1
|
He AQ, Xiao WY, Zheng T, Li KY, Li BS, Wang S, Yu QX, Liu G. Efficacy of curcumin supplementation for the treatment and prevention of pouchitis after ileal pouch-anal anastomosis: a randomized controlled trial. Eur J Nutr 2025; 64:167. [PMID: 40295333 DOI: 10.1007/s00394-025-03676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Pouchitis is the most common complication after ileal pouch-anal anastomosis (IPAA) for ulcerative colitis. Induction and maintenance of remission is a crucial therapeutic goal. We investigated curcumin's efficacy in treatment of pouchitis. METHODS The double-blind trial included an induction cohort of refractory pouchitis patients and a maintenance cohort of patients without pouchitis after IPAA. Patients received either placebo or curcumin for 8 weeks. The pouchitis activity were assessed before and after and was compared between cohorts or groups. Laboratory inflammation indicators, nutritional status and quality of life were also appraised. RESULTS 52 patients were included, with 39 and 13 patients entering the maintenance cohort and induction cohort, respectively. In maintenance cohort, the proportion of clinical remission elevated from 11 to 89% in curcumin group (p = 0.005), whereas there was no significant difference in placebo group (10% vs 5%, p = 1).In induction cohort, 67% (4/6) patients achieved clinical response after 8 weeks' intervention of curcumin, whereas none treated with placebo (p = 0.021). Patients treated with curcumin appeared less inflammation and there was no significant difference in indicators changes between two cohorts. CONCLUSIONS Curcumin has preventive and therapeutic effects on pouchitis. Curcumin supplementation can reduce the disease activity and improve the nutritional status of patients with after IPAA. TRIAL REGISTRATION ChiCTR, ChiCTR1900022243. Registered 31 March 2019, https://www.chictr.org.cn/historyversionpub.aspx?regno=ChiCTR1900022243.
Collapse
Affiliation(s)
- An-Qi He
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Wan-Yi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Ting Zheng
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Kai-Yu Li
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Bao-Song Li
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Song Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Qing-Xiang Yu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China.
| |
Collapse
|
2
|
Salim Abed H, Oghenemaro EF, Kubaev A, Jeddoa ZMA, S R, Sharma S, Vashishth R, Jabir MS, Jawad SF, Zwamel AH. Non-coding RNAs as a Critical Player in the Regulation of Inflammasome in Inflammatory Bowel Diseases; Emphasize on lncRNAs. Cell Biochem Biophys 2024:10.1007/s12013-024-01585-2. [PMID: 39424765 DOI: 10.1007/s12013-024-01585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease caused by a dysregulated immune response to host intestinal microflora. A hyperactive inflammatory and immunological response in the gut has been shown to be one of the disease's long-term causes despite the complexity of the clinical pathology of IBD. The innate immune system activator known as human gut inflammasome is thought to be a significant underlying cause of pathology and is closely linked to the development of IBD. It is essential to comprehend the function of inflammasome activation in IBD to treat it effectively. Systemic inflammasome regulation may be a proper therapeutic and clinical strategy to manage IBD symptoms since inflammasomes may have a significant function in IBD. Non-coding RNAs (ncRNAs) are a type of RNA transcript that is incapable of encoding proteins or peptides. In IBD, inflammation develops and worsens as a result of its imbalance. Culminating evidence has been shown that ncRNAs, and particularly long non-coding RNAs (lncRNAs), may play a role in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in IBD. The relationship between IBD and the gut inflammasome, as well as current developments in IBD research and treatment approaches, have been the main topics of this review. We have covered inflammasomes and their constituents, results from in vivo research, inflammasome inhibitors, and advancements in inflammasome-targeted therapeutics for IBD.
