1
|
Li J, Jia K, Wang W, Pang Y, Wang H, Hao J, Zhao D, Li F. FBXW7 mediates high glucose-induced epithelial to mesenchymal transition via KLF5 in renal tubular cells of diabetic kidney disease. Tissue Cell 2025; 94:102801. [PMID: 40010183 DOI: 10.1016/j.tice.2025.102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
F-box and WD repeat domain-containing 7 (FBXW7) protein is known as one of the crucial components of the E3 ubiquitin ligase called the Skp1-Cullin1-F-box (SCF) complex, which regulates the degradation of a network of proteins via the ubiquitin-proteasome system. In our study, we investigated the latent impact of FBXW7 on renal tubular cells injury and its molecular mechanism in diabetic kidney disease (DKD). FBXW7 was upregulated in kidneys of diabetic mice and human renal proximal tubular cells exposed to high glucose. Again, the function of experiment found that overexpression of FBXW7 led to epithelial-mesenchymal transition (EMT) of HK2 cells, as indicated by decreased E-cadherin and increased α-smooth muscle actin (α-SMA). Knockdown of FBXW7 ameliorated high glucose-induced EMT of HK2 cells via downregulation of TGF-β1. Then, FBXW7 overexpression downregulated the stability of the KLF5 protein and promoted protein ubiquitination in normal glucose-cultured HK2 cells, which was significantly reversed by the addition of MG132, a specific proteasome inhibitor. Furthermore, overexpression of KLF5 effectively prevented FBXW7 upregulation-induced EMT in HK2 cells. Finally, chemical inhibitors or mTOR kinase dead vector to interfere the activity of mTOR effectively suppressed FBXW7 expression in HK2 cells treated with high glucose. Taken together, these above data suggest that mTOR signaling pathway-regulated FBXW7 mediates high glucose-induced EMT of renal tubular cells by affecting the stability of KLF5.
Collapse
Affiliation(s)
- Juan Li
- Department of Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Keqi Jia
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Wenjie Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Yingxue Pang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Dong Zhao
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Zhang J, Gu X, Cheng TL, Qi YJ, Liu DY, Wu N, Wang DP, Huang Y, Zhu ZM, Fan Y. ASH2L Deficiency in Smooth Muscle Drives Pulmonary Vascular Remodeling. Circ Res 2025; 136:719-734. [PMID: 39996311 DOI: 10.1161/circresaha.124.325539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Histone H3 lysine 4 methylation is one of the most abundant epigenetic modifications, which has been recently linked to vascular remodeling in pulmonary hypertension (PH). SET1/MLL methyltransferase complexes comprise the main enzymes responsible for methylating H3 lysine 4, yet their roles in vascular remodeling and PH are not fully understood. We aim to assess the contribution of ASH2L, a core SET1/MLL family member, to the pathogenesis of PH. METHODS Human pulmonary artery specimens and primary vascular cells, smooth muscle cell (SMC)-specific ASH2L-deficient mice, rats with SMC-specific ASH2L overexpression, mass spectrometry, immunoprecipitation, and chromatin immunoprecipitation were used to define the role of ASH2L in PH. RESULTS Analysis of bulk RNA-sequencing data sets from human lung vessels identified ASH2L as the only differentially expressed SET1/MLL family member in PH compared with healthy controls. Decreased ASH2L expression in human pulmonary arteries correlated with the clinical severity of PH, which contrasted with elevated H3 lysine 4 methylation and was primarily localized to SMCs. Depletion of ASH2L promoted whereas its restoration ameliorated SMC proliferation and vascular remodeling in PH. Mechanistically, we revealed that ASH2L functioned independently of the canonical H3 lysine 4 trimethylation-based transcriptional activation, while it formed a protein complex with KLF5 and FBXW7, thereby accelerating the ubiquitin-proteasomal degradation of KLF5. NOTCH3 was discovered as a new downstream target of KLF5, and the loss of ASH2L promoted the recruitment of KLF5 to the NOTCH3 promoter, thus enhancing NOTCH3 expression. Pharmacological blockage of KLF5 attenuated PH in chronic hypoxia-exposed SMC-specific ASH2L-deficient mice and sugen/hypoxia-challenged rats. CONCLUSIONS This study demonstrated that ASH2L deficiency causatively affects SMC proliferation and lung vascular remodeling that is partially mediated through KLF5-dependent NOTCH3 transcription. Activating ASH2L or targeting KLF5 might represent potential therapeutic strategies for PH.
Collapse
MESH Headings
- Vascular Remodeling
- Animals
- Humans
- Mice
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Mice, Knockout
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/deficiency
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Cells, Cultured
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
- Cell Proliferation
- Nuclear Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/deficiency
- Female
- Histones/metabolism
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory Disease, Xinqiao Hospital (J.Z., T.-L.C., Y.-J.Q., Y.F.), Third Military Medical University, Chongqing, China
| | - Xia Gu
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, China (X.G.)
| | - Tian-Le Cheng
- Department of Respiratory Disease, Xinqiao Hospital (J.Z., T.-L.C., Y.-J.Q., Y.F.), Third Military Medical University, Chongqing, China
| | - Yong-Jia Qi
- Department of Respiratory Disease, Xinqiao Hospital (J.Z., T.-L.C., Y.-J.Q., Y.F.), Third Military Medical University, Chongqing, China
| | - Dao-Yan Liu
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital (D.-Y.L., Z.-M.Z.), Third Military Medical University, Chongqing, China
| | - Na Wu
- Department of Epidemiology, College of Preventive Medicine (N.W.), Third Military Medical University, Chongqing, China
| | - Da-Peng Wang
- Department of Intensive Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China (D.-P.W.)
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, China (Y.H.)
| | - Zhi-Ming Zhu
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital (D.-Y.L., Z.-M.Z.), Third Military Medical University, Chongqing, China
| | - Ye Fan
- Department of Respiratory Disease, Xinqiao Hospital (J.Z., T.-L.C., Y.-J.Q., Y.F.), Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Qi Y, Rezaeian AH, Wang J, Huang D, Chen H, Inuzuka H, Wei W. Molecular insights and clinical implications for the tumor suppressor role of SCF FBXW7 E3 ubiquitin ligase. Biochim Biophys Acta Rev Cancer 2024; 1879:189140. [PMID: 38909632 PMCID: PMC11390337 DOI: 10.1016/j.bbcan.2024.189140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Uroog L, Zeya B, Imtiyaz K, Ahmad Wani R, Moshahid Alam Rizvi M. FBXW7 polymorphism asserts susceptibility to colorectal cancer. Gene 2024; 901:148181. [PMID: 38244948 DOI: 10.1016/j.gene.2024.148181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
FBXW7, belonging to the F-Box protein family, is considered a candidate cancer susceptibility gene. Our findings indicate that single nucleotide polymorphisms (SNPs) in the FBXW7 gene are linked to cancer risk, strengthening FBXW7's role in the pathogenesis of colorectal cancer. Our case-control study comprised of 450 patients diagnosed with colorectal cancer (CRC) and an equal number of 450 healthy subjects. FBXW7 SNPs rs2255137C>T and rs6842544C>T were genotyped using PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) and Single-Stranded Conformation Polymorphism (SSCP) techniques and further cross-checked by direct sequencing. Linkage disequilibrium and haplotype analyses of these SNPs were also assessed. The in-silico approach was used to reveal the functional analysis between the nonsynonymous variation (rs6842544) and CRC followed by its validation at the protein level by western blotting and reverse transcription-PCR. A significant association of colorectal cancer was detected with rs6842544 SNP. However, there was no association between FBXW7 rs2255137 polymorphism and CRC. The homozygous individuals carrying the C variant in FBXW7 rs6842544 showed a slightly higher risk for colorectal cancer (OR = 1.590, 95%CI = 0.39 ∼ 2.89, p = 0.011). The haplotype CC identified in this study seemed to be associated with good prognosis (OR = 1.22, 95% CI = 1.00 ∼ 1.47, p = 0.0013) whereas the TT haplotype was found to reduce the CRC risk (OR = 0.642, 95%CI = 0.48 ∼ 0.84, p = 0.039). In-silico prediction proposed that the variant R133G is responsible for the lower expression of FBXW7. Additionally, the expression profiling of FBXW7 nonsynonymous SNP was significantly lower in primary CRC tissues than in the paired non-cancerous tissues at protein and mRNA levels. The study indicates that the FBXW7 rs6842544 is associated with the risk of development of CRC and could serve as a molecular biological marker to screen high-risk groups for CRC.
Collapse
Affiliation(s)
- Laraib Uroog
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Bushra Zeya
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Imtiyaz
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rauf Ahmad Wani
- Department of General Surgery, SKIMS, Srinagar, Jammu and Kashmir, India
| | - M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
5
|
Brown M, Leon A, Kedzierska K, Moore C, Belnoue‐Davis HL, Flach S, Lydon JP, DeMayo FJ, Lewis A, Bosse T, Tomlinson I, Church DN. Functional analysis reveals driver cooperativity and novel mechanisms in endometrial carcinogenesis. EMBO Mol Med 2023; 15:e17094. [PMID: 37589076 PMCID: PMC10565641 DOI: 10.15252/emmm.202217094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
High-risk endometrial cancer has poor prognosis and is increasing in incidence. However, understanding of the molecular mechanisms which drive this disease is limited. We used genetically engineered mouse models (GEMM) to determine the functional consequences of missense and loss of function mutations in Fbxw7, Pten and Tp53, which collectively occur in nearly 90% of high-risk endometrial cancers. We show that Trp53 deletion and missense mutation cause different phenotypes, with the latter a substantially stronger driver of endometrial carcinogenesis. We also show that Fbxw7 missense mutation does not cause endometrial neoplasia on its own, but potently accelerates carcinogenesis caused by Pten loss or Trp53 missense mutation. By transcriptomic analysis, we identify LEF1 signalling as upregulated in Fbxw7/FBXW7-mutant mouse and human endometrial cancers, and in human isogenic cell lines carrying FBXW7 mutation, and validate LEF1 and the additional Wnt pathway effector TCF7L2 as novel FBXW7 substrates. Our study provides new insights into the biology of high-risk endometrial cancer and suggests that targeting LEF1 may be worthy of investigation in this treatment-resistant cancer subgroup.
