu D, Wang XJ, Yan WM, Xi D, Luo XP, Wan XY, Ning Q. Fibrinogen-like protein 2 deficiency inhibits virus-induced fulminant hepatitis through abrogating inflammatory macrophage activation. World J Gastroenterol 2022; 28:479-496. [PMID: 35125831 PMCID: PMC8790557 DOI: 10.3748/wjg.v28.i4.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Heterogeneous macrophages play an important role in multiple liver diseases, including viral fulminant hepatitis (VFH). Fibrinogen-like protein 2 (FGL2) is expressed on macrophages and regulates VFH pathogenesis; however, the underlying mechanism remains unclear. AIM To explore how FGL2 regulates macrophage function and subsequent liver injury during VFH. METHODS Murine hepatitis virus strain 3 (MHV-3) was used to induce VFH in FGL2-deficient (Fgl2-/-) and wild-type (WT) mice. The dynamic constitution of hepatic macrophages was examined. Adoptive transfer of Fgl2-/- or WT bone marrow-derived macrophages (BMDMs) into WT recipients with macrophages depleted prior to infection was carried out and the consequent degree of liver damage was compared. The signaling cascades that may be regulated by FGL2 were detected in macrophages. RESULTS Following MHV-3 infection, hepatic macrophages were largely replenished by proinflammatory monocyte-derived macrophages (MoMFs), which expressed high levels of FGL2. In Fgl2-/- mice, the number of infiltrating inflammatory MoMFs was reduced compared with that in WT mice after viral infection. Macrophage depletion ameliorated liver damage in WT mice and further alleviated liver damage in Fgl2-/- mice. Adoptive transfer of Fgl2-/- BMDMs into macrophage-removed recipients significantly reduced the degree of liver damage. Inhibition of monocyte infiltration also significantly ameliorated liver damage. Functionally, Fgl2 deletion impaired macrophage phagocytosis and the antigen presentation potential and attenuated the proinflammatory phenotype. At the molecular level, FGL2 deficiency impaired IRF3, IRF7, and p38 phosphorylation, along with NF-κB activation in BMDMs in response to viral infection. CONCLUSION Infiltrated MoMFs represent a major source of hepatic inflammation during VFH progression, and FGL2 expression on MoMFs maintains the proinflammatory phenotype via p38-dependent positive feedback, contributing to VFH pathogenesis.
Collapse
Affiliation(s)
- Fang Xiao
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Province, China
| | - Hong-Wu Wang
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jun-Jian Hu
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ran Tao
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xin-Xin Weng
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Peng Wang
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Di Wu
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Jing Wang
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wei-Ming Yan
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dong Xi
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Wuhan 430030, Hubei Province, China
| | - Xiao-Yang Wan
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
12
|
Ning Z, Liu K, Xiong H. Roles of BTLA in Immunity and Immune Disorders. Front Immunol 2021; 12:654960. [PMID: 33859648 PMCID: PMC8043046 DOI: 10.3389/fimmu.2021.654960] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
B and T lymphocyte attenuator (BTLA) is one of the most important cosignaling molecules. It belongs to the CD28 superfamily and is similar to programmed cell death-1 (PD-1) and cytotoxic T lymphocyte associated antigen-4 (CTLA-4) in terms of its structure and function. BTLA can be detected in most lymphocytes and induces immunosuppression by inhibiting B and T cell activation and proliferation. The BTLA ligand, herpesvirus entry mediator (HVEM), does not belong to the classic B7 family. Instead, it is a member of the tumor necrosis factor receptor (TNFR) superfamily. The association of BTLA with HVEM directly bridges the CD28 and TNFR families and mediates broad and powerful immune effects. Recently, a large number of studies have found that BTLA participates in numerous physiopathological processes, such as tumor, inflammatory diseases, autoimmune diseases, infectious diseases, and transplantation rejection. Therefore, the present work aimed to review the existing knowledge about BTLA in immunity and summarize the diverse functions of BTLA in various immune disorders.
Collapse
Affiliation(s)
- Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Keyan Liu
- Department of Public Health, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| |
Collapse
|
13
|
Gioti K, Kottaridi C, Voyiatzaki C, Chaniotis D, Rampias T, Beloukas A. Animal Coronaviruses Induced Apoptosis. Life (Basel) 2021; 11:185. [PMID: 33652685 PMCID: PMC7996831 DOI: 10.3390/life11030185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is a form of programmed death that has also been observed in cells infected by several viruses. It is considered one of the most critical innate immune mechanisms that limits pathogen proliferation and propagation before the initiation of the adaptive immune response. Recent studies investigating the cellular responses to SARS-CoV and SARS-CoV-2 infection have revealed that coronaviruses can alter cellular homeostasis and promote cell death, providing evidence that the modulation of apoptotic pathways is important for viral replication and propagation. Despite the genetic diversity among different coronavirus clades and the infection of different cell types and several hosts, research studies in animal coronaviruses indicate that apoptosis in host cells is induced by common molecular mechanisms and apoptotic pathways. We summarize and critically review current knowledge on the molecular aspects of cell-death regulation during animal coronaviruses infection and the viral-host interactions to this process. Future research is expected to lead to a better understanding of the regulation of cell death during coronavirus infection. Moreover, investigating the role of viral proteins in this process will help us to identify novel antiviral targets related to apoptotic signaling pathways.