Collapse
Affiliation(s)
- Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - RenukaJyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Karbala, Iraq
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001, Babil, Iraq
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Pourmehran Y, Sadri F, Hosseini SF, Mohammadi Y, Rezaei Z. Exploring the influence of non-coding RNAs on NF-κB signaling pathway regulation in ulcerative colitis. Biomed Pharmacother 2024; 179:117390. [PMID: 39243424 DOI: 10.1016/j.biopha.2024.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
The gastrointestinal tract is chronically inflamed in ulcerative colitis (UC), which has a complicated etiology involving immunological, environmental, and genetic factors. The inflammatory response that is typical of UC is significantly regulated via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Latest research has displayed that NF-κB signaling is controlled by three main types of non-coding RNAs (ncRNAs): circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs). These ncRNAs can change the expression of key genes within the NF-κB pathway by acting as molecular sponges, transcriptional regulators, and epigenetic modifiers. This review synthesizes current knowledge on the functions by which ncRNAs modulate NF-κB signaling in UC, discusses their potential as biomarkers for disease prognosis and diagnosis, and explores their therapeutic potential. Understanding the intricate interactions between ncRNAs and NF-κB signaling may provide novel insights into UC pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasaman Pourmehran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyede Fatemeh Hosseini
- Faculty member, Tabas School of Nursing, Birjand University of medical sciences, Birjand, Iran
| | - Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Biology, University of Sistan and Baluchestan, ZahedanIran.
| |
Collapse
|
4
|
Ni J, You Y, Shen X. Correspondence: Reply to commentary on "Vanillic acid restores homeostasis of intestinal epithelium in colitis through inhibiting CA9/STIM1-mediated ferroptosis". Pharmacol Res 2024; 205:107225. [PMID: 38777112 DOI: 10.1016/j.phrs.2024.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Jiahui Ni
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China.
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Artificial Intelligence Innovation and Incubation (AI³) Institute, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Wang C, Yang Y, Jiang C, Xi C, Yin Y, Wu H, Qian C. Exosomes Derived from hucMSCs Primed with IFN-γ Suppress the NF-κB Signal Pathway in LPS-Induced ALI by Modulating the miR-199b-5p/AFTPH Axis. Cell Biochem Biophys 2024; 82:647-658. [PMID: 38216808 DOI: 10.1007/s12013-023-01208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Exosomes (exos) are primarily responsible for the process of mesenchymal stem cells (MSCs) treatment for acute lung injury (ALI), but the mechanism remains unclear, particularly in altered microenvironment. Therefore, this study aimed to investigate the potential mechanism of exos derived from human umbilical cord mesenchymal stem cells (hucMSCs) primed with interferon-gamma (IFN-γ) on ALI and to propose a promising and cell-free strategy. This study extracted exos from hucMSCs supernatant primed and unprimed with IFN-γ marked with IFN-γ-exos and CON-exos, which were identified and traced. IFN-γ-exos administration to ALI models suppressed the NF-κB signaling pathway compared to CON-exos, which were quantified through western blot and immunohistochemical staining. Reverse transcription-quantitative polymerase chain reaction validated miR-199b-5p expression in the IFN-γ-exos and CON-exos treatment groups. Data analysis, a dual-luciferase reporter assay, and cell transfection were conducted to investigate the target binding between miR-199b-5p and Aftiphilin (AFTPH), with AFTPH expression analyzed via cell immunofluorescence and western blot. Co-immunoprecipitation was conducted for the interaction between AFTPH and NF-κB p65. The result revealed that miR-199b-5p was down-regulated in the IFN-γ-exos treatment group, which had a target binding site with AFTPH, and an interaction with NF-κB p65. Consequently, IFN-γ-exos inhibited the NF-κB signaling pathway in ALI in vitro and in vivo through the miR-199b-5p/AFTPH axis. Our results demonstrated new directions of novel and targeted treatment for ALI.