Collapse
Affiliation(s)
- Matthew Brown
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation TrustOxfordUK
| | - Alicia Leon
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | - Katarzyna Kedzierska
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Charlotte Moore
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Hayley L Belnoue‐Davis
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Susanne Flach
- Department of Otorhinolaryngology, Head and Neck SurgeryLMU KlinikumMunichGermany
- German Cancer Consortium (DKTK), Partner SiteMunichGermany
| | - John P Lydon
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - Annabelle Lewis
- Department of Life Sciences, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Tjalling Bosse
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ian Tomlinson
- Institute of Genetics and CancerThe University of EdinburghEdinburghUK
| | - David N Church
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation TrustOxfordUK
- Oxford Cancer Centre, Churchill HospitalOxford University Hospitals Foundation NHS TrustOxfordUK
| |
Collapse
|
6
|
Chen S, Leng P, Guo J, Zhou H. FBXW7 in breast cancer: mechanism of action and therapeutic potential. J Exp Clin Cancer Res 2023; 42:226. [PMID: 37658431 PMCID: PMC10474666 DOI: 10.1186/s13046-023-02767-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/18/2023] [Indexed: 09/03/2023] Open
Abstract
Breast cancer is one of the frequent tumors that seriously endanger the physical and mental well-being in women. F-box and WD repeat domain-containing 7 (FBXW7) is a neoplastic repressor. Serving as a substrate recognition element for ubiquitin ligase, FBXW7 participates in the ubiquitin-proteasome system and is typically in charge of the ubiquitination and destruction of crucial oncogenic proteins, further performing a paramount role in cell differentiation, apoptosis and metabolic processes. Low levels of FBXW7 cause abnormal stability of pertinent substrates, mutations and/or deletions in the FBXW7 gene have been reported to correlate with breast cancer malignant progression and chemoresistance. Given the lack of an effective solution to breast cancer's clinical drug resistance dilemma, elucidating FBXW7's mechanism of action could provide a theoretical basis for targeted drug exploration. Therefore, in this review, we focused on FBXW7's role in a range of breast cancer malignant behaviors and summarized the pertinent cellular targets, signaling pathways, as well as the mechanisms regulating FBXW7 expression. We also proposed novel perspectives for the exploitation of alternative therapies and specific tumor markers for breast cancer by therapeutic strategies aiming at FBXW7.
Collapse
Affiliation(s)
- Siyu Chen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hao Zhou
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Di Fiore R, Suleiman S, Drago-Ferrante R, Subbannayya Y, Suleiman S, Vasileva-Slaveva M, Yordanov A, Pentimalli F, Giordano A, Calleja-Agius J. The Role of FBXW7 in Gynecologic Malignancies. Cells 2023; 12:1415. [PMID: 37408248 DOI: 10.3390/cells12101415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
The F-Box and WD Repeat Domain Containing 7 (FBXW7) protein has been shown to regulate cellular growth and act as a tumor suppressor. This protein, also known as FBW7, hCDC4, SEL10 or hAGO, is encoded by the gene FBXW7. It is a crucial component of the Skp1-Cullin1-F-box (SCF) complex, which is a ubiquitin ligase. This complex aids in the degradation of many oncoproteins, such as cyclin E, c-JUN, c-MYC, NOTCH, and MCL1, via the ubiquitin-proteasome system (UPS). The FBXW7 gene is commonly mutated or deleted in numerous types of cancer, including gynecologic cancers (GCs). Such FBXW7 mutations are linked to a poor prognosis due to increased treatment resistance. Hence, detection of the FBXW7 mutation may possibly be an appropriate diagnostic and prognostic biomarker that plays a central role in determining suitable individualized management. Recent studies also suggest that, under specific circumstances, FBXW7 may act as an oncogene. There is mounting evidence indicating that the aberrant expression of FBXW7 is involved in the development of GCs. The aim of this review is to give an update on the role of FBXW7 as a potential biomarker and also as a therapeutic target for novel treatments, particularly in the management of GCs.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | | | - Yashwanth Subbannayya
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Sarah Suleiman
- Whipps Cross Hospital, Barts Health NHS Trust, Leytonstone, London E11 1NR, UK
| | - Mariela Vasileva-Slaveva
- Department of Breast Surgery, "Dr. Shterev" Hospital, 1330 Sofia, Bulgaria
- Research Institute, Medical University Pleven, 5800 Pleven, Bulgaria
- Bulgarian Breast and Gynecological Cancer Association, 1784 Sofia, Bulgaria
| | - Angel Yordanov
- Department of Gynecological Oncology, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", 70010 Casamassima, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| |
Collapse
|
8
|
Lee E, Cheung J, Bialkowska AB. Krüppel-like Factors 4 and 5 in Colorectal Tumorigenesis. Cancers (Basel) 2023; 15:cancers15092430. [PMID: 37173904 PMCID: PMC10177156 DOI: 10.3390/cancers15092430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Krüppel-like factors (KLFs) are transcription factors regulating various biological processes such as proliferation, differentiation, migration, invasion, and homeostasis. Importantly, they participate in disease development and progression. KLFs are expressed in multiple tissues, and their role is tissue- and context-dependent. KLF4 and KLF5 are two fascinating members of this family that regulate crucial stages of cellular identity from embryogenesis through differentiation and, finally, during tumorigenesis. They maintain homeostasis of various tissues and regulate inflammation, response to injury, regeneration, and development and progression of multiple cancers such as colorectal, breast, ovarian, pancreatic, lung, and prostate, to name a few. Recent studies broaden our understanding of their function and demonstrate their opposing roles in regulating gene expression, cellular function, and tumorigenesis. This review will focus on the roles KLF4 and KLF5 play in colorectal cancer. Understanding the context-dependent functions of KLF4 and KLF5 and the mechanisms through which they exert their effects will be extremely helpful in developing targeted cancer therapy.
Collapse
Affiliation(s)
- Esther Lee
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jacky Cheung
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
Li D, Jiang S, Zhou X, Si C, Shao P, Jiang Q, Zhu L, Shen L, Meng Q, Yin JC, Shao Y, Sun Y, Yang L. FBXW7 and Its Downstream NOTCH Pathway Could be Potential Indicators of Organ-Free Metastasis in Colorectal Cancer. Front Oncol 2022; 11:783564. [PMID: 35712679 PMCID: PMC9197223 DOI: 10.3389/fonc.2021.783564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths globally. Metastasis is associated with a poor prognosis, yet the underlying molecular mechanism(s) remained largely unknown. In this study, a total of 85 CRC patients were included and the primary tumor lesions were evaluated by next-generation sequencing using a targeted panel for genetic aberrations. Patients were sub-divided according to their metastasis pattern into the non-organ metastases (Non-OM) and organ metastases (OM) groups. By comparing the genetic differences between the two groups, we found that mutations in FBXW7 and alterations in its downstream NOTCH signaling pathway were more common in the Non-OM group. Moreover, correlation analysis suggested that FBXW7 mutations were independent of other somatic alterations. The negative associations of alterations in FBXW7 and its downstream NOTCH signaling pathway with CRC organ metastasis were validated in a cohort of 230 patients in the TCGA CRC dataset. Thus, we speculated that the genomic alterations of FBXW7/NOTCH axis might be an independent negative indicator of CRC organ metastases.
Collapse
Affiliation(s)
- Dongzheng Li
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Shiye Jiang
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xin Zhou
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Chengshuai Si
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Peng Shao
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Qian Jiang
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Liuqing Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Lu Shen
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Qi Meng
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Jiani C. Yin
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yueming Sun
- Division of Colorectal Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China & The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Liu Yang
- Division of Colorectal Surgery, Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
10
|
Systematic Discovery of FBXW7-Binding Phosphodegrons Highlights Mitogen-Activated Protein Kinases as Important Regulators of Intracellular Protein Levels. Int J Mol Sci 2022; 23:ijms23063320. [PMID: 35328741 PMCID: PMC8955265 DOI: 10.3390/ijms23063320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
A FBXW7 is an F-box E3 ubiquitin-ligase affecting cell growth by controlling protein degradation. Mechanistically, its effect on its substrates depends on the phosphorylation of degron motifs, but the abundance of these phosphodegrons has not been systematically explored. We used a ratiometric protein degradation assay geared towards the identification of FBXW7-binding degron motifs phosphorylated by mitogen-activated protein kinases (MAPKs). Most of the known FBXW7 targets are localized in the nucleus and function as transcription factors. Here, in addition to more transcription affecting factors (ETV5, KLF4, SP5, JAZF1, and ZMIZ1 CAMTA2), we identified phosphodegrons located in proteins involved in chromatin regulation (ARID4B, KMT2E, KMT2D, and KAT6B) or cytoskeletal regulation (MAP2, Myozenin-2, SMTL2, and AKAP11), and some other proteins with miscellaneous functions (EIF4G3, CDT1, and CCAR2). We show that the protein level of full-length ARID4B, ETV5, JAZF1, and ZMIZ1 are affected by different MAPKs since their FBXW7-mediated degradation was diminished in the presence of MAPK-specific inhibitors. Our results suggest that MAPK and FBXW7 partnership plays an important cellular role by directly affecting the level of key regulatory proteins. The data also suggest that the p38α-controlled phosphodegron in JAZF1 may be responsible for the pathological regulation of the cancer-related JAZF1-SUZ12 fusion construct implicated in endometrial stromal sarcoma.
Collapse
|
11
|
Babaei-Jadidi R, Kashfi H, Alelwani W, Karimi Bakhtiari A, Kattan SW, Mansouri OA, Mukherjee A, Lobo DN, Nateri AS. Anti-miR-135/SPOCK1 axis antagonizes the influence of metabolism on drug response in intestinal/colon tumour organoids. Oncogenesis 2022; 11:4. [PMID: 35046388 PMCID: PMC8770633 DOI: 10.1038/s41389-021-00376-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Little is known about the role of microRNAs (miRNAs) in rewiring the metabolism within tumours and adjacent non-tumour bearing normal tissue and their potential in cancer therapy. This study aimed to investigate the relationship between deregulated miRNAs and metabolic components in murine duodenal polyps and non-polyp-derived organoids (mPOs and mNPOs) from a double-mutant ApcMinFbxw7∆G mouse model of intestinal/colorectal cancer (CRC). We analysed the expression of 373 miRNAs and 12 deregulated metabolic genes in mPOs and mNPOs. Our findings revealed miR-135b might target Spock1. Upregulation of SPOCK1 correlated with advanced stages of CRCs. Knockdown of miR-135b decreased the expression level of SPOCK1, glucose consumption and lactic secretion in CRC patient-derived tumours organoids (CRC tPDOs). Increased SPOCK1 induced by miR-135b overexpression promoted the Warburg effect and consequently antitumour effect of 5-fluorouracil. Thus, combination with miR-135b antisense nucleotides may represent a novel strategy to sensitise CRC to the chemo-reagent based treatment.