Collapse
Affiliation(s)
- Katerina Gioti
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Christine Kottaridi
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysa Voyiatzaki
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, Basic Research Center, 11527 Athens, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
- Institute of Infection & Global Health, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
14
|
Abstract
In less than two decades, three deadly zoonotic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have emerged in humans, causing SARS, MERS, and coronavirus disease 2019 (COVID-19), respectively. The current COVID-19 pandemic poses an unprecedented crisis in health care and social and economic development. It reinforces the cruel fact that CoVs are constantly evolving, possessing the genetic malleability to become highly pathogenic in humans. In this review, we start with an overview of CoV diseases and the molecular virology of CoVs, focusing on similarities and differences between SARS-CoV-2 and its highly pathogenic as well as low-pathogenic counterparts. We then discuss mechanisms underlying pathogenesis and virus-host interactions of SARS-CoV-2 and other CoVs, emphasizing the host immune response. Finally, we summarize strategies adopted for the prevention and treatment of CoV diseases and discuss approaches to develop effective antivirals and vaccines. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China;
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
15
|
Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, Chen Y, Zhang Y. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther 2020; 5:128. [PMID: 32712629 PMCID: PMC7381863 DOI: 10.1038/s41392-020-00243-2] [Citation(s) in RCA: 463] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Abstract
The recent novel coronavirus disease (COVID-19) outbreak, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is seeing a rapid increase in infected patients worldwide. The host immune response to SARS-CoV-2 appears to play a critical role in disease pathogenesis and clinical manifestations. SARS-CoV-2 not only activates antiviral immune responses, but can also cause uncontrolled inflammatory responses characterized by marked pro-inflammatory cytokine release in patients with severe COVID-19, leading to lymphopenia, lymphocyte dysfunction, and granulocyte and monocyte abnormalities. These SARS-CoV-2-induced immune abnormalities may lead to infections by microorganisms, septic shock, and severe multiple organ dysfunction. Therefore, mechanisms underlying immune abnormalities in patients with COVID-19 must be elucidated to guide clinical management of the disease. Moreover, rational management of the immune responses to SARS-CoV-2, which includes enhancing anti-viral immunity while inhibiting systemic inflammation, may be key to successful treatment. In this review, we discuss the immunopathology of COVID-19, its potential mechanisms, and clinical implications to aid the development of new therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Jinyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Zhixin Zhang
- Institute of Health Management, Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Xiaochun Wan
- Shenzhen Laboratory of Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 100005, Beijing, China
| | - Youhai Chen
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
16
|
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, Yuan Z, Feng Z, Zhang Y, Wu Y, Chen Y. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol 2020; 11:827. [PMID: 32425950 PMCID: PMC7205903 DOI: 10.3389/fimmu.2020.00827] [Citation(s) in RCA: 1732] [Impact Index Per Article: 346.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background: The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed great threat to human health. T cells play a critical role in antiviral immunity but their numbers and functional state in COVID-19 patients remain largely unclear. Methods: We retrospectively reviewed the counts of T cells and serum cytokine concentration from data of 522 patients with laboratory-confirmed COVID-19 and 40 healthy controls. In addition, the expression of T cell exhaustion markers were measured in 14 COVID-19 cases. Results: The number of total T cells, CD4+ and CD8+ T cells were dramatically reduced in COVID-19 patients, especially in patients requiring Intensive Care Unit (ICU) care. Counts of total T cells, CD8+ T cells or CD4+ T cells lower than 800, 300, or 400/μL, respectively, were negatively correlated with patient survival. T cell numbers were negatively correlated to serum IL-6, IL-10, and TNF-α concentration, with patients in the disease resolution period showing reduced IL-6, IL-10, and TNF-α concentrations and restored T cell counts. T cells from COVID-19 patients had significantly higher levels of the exhausted marker PD-1. Increasing PD-1 and Tim-3 expression on T cells was seen as patients progressed from prodromal to overtly symptomatic stages. Conclusions: T cell counts are reduced significantly in COVID-19 patients, and the surviving T cells appear functionally exhausted. Non-ICU patients with total T cells counts lower than 800/μL may still require urgent intervention, even in the immediate absence of more severe symptoms due to a high risk for further deterioration in condition.