Collapse
Affiliation(s)
- Chun Wang
- Kunming Medical University, Kunming, Yunnan, China
- Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yiran Yang
- Kunming Medical University, Kunming, Yunnan, China
| | - Chen Jiang
- Kunming Medical University, Kunming, Yunnan, China
| | - Cheng Xi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yunxiang Yin
- Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haiying Wu
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Chuanyun Qian
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Zhao H, Tian X, Wu B, Lu Y, Du J, Peng S, Xiao Y. Neurotensin contributes to cholestatic liver disease potentially modulating matrix metalloprotease-7. Int J Biochem Cell Biol 2024; 170:106567. [PMID: 38522506 DOI: 10.1016/j.biocel.2024.106567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The diagnosis and treatment of biliary atresia pose challenges due to the absence of reliable biomarkers and limited understanding of its etiology. The plasma and liver of patients with biliary atresia exhibit elevated levels of neurotensin. To investigate the specific role of neurotensin in the progression of biliary atresia, the patient's liver pathological section was employed. Biliary organoids, cultured biliary cells, and a mouse model were employed to elucidate both the potential diagnostic significance of neurotensin and its underlying mechanistic pathway. In patients' blood, the levels of neurotensin were positively correlated with matrix metalloprotease-7, interleukin-8, and liver function enzymes. Neurotensin and neurotensin receptors were mainly expressed in the intrahepatic biliary cells and were stimulated by bile acids. Neurotensin suppressed the growth and increased expression of matrix metalloprotease-7 in biliary organoids. Neurotensin inhibited mitochondrial respiration, oxidative phosphorylation, and attenuated the activation of calmodulin-dependent kinase kinase 2-adenosine monophosphate-activated protein kinase (CaMKK2-AMPK) signaling in cultured biliary cells. The stimulation of neurotensin in mice and cultured cholangiocytes resulted in the upregulation of matrix metalloprotease-7 expression through binding to its receptors, namely neurotensin receptors 1/3, thereby attenuating the activation of the CaMKK2-AMPK pathway. In conclusion, these findings revealed the changes of neurotensin in patients with cholestatic liver disease and its mechanism in the progression of the disease, providing a new understanding of the complex mechanism of hepatobiliary injury in children with biliary atresia.
Collapse
Affiliation(s)
- Hongxia Zhao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xinbei Tian
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bo Wu
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Lu
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jun Du
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shicheng Peng
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
7
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
8
|
Innocenti T, Bigagli E, Lynch EN, Galli A, Dragoni G. MiRNA-Based Therapies for the Treatment of Inflammatory Bowel Disease: What Are We Still Missing? Inflamm Bowel Dis 2023; 29:308-323. [PMID: 35749310 DOI: 10.1093/ibd/izac122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 02/05/2023]
Abstract
Micro-RNAs (miRNAs) are noncoding RNAs usually 24-30 nucleotides long that play a central role in epigenetic mechanisms of inflammatory diseases and cancers. Recently, several studies have assessed the involvement of miRNAs in the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated neoplasia. Particularly, it has been shown that many members of miRNAs family are involved in the pathways of inflammation and fibrogenesis of IBD; therefore, their use as inflammatory and fibrosis biomarkers has been postulated. In light of these results, the role of miRNAs in IBD therapy has been proposed and is currently under investigation with many in vitro and in vivo studies, murine models, and a phase 2a trial. The accumulating data have pushed miRNA-based therapy closer to clinical practice, although many open questions remain. With this systematic review, we discuss the current knowledge about the therapeutic effects of miRNAs mimicking and inhibition, and we explore the new potential targets of miRNA family for the treatment of inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Tommaso Innocenti
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Erica Nicola Lynch
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriele Dragoni
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
9
|
Gundu C, Arruri VK, Yadav P, Navik U, Kumar A, Amalkar VS, Vikram A, Gaddam RR. Dynamin-Independent Mechanisms of Endocytosis and Receptor Trafficking. Cells 2022; 11:cells11162557. [PMID: 36010634 PMCID: PMC9406725 DOI: 10.3390/cells11162557] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Endocytosis is a fundamental mechanism by which cells perform housekeeping functions. It occurs via a variety of mechanisms and involves many regulatory proteins. The GTPase dynamin acts as a “molecular scissor” to form endocytic vesicles and is a critical regulator among the proteins involved in endocytosis. Some GTPases (e.g., Cdc42, arf6, RhoA), membrane proteins (e.g., flotillins, tetraspanins), and secondary messengers (e.g., calcium) mediate dynamin-independent endocytosis. These pathways may be convergent, as multiple pathways exist in a single cell. However, what determines the specific path of endocytosis is complex and challenging to comprehend. This review summarizes the mechanisms of dynamin-independent endocytosis, the involvement of microRNAs, and factors that contribute to the cellular decision about the specific route of endocytosis.