Collapse
Affiliation(s)
- Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Hossein Kashfi
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ashkan Karimi Bakhtiari
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Shahad W Kattan
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Omniah A Mansouri
- Department of Biology, University of Jeddah, College of Science, Jeddah, 21959, Saudi Arabia
| | - Abhik Mukherjee
- Histopathology, BioDiscovery Institute, School of Medicine, University of Nottingham, NG7 2UH, Nottingham, UK
| | - Dileep N Lobo
- Nottingham Digestive Diseases Centre, National Nottingham Digestive Diseases Centre, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Abdolrahman S Nateri
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
12
|
Zhu T, Liu B, Wu D, Xu G, Fan Y. Autophagy Regulates VDAC3 Ubiquitination by FBXW7 to Promote Erastin-Induced Ferroptosis in Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2021; 9:740884. [PMID: 34869326 PMCID: PMC8634639 DOI: 10.3389/fcell.2021.740884] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
Background: The discovery of ferroptosis is a major breakthrough in the development of cancer treatments. However, the mechanism by which ferroptosis contributes to acute lymphoblastic leukemia (ALL) is to be clarified. Here, we explored erastin-induced ferroptosis in ALL cells and the impact of autophagic activity on this process. Materials and Methods: Cell viability was evaluated in various ALL cell lines following erastin treatment by the MTS assay, while cell death was evaluated via a trypan blue assay. Immunoblotting and quantitative real-time PCR were used to detect protein and mRNA expression, respectively. The UbiBrowser database was used to predict the E3 ligase of VDAC3, which was confirmed by immunoprecipitation. The role of FBXW7 in erastin-induced ferroptosis in vitro was evaluated via lentiviral-mediated silencing and overexpression. ALL xenograft mice were used to observe the impact of autophagy on erastin-induced ferroptosis. Results: Resistance to erastin-induced ferroptosis was higher in Jurkat and CCRF-CEM cells than in Reh cells. The sensitivity could be modified by the autophagy activator rapamycin (Rapa) and the autophagy inhibitor chloroquine (CQ). Rapa sensitized ALL cells to erastin-induced ferroptosis. In ALL xenograft mice, the combination treatment of Rapa and erastin resulted in longer survival time than those observed with erastin or Rapa treatment alone. VDAC3 was regulated by autophagy post-transcriptionally, mainly via the ubiquitin-proteasome system (UPS). FBXW7 was verified as a specific E3 ligase of VDAC3. FBXW7 knockdown attenuated VDAC3 degradation by suppressing its ubiquitination, thereby increasing the sensitivity of ALL cells to erastin. Conclusion: Autophagy regulated erastin-induced ferroptosis via the FBXW7-VDAC3 axis. Rapa sensitized ALL cells to erastin-induced ferroptosis both in vitro and in vivo. Our findings provide potential therapeutic targets for ALL.
Collapse
Affiliation(s)
- Ting Zhu
- Pediatric Department, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Di Wu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Xu
- Pediatric Department, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Fan
- Pediatric Department, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Isidro RA, Dong F, Hornick JL, Wee JO, Agoston A, Patil DT, Deshpande V, Zhao L. Verrucous carcinoma of the oesophagus is a genetically distinct subtype of oesophageal squamous cell carcinoma. Histopathology 2021; 79:642-649. [PMID: 33960520 DOI: 10.1111/his.14395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023]
Abstract
AIMS Oesophageal verrucous carcinoma (VSCC) is a rare and morphologically distinct type of oesophageal squamous cell carcinoma (SCC). Diagnosing VSCC on biopsy material is challenging, given the lack of significant atypia and the presence of keratinising epithelium and exophytic growth. The molecular pathogenesis of VSCC remains unclear. The aim of this study was to characterise the genomic landscape of VSCC in comparison to conventional oesophageal SCC. METHODS AND RESULTS Three cases of VSCC from the Brigham and Women's Hospital pathology archive were identified. Formalin-fixed, paraffin-embedded (FFPE) tumour tissue was used for p16 immunohistochemistry (IHC), high-risk human papillomavirus (HPV) in-situ mRNA hybridisation (ISH) and DNA isolation. Tumour DNA was sequenced using a targeted massively parallel sequencing assay enriched for cancer-associated genes. Three additional cases of VSCC were identified by image review of The Cancer Genome Atlas (TCGA) oesophageal SCC cohort. VSCC cases were negative for p16 IHC and high-risk HPV ISH. TP53 mutations (P < 0.001) and copy number variants (CNVs) for CDKN2A (P < 0.001), CDKN2B (P < 0.01) and CCND1 (P < 0.01) were absent in VSCC and significantly less frequent in comparison to conventional SCC. Five VSCC cases featured SMARCA4 missense mutations or in-frame deletions compared to only four of 88 conventional SCC cases (P < 0.001). VSCC featured driver mutations in PIK3CA, HRAS and GNAS. Recurrent CNVs were rare in VSCC. CONCLUSIONS VSCC is not only morphologically but also genetically distinct from conventional oesophageal SCC, featuring frequent SMARCA4 mutations and infrequent TP53 mutations or CDKN2A/B CNVs. Molecular findings may aid in establishing the challenging diagnosis of VSCC.
Collapse
Affiliation(s)
- Raymond A Isidro
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Fei Dong
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jon O Wee
- Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Agoston Agoston
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Deepa T Patil
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Vikram Deshpande
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Xu F, Li J, Ni M, Cheng J, Zhao H, Wang S, Zhou X, Wu X. FBW7 suppresses ovarian cancer development by targeting the N 6-methyladenosine binding protein YTHDF2. Mol Cancer 2021; 20:45. [PMID: 33658012 PMCID: PMC7927415 DOI: 10.1186/s12943-021-01340-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background The tumor suppressor FBW7 is the substrate recognition component of the SCF E3-ubiquitin ligase complex that mediates proteolytic degradation of various oncogenic proteins. However, the role of FBW7 in ovarian cancer progression remains inadequately understood. Methods IP-MASS, co-IP, immunohistochemistry, and western blotting were used to identify the potential substrate of FBW7 in ovarian cancer. The biological effects of FBW7 were investigated using in vitro and in vivo models. LC/MS was used to detect the m6A levels in ovarian cancer tissues. MeRIP-Seq and RNA-Seq were used to assess the downstream targets of YTHDF2. Results We unveil that FBW7 is markedly down-regulated in ovarian cancer tissues and its high expression is associated with favorable prognosis and elevated m6A modification levels. Consistently, ectopic FBW7 inhibits ovarian cancer cell survival and proliferation in vitro and in vivo, while ablation of FBW7 empowers propagation of ovarian cancer cells. In addition, the m6A reader protein, YTHDF2, is identified as a novel substrate for FBW7. FBW7 counteracts the tumor-promoting effect of YTHDF2 by inducing proteasomal degradation of the latter in ovarian cancer. Furthermore, YTHDF2 globally regulates the turnover of m6A-modified mRNAs, including the pro-apoptotic gene BMF. Conclusions Our study has demonstrated that FBW7 suppresses tumor growth and progression via antagonizing YTHDF2-mediated BMF mRNA decay in ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01340-8.
Collapse
Affiliation(s)
- Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jingyi Cheng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Haiyun Zhao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shanshan Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Woischke C, Jung P, Jung A, Kumbrink J, Eisenlohr S, Auernhammer CJ, Vieth M, Kirchner T, Neumann J. Mixed large cell neuroendocrine carcinoma and squamous cell carcinoma of the colon: detailed molecular characterisation of two cases indicates a distinct colorectal cancer entity. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 7:75-85. [PMID: 33197299 PMCID: PMC7737761 DOI: 10.1002/cjp2.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/12/2020] [Accepted: 09/19/2020] [Indexed: 12/16/2022]
Abstract
We present two rare cases of mixed large cell neuroendocrine carcinoma and squamous cell carcinoma of the colon. A literature search revealed only three published cases with similar histology but none of these reports provided profound molecular and mutational analyses. Our two cases exhibited a distinct, colon-like immunophenotype with strong nuclear CDX2 and β-catenin expression in more than 90% of the tumour cells of both components. We analysed the two carcinomas regarding microsatellite stability, RAS, BRAF and PD-L1 status. In addition, next-generation panel sequencing with Ion AmpliSeq™ Cancer Hotspot Panel v2 was performed. This approach revealed mutations in FBXW7, CTNNB1 and PIK3CA in the first case and FBXW7 and RB1 mutations in the second case. We looked for similar mutational patterns in three publicly available colorectal adenocarcinoma data sets, as well as in collections of colorectal mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) and colorectal neuroendocrine carcinomas. This approach indicated that the FBXW7 point mutation, without being accompanied by classical adenoma-carcinoma sequence mutations, such as APC, KRAS and TP53, likely occurs at a relatively high frequency in mixed neuroendocrine and squamous cell carcinoma and therefore may be characteristic for this rare tumour type. FBXW7 codifies the substrate recognition element of an ubiquitin ligase, and inactivating FBXW7 mutations lead to an exceptional accumulation of its target β-catenin which results in overactivation of the Wnt-signalling pathway. In line with previously described hypotheses of de-differentiation of colon cells by enhanced Wnt-signalling, our data indicate a crucial role for mutant FBXW7 in the unusual morphological switch that determines these rare neoplasms. Therefore, mixed large cell neuroendocrine and a squamous cell carcinoma can be considered as a distinct carcinoma entity in the colon, defined by morphology, immunophenotype and distinct molecular genetic alteration(s).