Collapse
Affiliation(s)
- Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Chenhui Wang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yingjun Tan
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Xiewan Chen
- Medical English Department, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Ying Liu
- Department of Medical Laboratory Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Lifen Ning
- Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Li Chen
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Min Li
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Yueping Liu
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Gang Wang
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Zilin Yuan
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
17
|
Jouanguy E. Human genetic basis of fulminant viral hepatitis. Hum Genet 2020; 139:877-884. [PMID: 32285199 PMCID: PMC7153696 DOI: 10.1007/s00439-020-02166-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022]
Abstract
In rare cases, hepatitis A virus (HAV) and hepatitis B virus (HBV) can cause fulminant viral hepatitis (FVH), characterized by massive hepatocyte necrosis and an inflammatory infiltrate. Other viral etiologies of FVH are rarer. FVH is life-threatening, but the patients are typically otherwise healthy, and normally resistant to other microbes. Only a small minority of infected individuals develop FVH, and this is the key issue to be addressed for this disease. In mice, mouse hepatitis virus 3 (MHV3) infection is the main model for dissecting FVH pathogenesis. Susceptibility to MHV3 differs between genetic backgrounds, with high and low mortality in C57BL6 and A/J mice, respectively. FVH pathogenesis in mice is related to uncontrolled inflammation and fibrinogen deposition. In humans, FVH is typically sporadic, but rare familial forms also exist, suggesting that there may be causal monogenic inborn errors. A recent study reported a single-gene inborn error of human immunity underlying FVH. A patient with autosomal recessive complete IL-18BP deficiency was shown to have FVH following HAV infection. The mechanism probably involves enhanced IL-18- and IFN-γ-dependent killing of hepatocytes by NK and CD8 T cytotoxic cells. Proof-of-principle that FVH can be genetic is important clinically, for the affected patients and their families, and immunologically, for the study of immunity to viruses in the liver. Moreover, the FVH-causing IL18BP genotype suggests that excessive IL-18 immunity may be a general mechanism underlying FVH, perhaps through the enhancement of IFN-γ immunity.
Collapse
Affiliation(s)
- Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France. .,Imagine Institute, Paris University, Paris, France. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
Dong MP, Enomoto M, Thuy LTT, Hai H, Hieu VN, Hoang DV, Iida-Ueno A, Odagiri N, Amano-Teranishi Y, Hagihara A, Fujii H, Uchida-Kobayashi S, Tamori A, Kawada N. Clinical significance of circulating soluble immune checkpoint proteins in sorafenib-treated patients with advanced hepatocellular carcinoma. Sci Rep 2020; 10:3392. [PMID: 32099055 PMCID: PMC7042216 DOI: 10.1038/s41598-020-60440-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
In hepatocellular carcinoma (HCC), the clinical significance of soluble immune checkpoint protein levels as predictors of patient outcomes or therapeutic responses has yet to be defined. This study profiled the baseline levels of sixteen soluble checkpoint proteins and their changes following sorafenib treatment for HCC. Plasma samples were obtained from 53 patients with advanced HCC at baseline, week 1, 2 and 4 of sorafenib treatment and tested the concentrations of 16 soluble checkpoint proteins using multiplexed fluorescent bead-based immunoassays. Multivariate analysis showed high sBTLA levels at baseline were an independent predictor of poor overall survival (p = 0.038). BTLA was highly expressed in T cells and macrophages in peritumoral areas. At week 2, sCD27 levels were decreased compared to baseline. By contrast, the concentrations of most inhibitory proteins, including sBTLA, sLAG-3, sCTLA-4, sPD-1, sCD80, sCD86 and sPD-L1, had significantly increased. The fold-changes of soluble checkpoint receptors and their ligands, including sCTLA-4 with sCD80/sCD86, sPD-1 with sPD-L1; and the fold-changes of sCTLA-4 with sBTLA or sPD-1 were positively correlated. sBTLA may be a good biomarker for predicting overall survival in HCC patients. Sorafenib treatment in patients with advanced HCC revealed dynamic changes of soluble checkpoint protein levels.
Collapse
Affiliation(s)
- Minh Phuong Dong
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hoang Hai
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Vu Ngoc Hieu
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Dinh Viet Hoang
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Ayako Iida-Ueno
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Naoshi Odagiri
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | - Atsushi Hagihara
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | - Akihiro Tamori
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| |
Collapse
|
19
|
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, Yuan Z, Feng Z, Zhang Y, Wu Y, Chen Y. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol 2020. [PMID: 32425950 DOI: 10.1101/2020.02.18.20024364] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Background: The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed great threat to human health. T cells play a critical role in antiviral immunity but their numbers and functional state in COVID-19 patients remain largely unclear. Methods: We retrospectively reviewed the counts of T cells and serum cytokine concentration from data of 522 patients with laboratory-confirmed COVID-19 and 40 healthy controls. In addition, the expression of T cell exhaustion markers were measured in 14 COVID-19 cases. Results: The number of total T cells, CD4+ and CD8+ T cells were dramatically reduced in COVID-19 patients, especially in patients requiring Intensive Care Unit (ICU) care. Counts of total T cells, CD8+ T cells or CD4+ T cells lower than 800, 300, or 400/μL, respectively, were negatively correlated with patient survival. T cell numbers were negatively correlated to serum IL-6, IL-10, and TNF-α concentration, with patients in the disease resolution period showing reduced IL-6, IL-10, and TNF-α concentrations and restored T cell counts. T cells from COVID-19 patients had significantly higher levels of the exhausted marker PD-1. Increasing PD-1 and Tim-3 expression on T cells was seen as patients progressed from prodromal to overtly symptomatic stages. Conclusions: T cell counts are reduced significantly in COVID-19 patients, and the surviving T cells appear functionally exhausted. Non-ICU patients with total T cells counts lower than 800/μL may still require urgent intervention, even in the immediate absence of more severe symptoms due to a high risk for further deterioration in condition.