Collapse
Affiliation(s)
- Chayanika Gundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vijay Kumar Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata 700054, West Bengal, India
| | - Veda Sudhir Amalkar
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ajit Vikram
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
10
|
MicroRNAs as Innovative Biomarkers for Inflammatory Bowel Disease and Prediction of Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23147991. [PMID: 35887337 PMCID: PMC9318064 DOI: 10.3390/ijms23147991] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes ulcerative colitis (UC) and Crohn’s disease (CD). These are autoimmune diseases of the gastrointestinal tract with a chronic relapsing and remitting course. Due to complex interactions between multiple factors in the etiology of IBD, the discovery of new predictors of disease course and response to therapy, and the development of effective therapies is a significant challenge. The dysregulation of microRNAs (miRNAs), a class of conserved endogenous, small non-coding RNA molecules with a length of 18–25 nucleotides, that regulate gene expression by an RNA interference process, is implicated in the complex pathogenetic context of IBD. Both tissue-derived, circulating, and fecal microRNAs have been explored as promising biomarkers in the diagnosis and the prognosis of disease severity of IBD. In this review, we summarize the expressed miRNA profile in blood, mucosal tissue, and stool and highlight the role of miRNAs as biomarkers with potential diagnostic and therapeutic applications in ulcerative colitis and Crohn’s disease. Moreover, we discuss the new perspectives in developing a new screening model for the detection of colorectal cancer (CRC) based on fecal miRNAs.
Collapse
|
11
|
Gu D, Nan Q, Miao Y, Yang H, Li M, Ye Y, Miao J. KT2 alleviates ulcerative colitis by reducing Th17 cell differentiation through the miR-302c-5p/STAT3 axis. Eur J Cell Biol 2022; 101:151223. [PMID: 35405463 DOI: 10.1016/j.ejcb.2022.151223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The abnormal differentiation of Th17 cells aggravates ulcerative colitis (UC). Antimicrobial peptides (AMPs) exert pivotal protection functions against UC. KT2 is a cationic AMP that mediates colon cancer development. However, KT2's function in UC remains unclear. METHODS The UC mouse model was induced by administering 2.5% dextran sulfate sodium, and the mice were given an enema of KT2. KT2's function in UC and Th17 cell differentiation in vivo was evaluated through various molecular experiments. The KT2's function in Th17 cell differentiation in vitro was evaluated by the proportion of CD4+ IL-17+ T cells, IL-17 levels, and RORγt expression levels. Meanwhile, the mechanism was assessed through quantitative real-time PCR, various loss-of-function assays, and dual-luciferase reporter gene assay. RESULTS KT2 restrained Th17 cell differentiation in both in vivo and in vitro UC models and slowed the UC process. KT2 elevated miR-302c-5p expression, as well as restrained Th17 cell differentiation by increasing miR-302c-5p. Meanwhile, miR-302c-5p interacted with the signal transducer and activator of transcription 3 (STAT3) and negatively regulated its expression. Furthermore, our data revealed that KT2 restrained the activation of STAT3 by elevating miR-302c-5p, thereby inhibiting Th17 cell differentiation. CONCLUSION KT2 alleviates UC by repressing Th17 cell differentiation through the miR-302c-5p/STAT3 axis.