Collapse
Affiliation(s)
- Christine Woischke
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Jung
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Jung
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany
| | | | - Christoph Josef Auernhammer
- Medizinische Klinik und Poliklinik 4, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Thomas Kirchner
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Neumann
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Arnold A, Tronser M, Sers C, Ahadova A, Endris V, Mamlouk S, Horst D, Möbs M, Bischoff P, Kloor M, Bläker H. The majority of β-catenin mutations in colorectal cancer is homozygous. BMC Cancer 2020; 20:1038. [PMID: 33115416 PMCID: PMC7594410 DOI: 10.1186/s12885-020-07537-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
Background β-catenin activation plays a crucial role for tumourigenesis in the large intestine but except for Lynch syndrome (LS) associated cancers stabilizing mutations of β-catenin gene (CTNNB1) are rare in colorectal cancer (CRC). Previous animal studies provide an explanation for this observation. They showed that CTNNB1 mutations induced transformation in the colon only when CTNNB1 was homozygously mutated or when membranous β-catenin binding was hampered by E-cadherin haploinsufficiency. We were interested, if these mechanisms are also found in human CTNNB1 mutated CRCs. Results Among 869 CRCs stabilizing CTNNB1 mutations were found in 27 cases. Homo- or hemizygous CTNNB1 mutations were detected in 74% of CTNNB1 mutated CRCs (13 microsatellite instabile (MSI-H), 7 microsatellite stabile (MSS)) but only in 3% (1/33) of extracolonic CTNNB1 mutated cancers. In contrast to MSS CRC, CTNNB1 mutations at codon 41 or 45 were highly selected in MSI-H CRC. Of the examined three CRC cell lines, β-catenin and E-cadherin expression was similar in cell lines without or with hetereozygous CTNNB1 mutations (DLD1 and HCT116), while a reduced E-cadherin expression combined with cytoplasmic accumulation of β-catenin was found in a cell line with homozygous CTNNB1 mutation (LS180). Reduced expression of E-cadherin in human MSI-H CRC tissue was identified in 60% of investigated cancers, but no association with the CTNNB1 mutational status was found. Conclusions In conclusion, this study shows that in contrast to extracolonic cancers stabilizing CTNNB1 mutations in CRC are commonly homo- or hemizygous indicating a higher threshold of β-catenin stabilization to be required for transformation in the colon as compared to extracolonic sites. Moreover, we found different mutational hotspots in CTNNB1 for MSI-H and MSS CRCs suggesting a selection of different effects on β-catenin stabilization according to the molecular pathway of tumourigenesis. Reduced E-cadherin expression in CRC may further contribute to higher levels of transcriptionally active β-catenin, but it is not directly linked to the CTNNB1 mutational status. Supplementary information Supplementary information accompanies this paper at 10.1186/s12885-020-07537-2.
Collapse
Affiliation(s)
- Alexander Arnold
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Virchoweg 15 / Charitéplatz 1, 10117, Berlin, Germany.
| | - Moritz Tronser
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Virchoweg 15 / Charitéplatz 1, 10117, Berlin, Germany
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Virchoweg 15 / Charitéplatz 1, 10117, Berlin, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ); Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Endris
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Soulafa Mamlouk
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Virchoweg 15 / Charitéplatz 1, 10117, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Virchoweg 15 / Charitéplatz 1, 10117, Berlin, Germany
| | - Markus Möbs
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Virchoweg 15 / Charitéplatz 1, 10117, Berlin, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Virchoweg 15 / Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ); Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Virchoweg 15 / Charitéplatz 1, 10117, Berlin, Germany.,Present address: Institute of Pathology, Universitätsklinikum Leipzig, Leipzig, Germany
| |
Collapse
|
17
|
Zhang Z, Hu Q, Xu W, Liu W, Liu M, Sun Q, Ye Z, Fan G, Qin Y, Xu X, Yu X, Ji S. Function and regulation of F-box/WD repeat-containing protein 7. Oncol Lett 2020; 20:1526-1534. [PMID: 32724394 PMCID: PMC7377190 DOI: 10.3892/ol.2020.11728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/16/2020] [Indexed: 01/03/2023] Open
Abstract
The ubiquitin-proteasome system is an important post-translational modification system involved in numerous biological processes, such as cell cycle regulation, gene transcription, signal transduction, apoptosis, differentiation and development. F-box/WD repeat-containing protein 7 (FBXW7) is one of the most studied F-box (FBX) proteins, serving as substrate recognition component of S phase kinase-associated protein 1-Cullin 1-FBX protein complexes. As a tumor suppressor, FBXW7 recognizes numerous proto-oncoproteins and promotes their ubiquitination and subsequent proteasomal degradation. FBXW7 is regulated at different levels, leading to tunable and specific control of the activity and abundance of its substrates. Therefore, genetic mutations or decreases in its expression serve an important biological role in tumor development. In-depth studies and identification of additional substrates targeted by FBXW7 have suggested a signaling network regulated by FBXW7, including its tumor-inhibitory role. The present review focused on the role of FBXW7 in tumor suppression and its application in cancer therapy.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
18
|
Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 2020; 67:1-15. [PMID: 32113998 DOI: 10.1016/j.semcancer.2020.02.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
FBXW7 (also known as Fbw7, Sel10, hCDC4, or hAgo) is a tumor suppressor and the most frequently mutated member of the F-box protein family in human cancers. FBXW7 functions as the substrate recognition component of an SCF-type E3 ubiquitin ligase. It specifically controls the proteasome-mediated degradation of many oncoproteins such as c-MYC, NOTCH, KLF5, cyclin E, c-JUN, and MCL1. In this review, we summarize the molecular and biological features of FBXW7 and its substrates as well as the impact of mutations of FBXW7 on cancer development. We also address the clinical potential of anticancer therapy targeting FBXW7.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
19
|
Liu J, Peng Y, Zhang J, Long J, Liu J, Wei W. Targeting SCF E3 Ligases for Cancer Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:123-146. [PMID: 31898226 DOI: 10.1007/978-981-15-1025-0_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SKP1-cullin-1-F-box-protein (SCF) E3 ubiquitin ligase complex is responsible for the degradation of proteins in a strictly regulated manner, through which it exerts pivotal roles in regulating various key cellular processes including cell cycle and division, apoptosis, and differentiation. The substrate specificity of the SCF complex largely depends on the distinct F-box proteins, which function in either tumor promotion or suppression or in a context-dependent manner. Among the 69 F-box proteins identified in human genome, FBW7, SKP2, and β-TRCP have been extensively investigated among various types of cancer in respective of their roles in cancer development, progression, and metastasis. Moreover, several specific inhibitors have been developed to target those E3 ligases, and their efficiency in tumors has been determined. In this review, we provide a summary of the roles of SCF E3 ligases in cancer development, as well as the potential application of miRNA or specific inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Fbxw7 is a driver of uterine carcinosarcoma by promoting epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2019; 116:25880-25890. [PMID: 31772025 PMCID: PMC6926017 DOI: 10.1073/pnas.1911310116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Uterine carcinosarcoma (UCS) is an aggressive endometrial cancer variant distinguished from endometrial adenocarcinoma (EC) by admixed malignant epithelial and mesenchymal components (carcinoma and sarcoma). The molecular events underlying UCS are enigmatic, as cancer gene mutations are generally shared among UCS/EC. We take advantage of genetic approaches in mice to show that inactivation of Fbxw7 and Pten results in UCS through spontaneous acquisition of mutations in a third gene (Tp53), arguing for strong biological selection and synergism in UCS. We used this UCS model including tumor-derived cell lines to show that Fbxw7 loss drives epithelial–mesenchymal transition, explaining Fbxw7’s role in UCS. This model system argues that simultaneous genetic defects in 3 distinct pathways (Fbxw7, Pten/PI3K, Tp53) converge in UCS genesis. Uterine carcinosarcoma is an aggressive variant of endometrial carcinoma characterized by unusual histologic features including discrete malignant epithelial and mesenchymal components (carcinoma and sarcoma). Recent studies have confirmed a monoclonal origin, and comprehensive genomic characterizations have identified mutations such as Tp53 and Pten. However, the biological origins and specific combination of driver events underpinning uterine carcinosarcoma have remained mysterious. Here, we explored the role of the tumor suppressor Fbxw7 in endometrial cancer through defined genetic model systems. Inactivation of Fbxw7 and Pten resulted in the formation of precancerous lesions (endometrioid intraepithelial neoplasia) and well-differentiated endometrioid adenocarcinomas. Surprisingly, all adenocarcinomas eventually developed into definitive uterine carcinosarcomas with carcinomatous and sarcomatous elements including heterologous differentiation, yielding a faithful genetically engineered model of this cancer type. Genomic analysis showed that most tumors spontaneously acquired Trp53 mutations, pointing to a triad of pathways (p53, PI3K, and Fbxw7) as the critical combination underpinning uterine carcinosarcoma, and to Fbxw7 as a key driver of this enigmatic endometrial cancer type. Lineage tracing provided formal genetic proof that the uterine carcinosarcoma cell of origin is an endometrial epithelial cell that subsequently undergoes a prominent epithelial–mesenchymal transition underlying the attainment of a highly invasive phenotype specifically driven by Fbxw7.
Collapse
|
21
|
Zhang Q, Mady ASA, Ma Y, Ryan C, Lawrence TS, Nikolovska-Coleska Z, Sun Y, Morgan MA. The WD40 domain of FBXW7 is a poly(ADP-ribose)-binding domain that mediates the early DNA damage response. Nucleic Acids Res 2019; 47:4039-4053. [PMID: 30722038 PMCID: PMC6486556 DOI: 10.1093/nar/gkz058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/03/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
FBXW7, a classic tumor suppressor, is a substrate recognition subunit of the Skp1-cullin-F-box (SCF) ubiquitin ligase that targets oncoproteins for ubiquitination and degradation. We recently found that FBXW7 is recruited to DNA damage sites to facilitate nonhomologous end-joining (NHEJ). The detailed underlying molecular mechanism, however, remains elusive. Here we report that the WD40 domain of FBXW7, which is responsible for substrate binding and frequently mutated in human cancers, binds to poly(ADP-ribose) (PAR) immediately following DNA damage and mediates rapid recruitment of FBXW7 to DNA damage sites, whereas ATM-mediated FBXW7 phosphorylation promotes its retention at DNA damage sites. Cancer-associated arginine mutations in the WD40 domain (R465H, R479Q and R505C) abolish both FBXW7 interaction with PAR and recruitment to DNA damage sites, causing inhibition of XRCC4 polyubiquitination and NHEJ. Furthermore, inhibition or silencing of poly(ADP-ribose) polymerase 1 (PARP1) inhibits PAR-mediated recruitment of FBXW7 to the DNA damage sites. Taken together, our study demonstrates that the WD40 domain of FBXW7 is a novel PAR-binding motif that facilitates early recruitment of FBXW7 to DNA damage sites for subsequent NHEJ repair. Abrogation of this ability seen in cancer-derived FBXW7 mutations provides a molecular mechanism for defective DNA repair, eventually leading to genome instability.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ahmed S A Mady
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yuanyuan Ma
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caila Ryan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Yi Sun
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Kuai X, Li L, Chen R, Wang K, Chen M, Cui B, Zhang Y, Li J, Zhu H, Zhou H, Huang J, Qin J, Wang Z, Wei W, Gao D. SCF FBXW7/GSK3β-Mediated GFI1 Degradation Suppresses Proliferation of Gastric Cancer Cells. Cancer Res 2019; 79:4387-4398. [PMID: 31289136 DOI: 10.1158/0008-5472.can-18-4032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/24/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
Gastric cancer is the third leading cause of cancer-related death worldwide. The regulatory mechanisms underlying gastric cancer cell proliferation are largely unclear. Here, we show that the transcription factor GFI1 is associated with advanced clinical gastric cancer progression and promoted gastric cancer cell proliferation partially through inhibition of gastrokine-2 (GKN2) transcription. GFI1 was a degrading substrate of FBXW7, whose loss was observed in gastric cancer. Mechanistically, GSK3β-mediated GFI1 S94/S98 phosphorylation triggered its interaction with FBXW7, resulting in SCFFBXW7-mediated ubiquitination and degradation. A nondegradable GFI1 S94A/S98A mutant was more potent in driving gastric cancer cell proliferation and tumorigenesis than wild-type GFI1. Overall, this study reveals the oncogenic role of GFI1 in gastric cancer and provides mechanistic insights into the tumor suppressor function of FBXW7. SIGNIFICANCE: These findings demonstrate the oncogenic role of the transcription factor GFI1 and the tumor suppressive function of FBXW7 in gastric cancer.