Collapse
Affiliation(s)
- Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Chenhui Wang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yingjun Tan
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Xiewan Chen
- Medical English Department, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Ying Liu
- Department of Medical Laboratory Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Lifen Ning
- Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Li Chen
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Min Li
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Yueping Liu
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Gang Wang
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Zilin Yuan
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Yu X, Zheng Y, Mao R, Su Z, Zhang J. BTLA/HVEM Signaling: Milestones in Research and Role in Chronic Hepatitis B Virus Infection. Front Immunol 2019; 10:617. [PMID: 30984188 PMCID: PMC6449624 DOI: 10.3389/fimmu.2019.00617] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/08/2019] [Indexed: 12/27/2022] Open
Abstract
B- and T-lymphocyte attenuator (BTLA) is an immune-regulatory receptor, similar to CTLA-4 and PD-1, and is mainly expressed on B-, T-, and all mature lymphocyte cells. Herpes virus entry mediator (HVEM)-BTLA plays a critical role in immune tolerance and immune responses which are areas of intense research. However, the mechanisms of the BTLA and the BTLA/HVEM signaling pathway in human diseases remain unclear. This review describes the research milestones of BTLA and HVEM in chronological order and their role in chronic HBV infection.
Collapse
Affiliation(s)
- Xueping Yu
- Department of Infectious Diseases, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, China.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yijuan Zheng
- Department of Infectious Diseases, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Richeng Mao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhijun Su
- Department of Infectious Diseases, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Depletion of RIPK1 in hepatocytes exacerbates liver damage in fulminant viral hepatitis. Cell Death Dis 2019; 10:12. [PMID: 30622241 PMCID: PMC6325114 DOI: 10.1038/s41419-018-1277-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The protein kinase RIPK1 plays a crucial role at the crossroad of stress-induced signaling pathways that affects cell’s decision to live or die. The present study aimed to define the role of RIPK1 in hepatocytes during fulminant viral hepatitis, a worldwide syndrome mainly observed in hepatitis B virus (HBV) infected patients. Mice deficient for RIPK1, specifically in liver parenchymal cells (Ripk1LPC-KO) and their wild-type littermates (Ripk1fl/fl), were challenged by either the murine hepatitis virus type 3 (MHV3) or poly I:C, a synthetic analog of double-stranded RNA mimicking viral pathogen-associated molecular pattern. Ripk1LPC-KO mice developed more severe symptoms at early stage of the MHV3-induced fulminant hepatitis. Similarly, administration of poly I:C only triggered increase of systemic transaminases in Ripk1LPC-KO mice, reflecting liver damage through induced apoptosis as illustrated by cleaved-caspase 3 labeling of liver tissue sections. Neutralization of TNF-α or prior depletion of macrophages were able to prevent the appearance of apoptosis of hepatocytes in poly I:C-challenged Ripk1LPC-KO mice. Moreover, poly I:C never induced direct hepatocyte death in primary culture whatever the murine genotype, while it always stimulated an anti-viral response. Our investigations demonstrated that RIPK1 protects hepatocytes from TNF-α secreted from macrophages during viral induced fulminant hepatitis. These data emphasize the potential worsening risks of an HBV infection in people with polymorphism or homozygous amorphic mutations already described for the RIPK1 gene.
Collapse
|
22
|
Liu Q, Lu C, Dai W, Li K, Xu J, Huang Y, Li G, Kang Y, Sood AK, Xu C. Association of biobehavioral factors with non-coding RNAs in cervical cancer. Biosci Trends 2018; 12:24-31. [PMID: 29553098 DOI: 10.5582/bst.2017.01325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In order to elucidate the mechanisms underlying the biobehavioral factors responsible for cervical cancer from the perspective of lncRNAs. Tumor samples were obtained from patients with stage Ib-IIb squamous cervical cancer, which were divided into high- and low-risk groups according to biobehavioral risk factors. A lncRNA + mRNA microarray was performed, and the results were validated using qRT-PCR. Gene ontology (GO), pathway, and lncRNA-mRNA co-expression analysis were performed to predict the potential functions of the differentially expressed transcripts. 1,621 lncRNAs and 1,345 mRNAs were found to be differentially expressed between the high-risk and low-risk groups. The results of the qR-TPCR validation were in 100% agreement with the microarray analysis results. GO analysis revealed that the transcripts showing significantly different expression were mainly associated with various aspects of immune response. Pathway analysis indicated that systemic lupus erythematosus signaling was the most significantly down-regulated pathway in the high-risk group. Co-expression analysis indicated NONHSAT002712, NONHSAT095060, and TCONS_00026535 had significant correlations with ZNF683 and BTLA, which were found to be associated with the GO term "adaptive immune response". The levels of genome-wide lncRNAs are significantly altered in cervical tumors from patients with higher biobehavioral risk factors.