Collapse
Affiliation(s)
- Dandan Gu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Qiong Nan
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Maojuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Yan Ye
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Jiarong Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China.
| |
Collapse
|
12
|
Gaddam RR, Kim Y, Jacobs JS, Yoon J, Li Q, Cai A, Shankaiahgari H, London B, Irani K, Vikram A. The microRNA-204-5p inhibits APJ signalling and confers resistance to cardiac hypertrophy and dysfunction. Clin Transl Med 2022; 12:e693. [PMID: 35060347 PMCID: PMC8777385 DOI: 10.1002/ctm2.693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MicroRNAs regulate cardiac hypertrophy development, which precedes and predicts the risk of heart failure. microRNA-204-5p (miR-204) is well expressed in cardiomyocytes, but its role in developing cardiac hypertrophy and cardiac dysfunction (CH/CD) remains poorly understood. METHODS We performed RNA-sequencing, echocardiographic, and molecular/morphometric analysis of the heart of mice lacking or overexpressing miR-204 five weeks after trans-aortic constriction (TAC). The neonatal rat cardiomyocytes, H9C2, and HEK293 cells were used to determine the mechanistic role of miR-204. RESULTS The stretch induces miR-204 expression, and miR-204 inhibits the stretch-induced hypertrophic response of H9C2 cells. The mice lacking miR-204 displayed a higher susceptibility to CH/CD during pressure overload, which was reversed by the adeno-associated virus serotype-9-mediated cardioselective miR-204 overexpression. Bioinformatic analysis of the cardiac transcriptomics of miR-204 knockout mice following pressure overload suggested deregulation of apelin-receptor (APJ) signalling. We found that the stretch-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation and hypertrophy-related genes expression depend on the APJ, and both of these effects are subject to miR-204 levels. The dynamin inhibitor dynasore inhibited both stretch-induced APJ endocytosis and ERK1/2 activation. In contrast, the miR-204-induced APJ endocytosis was neither inhibited by dynamin inhibitors (dynasore and dyngo) nor associated with ERK1/2 activation. We find that the miR-204 increases the expression of ras-associated binding proteins (e.g., Rab5a, Rab7) that regulate cellular endocytosis. CONCLUSIONS Our results show that miR-204 regulates trafficking of APJ and confers resistance to pressure overload-induced CH/CD, and boosting miR-204 can inhibit the development of CH/CD.
Collapse
Affiliation(s)
- Ravinder Reddy Gaddam
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Young‐Rae Kim
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Julia S. Jacobs
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Jin‐Young Yoon
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Qiuxia Li
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Angela Cai
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Hamsitha Shankaiahgari
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Barry London
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Kaikobad Irani
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Ajit Vikram
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| |
Collapse
|
13
|
Li B, Li Y, Li L, Yu Y, Gu X, Liu C, Long X, Yu Y, Zuo X. Hsa_circ_0001021 regulates intestinal epithelial barrier function via sponging miR-224-5p in ulcerative colitis. Epigenomics 2021; 13:1385-1401. [PMID: 34528447 DOI: 10.2217/epi-2021-0230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Aims: Few circRNAs have been thoroughly explored in ulcerative colitis (UC). Materials & methods: Microarrays and qualitative real-time PCRs were used to detect and confirm dysregulated circRNAs associated with UC. Functional analysis was performed to explore the roles. Results: A total of 580 circRNAs and 87 miRNAs were simultaneously dysregulated in both inflamed and noninflamed UC colonic mucosa compared with healthy controls. Accordingly, hsa_circ_0001021 was significantly downregulated in patients with UC and was related to Mayo scores. Clinical samples and cell experiments revealed that hsa_circ_0001021 was expressed in epithelial cells and correlated with ZO-1, occludin and CLDN-2. Moreover, hsa_circ_0001021 sponged miR-224-5p to upregulate smad4 and increased ZO-1 and occludin. Conclusion: Hsa_circ_0001021 is related to UC severity and regulates epithelial barrier function via sponging miR-224-5p.