Collapse
Affiliation(s)
- Xiaoling Kuai
- Department of Gastroenterology, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Long Li
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ran Chen
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kangjunjie Wang
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Chen
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Binghai Cui
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuxue Zhang
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianfei Huang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Jun Qin
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiwei Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
23
|
He D, Ma Z, Fang C, Ding J, Yang W, Chen P, Huang L, Wang C, Yu Y, Yang L, Li Y, Zhou Z. Pseudophosphatase STYX promotes tumor growth and metastasis by inhibiting FBXW7 function in colorectal cancer. Cancer Lett 2019; 454:53-65. [PMID: 30981757 DOI: 10.1016/j.canlet.2019.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023]
Abstract
Serine/threonine/tyrosine interacting protein (STYX), a member of protein tyrosine phosphatases, has recently been reported as a potential oncogene. However, the role of STYX in colorectal cancer (CRC) remains unknown. In this study, we found that STYX was highly expressed in CRC tissues and closely correlated with tumor development and survival of CRC patients. In vitro studies showed that overexpression of STYX promoted proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) and inhibited apoptosis in CRC cells, while STYX knockdown had the opposite effects. Consistently, in vivo experiments showed that overexpression of STYX promoted tumor growth and lung metastasis. Mechanically, STYX bound to the F-box and WD repeat domain-containing7 (FBXW7) protein and inhibited its function. Co-regulation of STYX and FBXW7 expression reversed the biological changes mediated by regulation of STYX expression alone in CRC cells. Additionally, FBXW7 expression was negatively associated with STYX expression in CRC tissues, and low STYX levels accompanying high FBXW7 levels predicted favorable prognosis of CRC patients. In conclusion, our results suggest that STYX plays an oncogenic role by inhibiting FBXW7 and represents a potential therapeutic target and prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Diao He
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zida Ma
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jingjing Ding
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenming Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peng Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Libin Huang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Cun Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yongyang Yu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lie Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yuan Li
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
24
|
FBXW7 in Cancer: What Has Been Unraveled Thus Far? Cancers (Basel) 2019; 11:cancers11020246. [PMID: 30791487 PMCID: PMC6406609 DOI: 10.3390/cancers11020246] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
: The FBXW7 (F-box with 7 tandem WD40) protein encoded by the gene FBXW7 is one of the crucial components of ubiquitin ligase called Skp1-Cullin1-F-box (SCF) complex that aids in the degradation of many oncoproteins via the ubiquitin-proteasome system (UPS) thus regulating cellular growth. FBXW7 is considered as a potent tumor suppressor as most of its target substrates can function as potential growth promoters, including c-Myc, Notch, cyclin E, c-JUN, and KLF5. Its regulators include p53, C/EBP-δ, Numb, microRNAs, Pin 1, Hes-5, BMI1, Ebp2. Mounting evidence has indicated the involvement of aberrant expression of FBXW7 for tumorigenesis. Moreover, numerous studies have also shown its role in cancer cell chemosensitization, thereby demonstrating the importance of FBXW7 in the development of curative cancer therapy. This comprehensive review emphasizes on the targets, functions, regulators and expression of FBXW7 in different cancers and its involvement in sensitizing cancer cells to chemotherapeutic drugs.
Collapse
|
25
|
Li N, Babaei-Jadidi R, Lorenzi F, Spencer-Dene B, Clarke P, Domingo E, Tulchinsky E, Vries RGJ, Kerr D, Pan Y, He Y, Bates DO, Tomlinson I, Clevers H, Nateri AS. An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis 2019; 8:13. [PMID: 30783098 PMCID: PMC6381143 DOI: 10.1038/s41389-019-0125-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) patients develop recurrence after chemotherapy owing to the survival of stem cell-like cells referred to as cancer stem-like cells (CSCs). The origin of CSCs is linked to the epithelial-mesenchymal transition (EMT) process. Currently, it remains poorly understood how EMT programmes enable CSCs residing in the tumour microenvironment to escape the effects of chemotherapy. This study identifies a key molecular pathway that is responsible for the formation of drug-resistant CSC populations. Using a modified yeast-2-hybrid system and 2D gel-based proteomics methods, we show that the E3-ubiquitin ligase FBXW7 directly binds and degrades the EMT-inducing transcription factor ZEB2 in a phosphorylation-dependent manner. Loss of FBXW7 induces an EMT that can be effectively reversed by knockdown of ZEB2. The FBXW7-ZEB2 axis regulates such important cancer cell features, as stemness/dedifferentiation, chemoresistance and cell migration in vitro, ex vivo and in animal models of metastasis. High expression of ZEB2 in cancer tissues defines the reduced ZEB2 expression in the cancer-associated stroma in patients and in murine intestinal organoids, demonstrating a tumour-stromal crosstalk that modulates a niche and EMT activation. Our study thus uncovers a new molecular mechanism, by which the CRC cells display differences in resistance to chemotherapy and metastatic potential.
Collapse
Affiliation(s)
- Ningning Li
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- The Seventh Affiliated Hospital of Sun Yat-sen University, 518107, Shenzhen, China
| | - Roya Babaei-Jadidi
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Federica Lorenzi
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Bradley Spencer-Dene
- Advanced Cell Diagnostics, Henry Wellcome Building of Genomic Medicine, Oxford, OX3 7BN, UK
| | - Philip Clarke
- Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Enric Domingo
- Wellcome Trust Centre for Human Genetics, Henry Wellcome Building of Genomic Medicine, Oxford, OX3 7BN, UK
| | - Eugene Tulchinsky
- Department of Cancer Studies, University of Leicester, Leicester, UK
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
| | - Robert G J Vries
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht and University Medical Centre Utrecht, Uppsalalaan 8, 3584CT, Utrecht, Netherlands
| | - David Kerr
- John Radcliffe Hospital, Nuffield Division of Clinical Laboratory Sciences, Oxford, OX3 9DU, UK
| | - Yihang Pan
- The Seventh Affiliated Hospital of Sun Yat-sen University, 518107, Shenzhen, China
| | - Yulong He
- The Seventh Affiliated Hospital of Sun Yat-sen University, 518107, Shenzhen, China
| | - David O Bates
- Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics, Henry Wellcome Building of Genomic Medicine, Oxford, OX3 7BN, UK
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht and University Medical Centre Utrecht, Uppsalalaan 8, 3584CT, Utrecht, Netherlands
| | - Abdolrahman S Nateri
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
26
|
Korphaisarn K, Morris VK, Overman MJ, Fogelman DR, Kee BK, Raghav KPS, Manuel S, Shureiqi I, Wolff RA, Eng C, Menter D, Hamilton SR, Kopetz S, Dasari A. FBXW7 missense mutation: a novel negative prognostic factor in metastatic colorectal adenocarcinoma. Oncotarget 2018; 8:39268-39279. [PMID: 28424412 PMCID: PMC5503612 DOI: 10.18632/oncotarget.16848] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
Background FBXW7 functions as a ubiquitin ligase tagging multiple dominant oncogenic proteins and commonly mutates in colorectal cancer. Data suggest missense mutations lead to greater loss of FBXW7 function than other gene aberrations do. However, the clinicopathologic factors and outcomes associated with FBXW7 missense mutations in metastatic colorectal cancer (mCRC) have not been described. Methods Data were obtained from mCRC patients whose tumors were evaluated by next-generation sequencing for hotspot mutations at The University of Texas MD Anderson Cancer Center. Alterations in FBXW7 were identified, and their associations with clinicopathologic features and overall survival (OS) were evaluated. Results Of 855 mCRC patients, 571 had data on FBXW7 status; 43 (7.5%) had FBXW7 mutations, including 37 with missense mutations. R465C mutations in exon 9 were the most common missense mutations (18.6%). PIK3CA mutations were associated with FBXW7 missense mutations (p=0.012). On univariate analysis, patients with FBXW7 missense mutations had significantly worse OS (median 28.7 mo) than those with wild-type FBXW7 (median 46.6 mo; p=0.003). On multivariate analysis including other known prognostic factors such as BRAF mutations, FBXW7 missense mutations were the strongest negative prognostic factor for OS (hazard ratio 2.0; p=0.003). Conclusions In the largest clinical dataset of mCRC to date, FBXW7 missense mutations showed a strong negative prognostic association.
Collapse
Affiliation(s)
- Krittiya Korphaisarn
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Bangkok, Thailand
| | - Van Karlyle Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David R Fogelman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan K Kee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanwal Pratap Singh Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shanequa Manuel
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cathy Eng
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stanley R Hamilton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Khan OM, Carvalho J, Spencer-Dene B, Mitter R, Frith D, Snijders AP, Wood SA, Behrens A. The deubiquitinase USP9X regulates FBW7 stability and suppresses colorectal cancer. J Clin Invest 2018; 128:1326-1337. [PMID: 29346117 PMCID: PMC5873885 DOI: 10.1172/jci97325] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/16/2018] [Indexed: 01/03/2023] Open
Abstract
The tumor suppressor FBW7 targets oncoproteins such as c-MYC for ubiquitylation and is mutated in several human cancers. We noted that in a substantial percentage of colon cancers, FBW7 protein is undetectable despite the presence of FBW7 mRNA. To understand the molecular mechanism of FBW7 regulation in these cancers, we employed proteomics and identified the deubiquitinase (DUB) USP9X as an FBW7 interactor. USP9X antagonized FBW7 ubiquitylation, and Usp9x deletion caused Fbw7 destabilization. Mice lacking Usp9x in the gut showed reduced secretory cell differentiation and increased progenitor proliferation, phenocopying Fbw7 loss. In addition, Usp9x inactivation impaired intestinal regeneration and increased tumor burden in colitis-associated intestinal cancer. c-Myc heterozygosity abrogated increased progenitor proliferation and tumor burden in Usp9x-deficient mice, suggesting that Usp9x suppresses tumor formation by regulating Fbw7 protein stability and thereby reducing c-Myc. Thus, we identify a tumor suppressor mechanism in the mammalian intestine that arises from the posttranslational regulation of FBW7 by USP9X independent of somatic FBW7 mutations.