Collapse
Affiliation(s)
- Qiyu Liu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Chong Lu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Wanjun Dai
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Ke Li
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Jing Xu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Yunke Huang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Guiling Li
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University.,Department of Integrated Traditional Chinese and Western Medicine, Obstetrics and Gynecology Hospital, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Yu Kang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University.,Department of Integrated Traditional Chinese and Western Medicine, Obstetrics and Gynecology Hospital, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Anil K Sood
- Departments of Gynecologic Oncology, Cancer Biology, and Center for RNA Interference and Noncoding RNA, University of Texas, M.D. Anderson Cancer Center
| | - Congjian Xu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University.,Department of Integrated Traditional Chinese and Western Medicine, Obstetrics and Gynecology Hospital, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|
23
|
Li J, Diao B, Guo S, Huang X, Yang C, Feng Z, Yan W, Ning Q, Zheng L, Chen Y, Wu Y. VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. Nat Commun 2017; 8:1322. [PMID: 29109438 PMCID: PMC5673889 DOI: 10.1038/s41467-017-01327-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/11/2017] [Indexed: 01/24/2023] Open
Abstract
Exacerbation of macrophage-mediated inflammation contributes to pathogenesis of various inflammatory diseases, but the immunometabolic programs underlying regulation of macrophage activation are unclear. Here we show that V-set immunoglobulin-domain-containing 4 (VSIG4), a B7 family-related protein that is expressed by resting macrophages, inhibits macrophage activation in response to lipopolysaccharide. Vsig4 -/- mice are susceptible to high-fat diet-caused obesity and murine hepatitis virus strain-3 (MHV-3)-induced fulminant hepatitis due to excessive macrophage-dependent inflammation. VSIG4 activates the PI3K/Akt-STAT3 pathway, leading to pyruvate dehydrogenase kinase-2 (PDK2) upregulation and subsequent phosphorylation of pyruvate dehydrogenase, which results in reduction in pyruvate/acetyl-CoA conversion, mitochondrial reactive oxygen species secretion, and macrophage inhibition. Conversely, interruption of Vsig4 or Pdk2 promotes inflammation. Forced expression of Vsig4 in mice ameliorates MHV-3-induced viral fulminant hepatitis. These data show that VSIG4 negatively regulates macrophage activation by reprogramming mitochondrial pyruvate metabolism.
Collapse
Affiliation(s)
- Jialin Li
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Bo Diao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Sheng Guo
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Chengying Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Yan
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Ning
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lixin Zheng
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, MD, 20892, USA
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
24
|
Enhanced Innate Inflammation Induced by Anti-BTLA Antibody in Dual Insult Model of Hemorrhagic Shock/Sepsis. Shock 2016; 45:40-9. [PMID: 26674453 DOI: 10.1097/shk.0000000000000479] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sepsis following hemorrhagic shock is a common clinical condition, in which innate immune system suffers from severe suppression. B and T lymphocyte attenuator (BTLA) is an immune-regulatory coinhibitory receptor expressed not only on adaptive, but also on innate immune cells. Our previous data showed that BTLA gene deficient mice were protected from septic mortality when compared with wild-type control C57BL/6 mice. Here, we extended our study by treating C57BL/6 mice with an anti-BTLA monoclonal antibody (clone 6A6; reported to have the ability to neutralize or agonize/potentiate BTLA signaling) in a mouse model of hemorrhagic shock (Hem) followed by sepsis induced by cecal ligation and puncture (CLP); positing initially that if BTLA engagement was neutralized, like gene deficiency, an anti-BTLA mAb would have the similar effects on the inflammatory response/morbidity in these mice after such insults. Here, we report that BTLA expression is elevated on innate immune cells after Hem/CLP. However, anti-BTLA antibody treatment increased cytokine (TNF-α, IL-12, IL-10)/chemokine (KC, MIP-2, MCP-1) levels and inflammatory cells (neutrophils, macrophages, dendritic cells) recruitment in the peritoneal cavity, which in turn aggravated organ injury and elevated these animals' mortality in Hem/CLP. When compared with the protective effects of our previous study using BTLA gene deficient mice in a model of lethal septic challenge, we further confirmed BTLA's contribution to enhanced innate cell recruitment, elevated IL-10 levels, and reduced survival, and that engagement of antibody with BTLA potentiates/exacerbates the pathophysiology in Hem/sepsis.
Collapse
|
25
|
Guo S, Yang C, Diao B, Huang X, Jin M, Chen L, Yan W, Ning Q, Zheng L, Wu Y, Chen Y. The NLRP3 Inflammasome and IL-1β Accelerate Immunologically Mediated Pathology in Experimental Viral Fulminant Hepatitis. PLoS Pathog 2015; 11:e1005155. [PMID: 26367131 PMCID: PMC4569300 DOI: 10.1371/journal.ppat.1005155] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023] Open
Abstract