Collapse
Affiliation(s)
- Bing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiang Gu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chang Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Long
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Mishra A, Singh KP. Protective effect of neurotensin receptor-1 agonist PD 149163 against lipopolysaccharide-induced gut toxicity in mice. Drug Chem Toxicol 2021; 45:2399-2410. [PMID: 34334065 DOI: 10.1080/01480545.2021.1954698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The interaction between neuroendocrine and immune components of the gut maintains the organism's physical and psychological health. Its disruption may reflect in disease conditions such as inflammatory bowel disease (IBD) and mental illness. The lipopolysaccharide (LPS) disrupts the endocrine-immune homeostasis resulting in gut toxicity. The Neurotensin receptor-1 (NTR-1) agonist PD 149163 (PD) acts as an atypical antipsychotic drug in psychiatric illness, but its role in modulating gut pathophysiology remains unknown. Therefore, the aim of the present study was to evaluate the protective effect of PD against LPS-induced gut toxicity. Swiss albino female mice (12 weeks) were divided into six groups (n = 6/group): (I) Control, (II) LPS (1 mg/kg, for 5 days), (III) LPS (1 mg/kg, for 5 days)+PD low (100 µg/kg, for 21 days), (IV) LPS (1 mg/kg, for 5 days)+PD high (300 µg/kg, for 21 days), (V) PD low (100 µg/kg, for 21 days), and (VI) PD high (300 µg/kg, for 21 days). Drugs were given intraperitoneal in the morning. PD administration prevented the LPS-induced gut inflammation observed in damage of epithelial barrier, disruption of goblet cells, and condensation of lamina propria (LP). The LPS-induced oxidative stress characterized by decreased superoxide dismutase (SOD) activity and increased lipid hydroperoxide (LOOH) (p < 0.001 for both), and enhanced interleukine-6 (IL-6) & tumor necrosis factor-α (TNF-α) (p < 0.001 for both) as well as immunointensity of NT (p < 0.01) and NTR-1 (p < 0.05) were reversed and normalized to control after PD treatment. Thus, the anti-inflammatory, anti-oxidative, and cell proliferation properties of PD modulate the gut toxicity in LPS-challenged mice.
Collapse
Affiliation(s)
- Ankit Mishra
- Neurobiology Lab, Department of Zoology, University of Allahabad, Prayagraj, India
| | - K P Singh
- Neurobiology Lab, Department of Zoology, University of Allahabad, Prayagraj, India
| |
Collapse
|
15
|
Zhou J, Liu J, Gao Y, Shen L, Li S, Chen S. miRNA-Based Potential Biomarkers and New Molecular Insights in Ulcerative Colitis. Front Pharmacol 2021; 12:707776. [PMID: 34305614 PMCID: PMC8298863 DOI: 10.3389/fphar.2021.707776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease, which usually manifests as abdominal pain, diarrhea and hematochezia. The disease often recurs and is difficult to cure. At present, the pathogenesis is not clear, but it is believed that the disease is caused by a complex interaction among immunity, heredity, environment and intestinal microflora disorders. MicroRNA (miRNA) is endogenous single-stranded non-coding RNA of 17–25 nucleotides (nts). They target the 3'Untranslated Region of a target gene and inhibit or degrade the target gene according to the extent of complementary bases. As important gene expression regulators, miRNAs are involved in regulating the expression of most human genes, and play an important role in the pathogenesis of many autoimmune diseases including UC. Studies in recent years have illustrated that abnormal expression of miRNA occurs very early in disease pathogenesis. Moreover, this abnormal expression is highly related to disease activity of UC and colitis-associated cancer, and involves virtually all key UC-related mechanisms, such as immunity and intestinal microbiota dysregulation. Recently, it was discovered that miRNA is highly stable outside the cell in the form of microvesicles, exosomes or apoptotic vesicles, which raises the possibility that miRNA may serve as a novel diagnostic marker for