Collapse
Affiliation(s)
| | | | | | | | - David Frith
- Proteomics, The Francis Crick Institute, London, United Kingdom
| | | | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Axel Behrens
- Adult Stem Cell Laboratory.,King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, United Kingdom
| |
Collapse
|
28
|
Ikenoue T, Terakado Y, Zhu C, Liu X, Ohsugi T, Matsubara D, Fujii T, Kakuta S, Kubo S, Shibata T, Yamaguchi K, Iwakura Y, Furukawa Y. Establishment and analysis of a novel mouse line carrying a conditional knockin allele of a cancer-specific FBXW7 mutation. Sci Rep 2018; 8:2021. [PMID: 29386660 PMCID: PMC5792591 DOI: 10.1038/s41598-018-19769-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
F-box and WD40 domain protein 7 (FBXW7) is a component of the SKP1-CUL1-F-box protein (SCF) complex that mediates the ubiquitination of diverse oncogenic target proteins. The exploration of FBXW7 mutations in human primary cancer has revealed three mutation hotspots at conserved arginine residues (Arg465, Arg479, and Arg505) in the WD40 domain, which are critical for substrate recognition. To study the function of human FBXW7R465C, the most frequent mutation in human malignancies, we generated a novel conditional knockin mouse line of murine Fbxw7R468C corresponding to human FBXW7R465C. Systemic heterozygous knockin of the Fbxw7R468C mutation resulted in perinatal lethality due to defects in lung development, and occasionally caused an eyes-open at birth phenotype and cleft palate. Furthermore, mice carrying liver-specific heterozygous and homozygous Fbxw7R468C alleles cooperated with an oncogenic Kras mutation to exhibit bile duct hyperplasia within 8 months of birth and cholangiocarcinoma-like lesions within 8 weeks of birth, respectively. In addition, the substrates affected by the mutant Fbxw7 differed between the embryos, embryonic fibroblasts, and adult liver. This novel conditional knockin Fbxw7R468C line should be useful to gain a more profound understanding of carcinogenesis associated with mutation of FBXW7.
Collapse
Affiliation(s)
- Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Yumi Terakado
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chi Zhu
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Xun Liu
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Ohsugi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Tomoki Fujii
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Shigeru Kakuta
- Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sachiko Kubo
- Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology agency, Kawaguchi, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichiro Iwakura
- Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Huang KK, Ramnarayanan K, Zhu F, Srivastava S, Xu C, Tan ALK, Lee M, Tay S, Das K, Xing M, Fatehullah A, Alkaff SMF, Lim TKH, Lee J, Ho KY, Rozen SG, Teh BT, Barker N, Chia CK, Khor C, Ooi CJ, Fock KM, So J, Lim WC, Ling KL, Ang TL, Wong A, Rao J, Rajnakova A, Lim LG, Yap WM, Teh M, Yeoh KG, Tan P. Genomic and Epigenomic Profiling of High-Risk Intestinal Metaplasia Reveals Molecular Determinants of Progression to Gastric Cancer. Cancer Cell 2018; 33:137-150.e5. [PMID: 29290541 DOI: 10.1016/j.ccell.2017.11.018] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/02/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022]
Abstract
Intestinal metaplasia (IM) is a pre-malignant condition of the gastric mucosa associated with increased gastric cancer (GC) risk. We performed (epi)genomic profiling of 138 IMs from 148 cancer-free patients, recruited through a 10-year prospective study. Compared with GCs, IMs exhibit low mutational burdens, recurrent mutations in certain tumor suppressors (FBXW7) but not others (TP53, ARID1A), chromosome 8q amplification, and shortened telomeres. Sequencing identified more IM patients with active Helicobacter pylori infection compared with histopathology (11%-27%). Several IMs exhibited hypermethylation at DNA methylation valleys; however, IMs generally lack intragenic hypomethylation signatures of advanced malignancy. IM patients with shortened telomeres and chromosomal alterations were associated with subsequent dysplasia or GC; conversely patients exhibiting normal-like epigenomic patterns were associated with regression.
Collapse
Affiliation(s)
- Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kalpana Ramnarayanan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Pathology, National University of Singapore, Singapore 119228, Singapore
| | - Chang Xu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Angie Lay Keng Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Minghui Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Suting Tay
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kakoli Das
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Manjie Xing
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore; Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Aliya Fatehullah
- Institute of Medical Biology, A-STAR, Singapore 138648, Singapore
| | | | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Jonathan Lee
- Department of Gastroenterology and Hepatology, National University Health System, Singapore 119074, Singapore
| | - Khek Yu Ho
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore 119074, Singapore
| | - Steven George Rozen
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Bin Tean Teh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Nick Barker
- Institute of Medical Biology, A-STAR, Singapore 138648, Singapore; Centre for Regenerative Medicine, Edinburgh EH16 4UU, UK
| | - Chung King Chia
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Christopher Khor
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169854, Singapore
| | - Choon Jin Ooi
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169854, Singapore
| | - Kwong Ming Fock
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore 529889, Singapore
| | - Jimmy So
- Department of Surgery, National University of Singapore, Singapore 119228, Singapore
| | - Wee Chian Lim
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Khoon Lin Ling
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169854, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore 529889, Singapore
| | - Andrew Wong
- Department of Surgery, Changi General Hospital, Singapore 529889, Singapore
| | - Jaideepraj Rao
- Department of Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | | | | | - Wai Ming Yap
- Department of Pathology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore 119228, Singapore.
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore 119074, Singapore; Singapore Gastric Cancer Consortium, Singapore 119074, Singapore.
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore; SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore 169856, Singapore; Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore; Singapore Gastric Cancer Consortium, Singapore 119074, Singapore.
| |
Collapse
|
30
|
Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene 2017; 37:148-159. [PMID: 28925398 PMCID: PMC5770599 DOI: 10.1038/onc.2017.313] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Accumulative studies revealed that E3 ubiquitin ligases have important roles in colorectal carcinogenesis. The pathogenic mechanisms of colorectal cancer (CRC) initiation and progression are complex and heterogeneous, involving somatic mutations, abnormal gene fusion, deletion or amplification and epigenetic alteration, which may cause aberrant expression or altered function of E3 ligases in CRC. Defects of E3 ligases have been reported to be involved in the molecular etiology and pathogenesis of CRC. The aberrant expressed E3 ligases can function as either oncogenes or tumor suppressors depending on ubiquiting target substrates in CRC. Recently, considerable progress has been made in our understanding of the potential roles of E3 ligase-mediated ubiquitylation in colorectal carcinogenesis. There are mainly two subtypes of E3 ubiquitin ligases in humans, as defined by the presence of either a HECT domain or a RING finger domain on the basis of structural similitude. Most cancer-associated E3 ligases participate in regulating the cell cycle, apoptosis, gene transcription, cell signaling and DNA repair, the critical parts of CRC tumorigenesis. In this review, we have provided a comprehensive summary of abnormally expressed E3 ligases and their related pivotal mechanistic effects in CRC. In particular, we have highlighted the function of RING-type E3 ubiquitin enzymes in modulating cancer signaling pathways, immunity and tumor microenvironment in CRC development and progression; their mechanism(s) of action in CRC involving both ubiquitylation-dependent and ubiquitylation-independent effects; and the potential of RING E3 ligases as molecular biomarkers for predicting patient prognosis and as therapeutic targets in CRC. A better understanding of E3 ligase-mediated substrates' ubiquitylation involved in the development of CRC will provide new insights into the pathophysiology mechanisms of CRC, and unravel novel prognostic markers and therapeutic strategies for CRC.
Collapse
|
31
|
Wang Y, Zhang P, Wang Y, Zhan P, Liu C, Mao JH, Wei G. Distinct Interactions of EBP1 Isoforms with FBXW7 Elicits Different Functions in Cancer. Cancer Res 2017; 77:1983-1996. [PMID: 28209614 DOI: 10.1158/0008-5472.can-16-2246] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/09/2017] [Accepted: 01/25/2017] [Indexed: 01/07/2023]
Abstract
The ErbB3 receptor-binding protein EBP1 encodes two alternatively spliced isoforms P48 and P42. While there is evidence of differential roles for these isoforms in tumorigenesis, little is known about their underlying mechanisms. Here, we demonstrate that EBP1 isoforms interact with the SCF-type ubiquitin ligase FBXW7 in distinct ways to exert opposing roles in tumorigenesis. EBP1 P48 bound to the WD domain of FBXW7 as an oncogenic substrate of FBXW7. EBP1 P48 binding sequestered FBXW7α to the cytosol, modulating its role in protein degradation and attenuating its tumor suppressor function. In contrast, EBP1 P42 bound to both the F-box domain of FBXW7 as well as FBXW7 substrates. This adapter function of EBP1 P42 stabilized the interaction of FBXW7 with its substrates and promoted FBXW7-mediated degradation of oncogenic targets, enhancing its overall tumor-suppressing function. Overall, our results establish distinct physical and functional interactions between FBXW7 and EBP1 isoforms, which yield their mechanistically unique isoform-specific functions of EBP1 in cancer. Cancer Res; 77(8); 1983-96. ©2017 AACR.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Shandong, PR China
| | - Pengju Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Shandong, PR China
| | - Yunshan Wang
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Shandong, PR China.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Panpan Zhan
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Shandong, PR China
| | - Chunyan Liu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Shandong, PR China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Guangwei Wei
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Shandong, PR China.