Viral fulminant hepatitis (FH) is a severe disease with high mortality resulting from excessive inflammation in the infected liver. Clinical interventions have been inefficient due to the lack of knowledge for inflammatory pathogenesis in the virus-infected liver. We show that wild-type mice infected with murine hepatitis virus strain-3 (MHV-3), a model for viral FH, manifest with severe disease and high mortality in association with a significant elevation in IL-1β expression in the serum and liver. Whereas, the viral infection in IL-1β receptor-I deficient (IL-1R1-/-) or IL-1R antagonist (IL-1Ra) treated mice, show reductions in virus replication, disease progress and mortality. IL-1R1 deficiency appears to debilitate the virus-induced fibrinogen-like protein-2 (FGL2) production in macrophages and CD45+Gr-1high neutrophil infiltration in the liver. The quick release of reactive oxygen species (ROS) by the infected macrophages suggests a plausible viral initiation of NLRP3 inflammasome activation. Further experiments show that mice deficient of p47phox, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit that controls acute ROS production, present with reductions in NLRP3 inflammasome activation and subsequent IL-1β secretion during viral infection, which appears to be responsible for acquiring resilience to viral FH. Moreover, viral infected animals in deficiencies of NLRP3 and Caspase-1, two essential components of the inflammasome complex, also have reduced IL-1β induction along with ameliorated hepatitis. Our results demonstrate that the ROS/NLRP3/IL-1β axis institutes an essential signaling pathway, which is over activated and directly causes the severe liver disease during viral infection, which sheds light on development of efficient treatments for human viral FH and other severe inflammatory diseases. The NLRP3 inflammasome and IL-1β play essential roles in mediating the primary inflammatory responses against pathogen invasions in the host. Hyperactivation of this signaling pathway can lead to life-threatening diseases under certain circumstances. However, it is not clear if NLRP3 inflammasome activation participates in the pathogenesis of viral fulminant hepatitis (FH), a clinical severe syndrome characterized by acute inflammation in the liver along with massive necrosis of hepatocytes and hepatic encephalopathy during viral infection. Using a mouse viral FH model by infection with murine hepatitis virus strain-3 (MHV-3), we observed a significant macrophage induction and the serum and liver massive accumulation of IL-1β. Conversely, interruption of IL-1β signals results in attenuation of the MHV-3-induced hepatitis and mortality. Blocking IL-1β activity reduces the virus-induced expression of fibrinogen-like protein-2 (FGL2) in macrophages, and limits the liver recruitment of CD45+Gr-1high neutrophils upon the virus infection. We further show that proIL-1β is bioprocessed by NLRP3 inflammasome. Deletion of the components in the inflammasome complex, including NLRP3 and Caspase-1, leads to reduction in the virus-induced IL-1β production and lessening of disease progression. Further studies show that macrophages in deficiency of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47phox, a protein that controls acute ROS production, prevents NLRP3 inflammasome activation and IL-1β secretion, suggesting that the virus-induced ROS production can directly initiate NLRP3 inflammasome activation. Therefore, p47phox-/- mice exhibited certain degrees of MHV-3 resistance. Taken together, these results demonstrate that ROS/NLRP3/IL-1β is the key pathway signaling exacerbated inflammatory responses that cause viral FH in mice, suggesting that mediation of this signal cascade may benefit on the disease treatment.
Collapse
Affiliation(s)
- Sheng Guo
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Chengying Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Bo Diao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Meihua Jin
- Department of Pharmacology, Yanbian University, Yanji, Jilin province, China
| | - Lili Chen
- Department of Basic Medicine, Yanbian University, Yanji, Jilin province, China
| | - Weiming Yan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixin Zheng
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
26
|
Liu J, Tan Y, Zhang J, Zou L, Deng G, Xu X, Wang F, Ma Z, Zhang J, Zhao T, Liu Y, Li Y, Zhu B, Guo B. C5aR, TNF-α, and FGL2 contribute to coagulation and complement activation in virus-induced fulminant hepatitis. J Hepatol 2015; 62:354-62. [PMID: 25200905 DOI: 10.1016/j.jhep.2014.08.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Viral fulminant hepatitis (FH) is a disease with a high mortality rate. Activation of the complement system correlates with the development of FH. However, the key factors mediating complement activation in FH remain elusive. METHODS Liver tissues were isolated from FH patients infected by hepatitis B virus (HBV) and from mice infected with murine hepatitis virus strain 3 (MHV-3). Wild type mice were treated with or without antagonists of C5aR or TNF-α, and mice deficient for C5aR (C5aR(-/-)), Fgl2 (Fgl2(-/-)), and Tnfα (Tnfα(-/-)) mice were not treated with the antagonists. C5b-9, C5aR, FGL2, CD31, CD11b, fibrin, TNF-α, and complement C3 cleavage products were detected by immunohistochemistry, immunofluorescence, or ELISA. Sorted liver sinusoidal endothelial cells (LSECs) or myeloid-derived (CD11b(+)) cells were stimulated with C5a, TNF-α or MHV-3 in vitro. The mRNA expressions levels of Fgl2 and Tnfα were determined by qRT-PCR analyses. RESULTS We observed that complement activation, coagulation and pro-inflammatory cytokine production were upregulated in the HBV(+) patients with FH. Similar observations were made in the murine FH models. Complement activation and coagulation were significantly reduced in MHV-3 infected mice in the absence of C5aR, Tnfα or Fgl2. The MHV-3 infected C5aR(-/-) mice exhibited reduced numbers of infiltrated inflammatory CD11b(+) cells and a reduced expression of TNF-α and FGL2. Moreover, C5a administration stimulated TNF-α production by CD11b(+) cells, which in turn promoted the expression of FGL2 in CD31(+) LSEC-like cells in vitro. Administration of antagonists against C5aR or TNF-α ameliorated MHV-3-induced FH. CONCLUSIONS Our results demonstrate that C5aR, TNF-α, and FGL2 form an integral network that contributes to coagulation and complement activation, and suggest that those are potential therapeutic targets in viral FH intervention.