UC. In this review, we summarize the biosynthetic pathway and the function of miRNA, and summarize the usefulness of miRNA for diagnosis, monitoring and prognosis of UC. Then, we described four types of miRNAs involved in regulating the mechanisms of UC occurrence and development: 1) miRNAs are involved in regulating immune cells; 2) affect the intestinal epithelial cells barrier; 3) regulate the homeostasis between gut microbiota and the host; and 4) participate in the formation of tumor in UC. Altogether, we aim to emphasize the close relationship between miRNA and UC as well as to propose that the field has value for developing potential biomarkers as well as therapeutic targets for UC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jialing Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangyang Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liwei Shen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng Li
- Center for Health Policy & Drug Affairs Operation Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Yang M, Wang L. MALAT1 knockdown protects from bronchial/tracheal smooth muscle cell injury via regulation of microRNA-133a/ryanodine receptor 2 axis. J Biosci 2021. [DOI: 10.1007/s12038-021-00149-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Abstract
Inflammatory bowel disease (IBD) as a chronic inflammation in colon and small intestine has two subtypes: ulcerative colitis (UC) and Crohn's disease (CD). Genome studies have shown that UC and CD are related to microRNAs (miRNAs) expression in addition to environmental factors. This article reviews important researches that have recently been done on miRNAs roles in CD and UC disease. First, miRNA is introduced and its biogenesis and function are discussed. Afterward, roles of miRNAs in inflammatory processes involved in IBD are showed. Finally, this review proposes some circulating and tissue-specific miRNAs, which are useful for CD and UC fast diagnosis and grade prediction. As a conclusion, miRNAs are efficient diagnostic molecules especially in IBD subtypes discrimination and can be used by microarray and real time PCR methods for disease detection and classification.
Collapse
|
18
|
Zhu T, Chen Y, Liu Z, Leng Y, Tian Y. Expression profiles and prognostic significance of AFTPH in different tumors. FEBS Open Bio 2020; 10:2666-2677. [PMID: 33090728 PMCID: PMC7714068 DOI: 10.1002/2211-5463.13003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 01/16/2023] Open
Abstract
Aftiphilin (AFTPH) plays an important role in regulating intracellular trafficking, exocytosis, and the pro‐inflammatory response. However, the potential prognostic role of AFTPH in cancers remains unclear. Here, we examined the expression profiles and prognostic significance of AFTPH in breast invasive carcinoma (BRCA), diffuse large B‐cell lymphoma (DLBC), lung squamous cell carcinoma (LUSC), and pancreatic adenocarcinoma (PADD) using the GEPIA and UALCAN databases. AFTPH expression was observed to be higher in cancer tissues than in normal tissues, but expression did not differ significantly between tumor stages for the four cancer types. AFTPH expression in cancer cell lines was investigated using the CCLE database; AFTPH was found to be highly expressed in four cancer cell lines. The relationship between AFTPH expression and patient prognosis was analyzed using GEPIA, LinkedOmics, and Kaplan–Meier plotter databases. Low expression of AFTPH was associated with improved prognosis for BRCA, DLBC, LUSC, and PAAD. Genetic alterations of AFTPH in cancers were explored using the cBioPortal website, revealing that gene copy number gains and amplification are common in BRCA, DLBC, LUSC, and PAAD. Related genes and markers associated with AFTPH were discovered using the LinkedOmics database. Furthermore, transfection of cells with AFTPH siRNA demonstrated that AFTPH exerts positive effects on cell proliferation in BRCA, LUSC, and PAAD cells. In conclusion, AFTPH may be a potential therapeutic target and prognostic biomarker for BRCA, DLBC, LUSC, and/or PAAD.