| |
Collapse
|
32
|
Min BH, Hwang J, Kim NKD, Park G, Kang SY, Ahn S, Ahn S, Ha SY, Lee YK, Kushima R, Van Vrancken M, Kim MJ, Park C, Park HY, Chae J, Jang SS, Kim SJ, Kim YH, Kim JI, Kim KM. Dysregulated Wnt signalling and recurrent mutations of the tumour suppressorRNF43in early gastric carcinogenesis. J Pathol 2016; 240:304-314. [DOI: 10.1002/path.4777] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/06/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Byung-Hoon Min
- Department of Medicine, Samsung Medical Centre; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Jinha Hwang
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
| | - Nayoung KD Kim
- Samsung Genome Institute; Samsung Medical Centre; Seoul Korea
| | - Gibeom Park
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Centre; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sangjeong Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Centre; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Centre; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Centre; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Yun Kyung Lee
- Department of Pathology and Translational Genomics, Samsung Medical Centre; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Ryoji Kushima
- Department of Pathology, Undergraduate School of Medicine; Shiga University of Medical Science; Shiga Japan
| | - Michael Van Vrancken
- Department of Pathology and Laboratory Medicine; Tulane University School of Medicine; New Orleans LA USA
| | - Min Jung Kim
- Cancer Research Institute; Seoul National University College of Medicine; Seoul Korea
| | - Changho Park
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
| | - Ha Young Park
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
- Department of Pathology and Translational Genomics, Samsung Medical Centre; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Jeesoo Chae
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
| | - Se Song Jang
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
| | - Sung Jin Kim
- Samsung Biomedical Research Institute; Samsung Medical Centre; Seoul Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Centre; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Jong-Il Kim
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
- Cancer Research Institute; Seoul National University College of Medicine; Seoul Korea
- Genomic Medicine Institute, Medical Research Centre; Seoul National University; Seoul Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Centre; Sungkyunkwan University School of Medicine; Seoul Korea
| |
Collapse
|
33
|
Oncogenic mutations in the FBXW7 gene of adult T-cell leukemia patients. Proc Natl Acad Sci U S A 2016; 113:6731-6. [PMID: 27247421 DOI: 10.1073/pnas.1601537113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-I) is associated with adult T-cell leukemia (ATL), an aggressive lymphoproliferative disease with a dismal prognosis. We have previously described the presence of Notch1 activating mutations and constitutive Notch1 signaling in patients with acute ATL. In this study, we report a high frequency of F-box and WD repeat domain containing 7 (FBXW7)/hCDC4 mutations within the WD40 substrate-binding domain in 8 of 32 acute ATL patients (25%). Functionally, ATL FBXW7 mutants lost their ability to interact with intracellular Notch (NICD), resulting in increased protein stability and constitutive Notch1 signaling. Consistent with the loss-of-function found in ATL patients, expression of WT FBXW7 in several patient-derived ATL lines demonstrated strong tumor-suppressor activity characterized by reduced proliferation of ATL cells. Remarkably, two FBXW7 mutants, D510E and D527G, demonstrated oncogenic activity when expressed in the presence of HTLV-I Tax, mutated p53 R276H, or c-Myc F138C found in human cancers. Transforming activity was further demonstrated by the ability of the FBXW7 D510E mutant to provide IL-2-independent growth of Tax-immortalized human T cells and increase the tumor formation in a xenograft mouse model of ATL. This study suggests that FBXW7, normally a tumor suppressor, can act as an oncogene when mutated and may play an important role in the pathogenesis of ATL.
Collapse
|
34
|
Lorenzi F, Babaei-Jadidi R, Sheard J, Spencer-Dene B, Nateri AS. Fbxw7-associated drug resistance is reversed by induction of terminal differentiation in murine intestinal organoid culture. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16024. [PMID: 27110583 PMCID: PMC4830362 DOI: 10.1038/mtm.2016.24] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/29/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the top three cancer-related causes of death worldwide. FBXW7 is a known tumor-suppressor gene, commonly mutated in CRC and in a variety of other epithelial tumors. Low expression of FBXW7 is also associated with poor prognosis. Loss of FBXW7 sensitizes cancer cells to certain drugs, while making them more resistant to other types of chemotherapies. However, is not fully understood how epithelial cells within normal gut and primary tumors respond to potential cancer therapeutics. We have studied genetically engineered mice in which the fbxw7 gene is conditionally knocked-out in the intestine (fbxw7∆G). To further investigate the mechanism of Fbxw7-action, we grew intestinal crypts from floxed-fbxw7 (fbxw7fl/fl) and fbxw7ΔG mice, in a Matrigel-based organoid (mini-gut) culture. The fbxw7ΔG organoids exhibited rapid budding events in the crypt region. Furthermore, to test organoids for drug response, we exposed day 3 intestinal organoids from fbxw7fl/fl and fbxw7∆G mice, to various concentrations of 5-fluorouracil (5-FU) for 72 hours. 5-FU triggers phenotypic differences in organoids including changing shape, survival, resistance, and death. 5-FU however, rescues the drug-resistance phenotype of fbxw7ΔG through the induction of terminal differentiation. Our results support the hypothesis that a differentiating therapy successfully targets FBXW7-mutated CRC cells.
Collapse
Affiliation(s)
- Federica Lorenzi
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham , Nottingham, UK
| | - Roya Babaei-Jadidi
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham , Nottingham, UK
| | - Jonathan Sheard
- CM Technologies Oy I, Institute for Biomedical Technology, University of Tampere , Tampere, Finland
| | - Bradley Spencer-Dene
- Experimental Pathology Laboratory, Cancer Research UK London Research Institute, The Francis Crick Institute, Lincoln's Inn Fields Laboratory , London, UK
| | - Abdolrahman S Nateri
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham , Nottingham, UK
| |
Collapse
|
35
|
Li N, Lorenzi F, Kalakouti E, Normatova M, Babaei-Jadidi R, Tomlinson I, Nateri AS. FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15. Oncotarget 2016; 6:9240-56. [PMID: 25860929 PMCID: PMC4496214 DOI: 10.18632/oncotarget.3284] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
FBXW7 mutations occur in a variety of human cancers including colorectal cancer (CRC). Elucidating its mechanism of action has become crucial for cancer therapy; however, it is also complicated by the fact that FBXW7 can influence many pathways due to its role as an E3-ubiquitin ligase in proteasome degradation. FBXW7 and TP53 are tumour suppressors intensively implicated in colorectal carcinogenesis. Deletion mutations in these two genes in animal models mark the progression from adenoma to carcinoma. Although still largely unknown, the last defense mechanism against CRC at the molecular level could be through a synergistic effect of the two genes. The underlying mechanism requires further investigation. In our laboratory, we have used a phospho-kinase profiler array to illustrate a potential molecular link between FBXW7 and p53 in CRC cells. In vitro and in vivo assessments demonstrated aberrant induction of phosphorylated p53 at Serine 15 [phospho-p53(Ser15)] in human FBXW7-deficient CRC cells as compared to their FBXW7-wild-type counterparts. FBXW7 loss in HCT116 cells promoted resistance to oxaliplatin. Immunoblotting data further confirmed that reduction of phospho-p53(Ser15) may contribute to the decreased efficacy of therapy in FBXW7-mutated CRC cells. The findings may suggest the applicability of phospho-p53(Ser15) as an indicative marker of FBXW7-mutations. Phospho-p53(Ser15) regulation by FBXW7 E3-ligase activity could provide important clues for understanding FBXW7 behavior in tumour progression and grounds for its clinical applicability thereafter.
Collapse
Affiliation(s)
- Ningning Li
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Federica Lorenzi
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Eliana Kalakouti
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.,Hillingdon Hospital, Uxbridge UB8 3NN, UK
| | - Makhliyo Normatova
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Abdolrahman S Nateri
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
36
|
Zhong JL, Huang CZ. Ubiquitin proteasome system research in gastrointestinal cancer. World J Gastrointest Oncol 2016; 8:198-206. [PMID: 26909134 PMCID: PMC4753170 DOI: 10.4251/wjgo.v8.i2.198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/25/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design.
Collapse
|
37
|
Xu W, Taranets L, Popov N. Regulating Fbw7 on the road to cancer. Semin Cancer Biol 2015; 36:62-70. [PMID: 26459133 DOI: 10.1016/j.semcancer.2015.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 12/22/2022]
Abstract
The F-box protein Fbw7 targets for degradation critical cellular regulators, thereby controlling essential processes in cellular homeostasis, including cell cycle, differentiation and apoptosis. Most Fbw7 substrates are strongly associated with tumorigenesis and Fbw7 can either suppress or promote tumor development in mouse models. Fbw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates. Here we highlight recent studies on the role of Fbw7 in controlling tumorigenesis and on the mechanisms that modulate Fbw7 function.
Collapse
Affiliation(s)
- Wenshan Xu
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Lyudmyla Taranets
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Nikita Popov
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany.
| |
Collapse
|
38
|
Heo J, Eki R, Abbas T. Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 2015; 36:33-51. [PMID: 26432751 DOI: 10.1016/j.semcancer.2015.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023]
Abstract
F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
39
|
Fbw7 and its counteracting forces in stem cells and cancer: Oncoproteins in the balance. Semin Cancer Biol 2015; 36:52-61. [PMID: 26410034 DOI: 10.1016/j.semcancer.2015.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
Abstract
Fbw7 is well characterised as a stem cell regulator and tumour suppressor, powerfully positioned to control proliferation, differentiation and apoptosis by targeting key transcription factors for ubiquitination and destruction. Evidence in support of these roles continues to accumulate from in vitro studies, mouse models and human patient data. Here we summarise the latest of these findings, highlighting the tumour-suppressive role of Fbw7 in multiple tissues, and the rare circumstances where Fbw7 activity can be oncogenic. We discuss mechanisms that regulate ubiquitination by Fbw7, including ubiquitin-specific proteases such as USP28 that counteract Fbw7 activity and thereby stabilise oncoproteins. Deubiquitination of key Fbw7 substrates to prevent their destruction is beginning to be appreciated as an important pro-tumourigenic mechanism. As the ubiquitin-proteasome system represents a largely untapped field for drug development, the interplay between Fbw7 and its counterpart deubiquitinating enzymes in tumours is likely to attract increasing interest and influence future treatment strategies.