Collapse
Affiliation(s)
- Jianjun Liu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Histology & Embryology, Third Military Medical University, Chongqing, China
| | - Yulong Tan
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Jinyu Zhang
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Liyun Zou
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Guohong Deng
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueqing Xu
- Department of Medical Genetics, Third Military Medical University, Chongqing, China
| | - Feng Wang
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhengwei Ma
- Institute of Hepatobiliary Surgery & Southwest Hospital, Third Military Medical University, District Shapingba, Chongqing, China
| | - Jue Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tingting Zhao
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Yunlai Liu
- Department of Histology & Embryology, Third Military Medical University, Chongqing, China
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Bo Guo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
27
|
Hu J, Yan J, Rao G, Latha K, Overwijk WW, Heimberger AB, Li S. The Duality of Fgl2 - Secreted Immune Checkpoint Regulator Versus Membrane-Associated Procoagulant: Therapeutic Potential and Implications. Int Rev Immunol 2014; 35:325-339. [PMID: 25259408 DOI: 10.3109/08830185.2014.956360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fibrinogen-like protein 2 (Fgl2), a member of the fibrinogen family, can be expressed as a membrane-associated protein with coagulation activity or in a secreted form possessing unique immune suppressive functions. The biological importance of Fgl2 is evident within viral-induced fibrin depositing inflammatory diseases and malignancies and provides a compelling rationale for Fgl2 expression to not only be considered as a disease biomarker but also as a therapeutic target. This article will provide a comprehensive review of the currently known biological properties of Fgl2 and clarifies future scientific directives.
Collapse
Affiliation(s)
- Jiemiao Hu
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jun Yan
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ganesh Rao
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Khatri Latha
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Willem W Overwijk
- c Department of Melanoma Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Amy B Heimberger
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Shulin Li
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
28
|
Xu GL, Chen J, Yang F, Li GQ, Zheng LX, Wu YZ. C5a/C5aR pathway is essential for the pathogenesis of murine viral fulminant hepatitis by way of potentiating Fgl2/fibroleukin expression. Hepatology 2014; 60:114-24. [PMID: 24604562 DOI: 10.1002/hep.27114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 03/03/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Viral fulminant hepatitis (FH) remains a serious clinical problem with very high mortality. Lacking understanding of FH pathogenesis has in essence hindered efficient clinical treatment. Inferring from a correlation observed between the genetic differences in the complement component 5 (C5) and the susceptibility of mouse strains to murine hepatitis virus strain-3 (MHV-3) infections, we propose that excessive complement activation plays a critical role in the development of FH. We show that MHV-3 infection causes massive complement activation, along with a rapid increase in serum C5a levels and quick development of FH in susceptible strains. Mice deficient in the C5a receptor (C5aR) or the susceptible strains treated with C5aR antagonists (C5aRa) exhibit significant attenuation of the disease, accompanied by a remarkable reduction of hepatic fibrinogen-like protein 2 (Fgl2), a hallmark protein that causes necrosis of infected livers. In accordance, biopsy of FH patients shows a dramatic increase of Fgl2 expression, which correlates with C5aR up-regulation in the liver. In vitro C5a administration accelerates MHV-3-induced Fgl2 secretion by macrophages. Furthermore, inhibiting ERK1/2 and p38 efficiently blocks C5a-mediated Fgl2 production during viral infections. CONCLUSION These data provide evidence that mouse susceptibility to MHV-3-induced FH may rely on C5a/C5aR interactions, for which ERK1/2 and p38 pathways participate in up-regulating Fgl2 expression. Inhibition of C5a/C5aR interactions is expected to be beneficial in the clinical treatment of FH patients.
Collapse
Affiliation(s)
- Gui-lian Xu
- Institute of Immunology, PLA, College of Basic Medical Sciences, Third Military Medical University, Chongqing, P.R. China
| | | | | | | | | | | |
Collapse
|
29
|
Xu H, Li H, Cao D, Wu Y, Chen Y. Tumor necrosis factor α (TNF-α) receptor-I is required for TNF-α-mediated fulminant virus hepatitis caused by murine hepatitis virus strain-3 infection. Immunol Lett 2013; 158:25-32. [PMID: 24286726 PMCID: PMC7126990 DOI: 10.1016/j.imlet.2013.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 11/25/2022]
Abstract
TNFR1−/− mice displayed a dramatic decrease in tissue necrosis and cell apoptosis in the MHV-3 infected spleens and livers. TNFR1 deficiency directly impeded FGL2 secretion as well as reduced Fas and FasL expression in MHV-3 infected livers. TNFR1 deficiency impeded neutrophils, which produce proinflammatory factors and FGL2 directly, infiltration into liver and spleen.
TNF-α plays an essential role in the pathogenesis of fulminant virus hepatitis (FH) caused by infection with murine hepatitis virus strain-3 (MHV-3). However, the specific TNF-α receptors (TNFR) involved in this disease and how they mediate this effect are uncertain. Here, we showed that the expression of TNFR1 and TNFR2 in the liver and spleen was triggered by MHV-3. However, only TNFR1−/− mice were resistant to MHV-3 mediated FH, as displayed by a dramatic decrease in tissue necrosis and cell apoptosis in the infected spleens and livers from TNFR1−/− mice, as well as prolonged survival in these mice compared to wild type littermate controls. Mechanistically, TNFR1 deficiency directly impeded the serum and tissue levels of fibrinogen-like protein 2 (FGL2), a virus-induced procoagulant molecule that promotes cell apoptosis. Additionally, the expression of apoptosis-associated molecules, Fas and Fas ligand (FasL) in the infected organs from TNFR1−/− mice were also decreased. Moreover, the infiltration of neutrophils rather than Foxp3+ regulatory T cells, which produce proinflammatory factors and FGL2 directly, into the infected liver and spleen tissues was also decreased in TNFR1−/− mice. These combined results indicate that signaling through TNFR1 plays an essential role in the pathogenesis of FH caused by MHV-3 infection, and interruption of this signaling pathway could be useful for clinical therapy.