Collapse
|
40
|
Zhou Z, He C, Wang J. Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep 2015; 34:2215-24. [PMID: 26324296 DOI: 10.3892/or.2015.4227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/29/2015] [Indexed: 11/05/2022] Open
Abstract
F-box and WD repeat domain-containing 7 (Fbxw7), the substrate-recognition component of SCFFbxw7 complex, is thought to be a tumor suppressor involved in cell growth, proliferation, differentiation and survival. Although an increasing number of ubiquitin substrates of Fbxw7 have been identified, the best characterized substrates are cyclin E and c-Myc. Fbxw7/cyclin E and Fbxw7/c-Myc pathways are tightly regulated by multiple regulators. Fbxw7 has been identified as a tumor suppressor in hepatocellular carcinoma. This review focused on the regulation of Fbxw7/cyclin E and Fbxw7/c-Myc pathways and discussed findings to gain a better understanding of the role of Fbxw7 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
41
|
GONG JIAN, CAO JUAN, LIU GUINAN, HUO JIRONG. Function and mechanism of F-box proteins in gastric cancer (Review). Int J Oncol 2015; 47:43-50. [DOI: 10.3892/ijo.2015.2983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/24/2015] [Indexed: 11/06/2022] Open
|
42
|
GONG JIAN, HUO JIRONG. New insights into the mechanism of F-box proteins in colorectal cancer (Review). Oncol Rep 2015; 33:2113-20. [DOI: 10.3892/or.2015.3823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/10/2015] [Indexed: 11/05/2022] Open
|
43
|
Luscan A, Just PA, Briand A, Burin des Roziers C, Goussard P, Nitschké P, Vidaud M, Avril MF, Terris B, Pasmant E. Uveal melanoma hepatic metastases mutation spectrum analysis using targeted next-generation sequencing of 400 cancer genes. Br J Ophthalmol 2014; 99:437-9. [PMID: 25361747 DOI: 10.1136/bjophthalmol-2014-305371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS Uveal melanoma (UM) is the most common malignant tumour of the eye. Diagnosis often occurs late in the course of disease, and prognosis is generally poor. Recently, recurrent somatic mutations were described, unravelling additional specific altered pathways in UM. Targeted next-generation sequencing (NGS) can now be applied to an accurate and fast identification of somatic mutations in cancer. The aim of the present study was to characterise the mutation pattern of five UM hepatic metastases with well-defined clinical and pathological features. METHODS We analysed the UM mutation spectrum using targeted NGS on 409 cancer genes. RESULTS Four previous reported genes were found to be recurrently mutated. All tumours presented mutually exclusive GNA11 or GNAQ missense mutations. BAP1 loss-of-function mutations were found in three UMs. SF3B1 missense mutations were found in the two UMs with no BAP1 mutations. We then searched for additional mutation targets. We identified the Arg505Cys mutation in the tumour suppressor FBXW7. The same mutation was previously described in different cancer types, and FBXW7 was recently reported to be mutated in UM exomes. CONCLUSIONS Further studies are required to confirm FBXW7 implication in UM tumorigenesis. Elucidating the molecular mechanisms underlying UM tumorigenesis holds the promise for novel and effective targeted UM therapies.
Collapse
Affiliation(s)
- A Luscan
- Service de Biochimie et de Génétique Moléculaire, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, France EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - P A Just
- INSERM, U1016, Institut Cochin, and CNRS, UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France Service d'Anatomie et Cytologie Pathologiques, AP-HP, Hôpital Cochin, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - A Briand
- Service de Biochimie et de Génétique Moléculaire, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, France EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - C Burin des Roziers
- Service de Biochimie et de Génétique Moléculaire, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - P Goussard
- Service de Biochimie et de Génétique Moléculaire, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - P Nitschké
- Plateforme de Bioinformatique, Université Paris Descartes Sorbonne Paris Cité, Institut IMAGINE, Paris, France
| | - M Vidaud
- Service de Biochimie et de Génétique Moléculaire, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, France EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - M F Avril
- Institut Cochin-INSERM U1016, CNRS UMR 8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France APHP, Department of Dermatology, Cochin Hospital, Paris, France
| | - B Terris
- INSERM, U1016, Institut Cochin, and CNRS, UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France Service d'Anatomie et Cytologie Pathologiques, AP-HP, Hôpital Cochin, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - E Pasmant
- Service de Biochimie et de Génétique Moléculaire, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, France EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| |
Collapse
|
44
|
Davis RJ, Welcker M, Clurman BE. Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell 2014; 26:455-64. [PMID: 25314076 PMCID: PMC4227608 DOI: 10.1016/j.ccell.2014.09.013] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022]
Abstract
Tumor suppressors with widespread impact on carcinogenesis control broad spectra of oncogenic pathways. Protein degradation is an emerging mechanism by which tumor suppressors regulate a diversity of pathways and is exemplified by the SCF(Fbw7) ubiquitin ligase. Rapidly accumulating data indicate that SCF(Fbw7) regulates a network of crucial oncoproteins. Importantly, the FBXW7 gene, which encodes Fbw7, is one of the most frequently mutated genes in human cancers. These studies are yielding important new insights into tumorigenesis and may soon enable therapies targeting the Fbw7 pathway. Here, we focus on the mechanisms and consequences of Fbw7 deregulation in cancers and discuss possible therapeutic approaches.
Collapse
Affiliation(s)
- Ryan J Davis
- Clinical Research and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Markus Welcker
- Clinical Research and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bruce E Clurman
- Clinical Research and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
45
|
Chevrier S, Arnould L, Ghiringhelli F, Coudert B, Fumoleau P, Boidot R. Next-generation sequencing analysis of lung and colon carcinomas reveals a variety of genetic alterations. Int J Oncol 2014; 45:1167-74. [PMID: 24990411 DOI: 10.3892/ijo.2014.2528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/04/2014] [Indexed: 11/05/2022] Open
Abstract
The development of targeted therapies in cancer has accelerated the development of molecular diagnosis. This new cancer discipline is booming, with an increasing number of gene alterations to analyze in a growing number of patients. To deal with this fast-developing activity, current analysis techniques (Sanger sequencing, allelic discrimination and high resolution melting) take more and more time. In recent years, next generation sequencing (NGS) technologies have appeared and given new perspectives in oncology. In this study, we analyzed FFPE lung and colon carcinomas using the Truseq Cancer Panel, which analyzes the mutation hotspots of 48 genes. We also tested the use of whole-genome amplification before NGS analysis. NGS results were compared with the data obtained from routine diagnosis. All of the alterations routinely observed were identified by NGS. Moreover, NGS revealed mutations in the KRAS and EGFR genes in patients diagnosed as wild-type by routine techniques. NGS also identified concomitant mutations in EGFR and KRAS or BRAF mutations, and a 15-nt deletion in exon 19 of EGFR in colon carcinomas. The study of the other genes sequenced in the Panel revealed 14 genes altered by 27 different mutations and three SNP with a possible role in cancer susceptibility or in the response to treatment. In conclusion, this study showed that NGS analysis could be used for the analysis of gDNA extracted from FFPE tissues. However, given the high sensitivity of this technology, high-throughput clinical trials are needed to confirm its reliability for the molecular diagnosis of cancer.
Collapse
Affiliation(s)
- Sandy Chevrier
- Department of Biology and Pathology of Tumors, Centre Georges-François Leclerc, 21079 Dijon, France
| | - Laurent Arnould
- Department of Biology and Pathology of Tumors, Centre Georges-François Leclerc, 21079 Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, 21079 Dijon, France
| | - Bruno Coudert
- Department of Medical Oncology, Centre Georges-François Leclerc, 21079 Dijon, France
| | - Pierre Fumoleau
- Department of Medical Oncology, Centre Georges-François Leclerc, 21079 Dijon, France
| | - Romain Boidot
- Department of Biology and Pathology of Tumors, Centre Georges-François Leclerc, 21079 Dijon, France
| |
Collapse
|
46
|
Luan Y, Wang P. FBW7-mediated ubiquitination and degradation of KLF5. World J Biol Chem 2014; 5:216-223. [PMID: 24921010 PMCID: PMC4050114 DOI: 10.4331/wjbc.v5.i2.216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/15/2014] [Accepted: 03/18/2014] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factor (KLF) family proteins are transcription factors that regulate numerous cellular functions, such as cell proliferation, differentiation, and cell death. Posttranslational modification of KLF proteins is important for their transcriptional activities and biological functions. One KLF family member with important roles in cell proliferation and tumorigenesis is KLF5. The function of KLF5 is tightly controlled by post-translational modifications, including SUMOylation, phosphorylation, and ubiquitination. Recent studies from our lab and others’ have demonstrated that the tumor suppressor FBW7 is an essential E3 ubiquitin ligase that targets KLF5 for ubiquitination and degradation. KLF5 contains functional Cdc4 phospho-degrons (CPDs), which are required for its interaction with FBW7. Mutation of CPDs in KLF5 blocks the ubiquitination and degradation of KLF5 by FBW7. The protein kinase Glycogen synthase kinase 3β is involved in the phosphorylation of KLF5 CPDs. In both cancer cell lines and mouse models, it has been shown that FBW7 regulates the expression of KLF5 target genes through the modulation of KLF5 stability. In this review, we summarize the current progress on delineating FBW7-mediated KLF5 ubiquitination and degradation.
Collapse
|
47
|
Abstract
F-box proteins, which are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes, have pivotal roles in multiple cellular processes through ubiquitylation and subsequent degradation of target proteins. Dysregulation of F-box protein-mediated proteolysis leads to human malignancies. Notably, inhibitors that target F-box proteins have shown promising therapeutic potential, urging us to review the current understanding of how F-box proteins contribute to tumorigenesis. As the physiological functions for many of the 69 putative F-box proteins remain elusive, additional genetic and mechanistic studies will help to define the role of each F-box protein in tumorigenesis, thereby paving the road for the rational design of F-box protein-targeted anticancer therapies.
Collapse
Affiliation(s)
- Zhiwei Wang
- 1] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. [2] The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, P. R. China. [3]
| | - Pengda Liu
- 1] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. [2]
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
48
|
Bialkowska AB, Liu Y, Nandan MO, Yang VW. A colon cancer-derived mutant of Krüppel-like factor 5 (KLF5) is resistant to degradation by glycogen synthase kinase 3β (GSK3β) and the E3 ubiquitin ligase F-box and WD repeat domain-containing 7α (FBW7α). J Biol Chem 2014; 289:5997-6005. [PMID: 24398687 DOI: 10.1074/jbc.m113.508549] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Krüppel-like factor 5 (KLF5) is a zinc finger transcription factor that is highly expressed in the crypt epithelial cells of the intestine and plays a critical role in regulating proliferation of both normal intestinal epithelial cells and colorectal cancer cells. Stability of the KLF5 is mediated by proteasomal degradation via phosphorylation by glycogen synthase kinase 3β (GSK3β) and recognition by F-box and WD repeat domain-containing 7 (FBW7) of a phosphodegron sequence surrounding serine 303 in KLF5. A genomic analysis of colorectal cancer tissues identified a somatic mutation (P301S) in KLF5 within the phosphodegron sequence. We hypothesized that due to its close proximity to the phosphodegron sequence, the P301S mutation may affect signaling that is involved in proper KLF5 degradation. We demonstrated that the P301S KLF5 mutant has a longer half-life than wild type (WT) KLF5. Furthermore, P301S KLF5 has a higher transcriptional activity than WT KLF5 as demonstrated by luciferase assays using cyclin D1 and CDC2 promoter constructs. In contrast to WT KLF5, P301S KLF5 does not physically interact with FBW7α. Concomitantly, the P301S KLF5 mutant displays reduced levels of phosphorylation at serine 303 in comparison with WT KLF5. These results of our study indicate that amino acid residue 301 of KLF5 is critical for proper recognition of the phosphodegron sequence by FBW7α and that the P301S mutation inhibits this recognition, leading to a degradation-resistant protein with elevated levels and enhanced transcriptional activity. These findings raise a potentially oncogenic role for the P301S KLF5 mutant in colorectal cancer.
Collapse
|