Collapse
Affiliation(s)
- Huan Xu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China; Undergraduate Administration Office, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Hong Li
- Department of Otorhinolaryngology and Head-Neck Surgery, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Dayan Cao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China.
| |
Collapse
|
30
|
Yang G, Hooper WC. Physiological functions and clinical implications of fibrinogen-like 2: A review. World J Clin Infect Dis 2013; 3:37-46. [PMID: 26161303 PMCID: PMC4495006 DOI: 10.5495/wjcid.v3.i3.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/23/2013] [Accepted: 08/17/2013] [Indexed: 02/06/2023] Open
Abstract
Fibrinogen-like 2 (FGL2) encompasses a transmembrane (mFGL2) and a soluble (sFGL2) form with differential tertiary structure and biological activities. Typically, mFGL2 functions as prothrombinase that is capable of initiating coagulation in tissue without activation of the blood clotting cascade, whereas sFGL2 largely acts as an immunosuppressor that can repress proliferation of alloreactive T lymphocytes and maturation of bone marrow dendritic cells. Protein sequences of FGL2 exhibit evolutionary conservation across wide variety of species, especially at the carboxyl terminus that contains fibrinogen related domain (FRED). The FRED of FGL2 confers specificity and complexity in the action of FGL2, including receptor recognition, calcium affiliation, and substrate binding. Constitutive expression of FGL2 during embryogenesis and in mature tissues suggests FGL2 might be physiologically important. However, excessive induction of FGL2 under certain medical conditions (e.g., pathogen invasion) could trigger complement activation, inflammatory response, cellular apoptosis, and immune dysfunctions. On the other hand, complete absence of FGL2 is also detrimental as lack of FGL2 can cause autoimmune glomerulonephritis and acute cellular rejection of xenografts. All these roles involve mFGL2, sFGL2, or their combination. Although it is not clear how mFGL2 is cleaved off its host cells and secreted into the blood, circulating sFGL2 has been found correlated with disease severity and viral loading among patients with human hepatitis B virus or hepatitis C virus infection. Further studies are warranted to understand how FGL2 expression is regulated under physiological and pathological conditions. Even more interesting is to determine whether mFGL2 can fulfill an immunoregulatory role through its FRED at carboxyl end of the molecule and, and vice versa, whether sFGL2 is procoagulant upon binding to a target cell. Knowledge in this area should shed light on development of sFGL2 as an alternative immunosuppressive agent for organ transplantation or as a biomarker for predicting disease progression, monitoring therapeutic effects, and targeting FGL2 for repression in ameliorating fulminant viral hepatitis.
Collapse
|
31
|
Xu H, Cao D, Guo G, Ruan Z, Wu Y, Chen Y. The intrahepatic expression and distribution of BTLA and its ligand HVEM in patients with HBV-related acute-on-chronic liver failure. Diagn Pathol 2012; 7:142. [PMID: 23067542 PMCID: PMC3488509 DOI: 10.1186/1746-1596-7-142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/11/2012] [Indexed: 11/10/2022] Open
Abstract
Objective It has been demonstrated that signals from the inhibitory receptor B and T lymphocyte attenuator (BTLA) are involved in regulating the pathogenesis of infectious diseases. However, the expression and anatomical distribution of BTLA and its ligand, the herpes virus entry mediator (HVEM), have not yet been determined in cases of HBV-related acute-on-chronic liver failure (HBV-ACLF) patients. Methods In this study, the expression of BTLA and HVEM in liver tissues from HBV-ACLF, chronic hepatitis B (CHB) patients and healthy individuals was analyzed by immunohistochemistry. Results The results of this analysis demonstrated that both molecules were observed in the HBV-ACLF samples and that their expression was chiefly in the infiltrating inflammatory cells and the damaged bile ducts. However, they were absent in liver sections from CHB patients and healthy controls. Immunofluorescence double-staining indicated that BTLA was found on CK-18+ epithelial cells, CD31+ endothelial cells, CD68+ macrophages, CD56+ NK cells, CD16+ monocytes, CD3+ , CD8+ T cells, and Foxp3+ regulatory T cells (Treg). By contrast, HVEM expression was restricted to CK18+ epithelial cells and CD68+ macrophages. Moreover, the expression of several members of the B7 superfamily, including PD-L1, PD-L2, B7-H3 and B7-H4, was also detected in these liver tissues, and these proteins were co-expressed with HVEM. Interestingly, the expression of fibrinogen-like protein 2 (FGL2), a virus-induced procoagulant molecule, was also found in liver sections from HBV-ACLF, this molecule also co-expresses with BTLA and HVEM. Conclusions These results suggest that BTLA-HVEM signaling is likely to affect the pathogenesis of HBV-ACLF, a clear understanding of the functional roles of these proteins should further elucidate the disease process. Virtual slides The virtual slide(s) for this article can be found here:
http://www.diagnosticpathology.diagnomx.eu/vs/8080806838149123
Collapse
Affiliation(s)
- Huan Xu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China.
| | | | | | | | | | | |
Collapse
|