Collapse
Affiliation(s)
- Tengjiao Zhu
- Third Hospital of Peking University, Beijing, China
| | | | - Zhongjun Liu
- Third Hospital of Peking University, Beijing, China
| | - Yuxin Leng
- Third Hospital of Peking University, Beijing, China
| | - Yun Tian
- Third Hospital of Peking University, Beijing, China
| |
Collapse
|
19
|
Luo Y, Yu MH, Yan YR, Zhou Y, Qin SL, Huang YZ, Qin J, Zhong M. Rab27A promotes cellular apoptosis and ROS production by regulating the miRNA-124-3p/STAT3/RelA signalling pathway in ulcerative colitis. J Cell Mol Med 2020; 24:11330-11342. [PMID: 32815642 PMCID: PMC7576264 DOI: 10.1111/jcmm.15726] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis (UC) is a multifactorial inflammatory disease, and increasing evidence has demonstrated that the mechanism of UC pathogenesis is associated with excessive cellular apoptosis and reactive oxygen species (ROS) production. However, their function and molecular mechanisms related to UC remain unknown. In this study, Rab27A mRNA and protein were proven to be overexpressed in intestinal epithelial cells of UC patients and DSS‐induced colitis mice, compared with control (P < 0.05). And Rab27A silencing inhibits inflammatory process in DSS‐induced colitis mice (P < 0.05). Then, it was shown that knockdown of Rab27A suppressed apoptosis and ROS production through modulation of miR‐124‐3p, whereas overexpression of Rab27A promoted apoptosis and ROS production in LPS‑induced colonic cells. In addition, enhanced expression of miR‐124‐3p attenuated apoptosis and ROS production by targeting regulation of STAT3 in LPS‑induced colonic cells. Mechanistically, we found Rab27A reduced the expression and activity of miR‐124‐3p to activate STAT3/RelA signalling pathway and promote apoptosis and ROS production in LPS‑induced colonic cells, whereas overexpression of miR‐124‐3p abrogated these effects of Rab27A. More importantly, animal experiments illustrated that ectopic expression of Rab27A promoted the inflammatory process, whereas overexpression of miR‐124‐3p might interfere with the inflammatory effect in DSS‐induced colitis mice. In summary, Rab27A might modulate the miR‐124‐3p/STAT3/RelA axis to promote apoptosis and ROS production in inflammatory colonic cells, suggesting that Rab27A as a novel therapeutic target for the prevention and treatment of UC patients.
Collapse
Affiliation(s)
- Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Min-Hao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ya-Ru Yan
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhou
- Department of Gastrointestinal Surgery, Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Shao-Lan Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yi-Zhou Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
20
|
Duale N, Eide DM, Amberger ML, Graupner A, Brede DA, Olsen AK. Using prediction models to identify miRNA-based markers of low dose rate chronic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137068. [PMID: 32062256 DOI: 10.1016/j.scitotenv.2020.137068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/13/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Robust biomarkers of exposure to chronic low dose stressors such as ionizing radiation, particularly following chronic low doses and dose-rates, are urgently needed. MicroRNAs (miRNA) have emerged as promising markers of exposure to high dose and dose-rate. Here, we evaluated the feasibility of classifying γ-radiation exposure at different dose rates based on miRNA expression levels. Our objective was to identify miRNA-signatures discriminating between exposure to γ-radiation or not, including exposure to chronic low dose rates. We exposed male CBA/CaOlaHsd and C57BL/6NHsd wild-type mice to 0, 2.5, 10 and 100 mGy/h γ-irradiation (3 Gy total-dose). From an initial screening of 576 miRNAs, a set of 21 signature-miRNAs was identified based on differential expression (>± 2-fold or p < 0.05). This 21-signature miRNA panel was investigated in 39 samples from 4/5 livers/group/mouse strain. A set of significantly differentially expressed miRNAs was identified in all γ-irradiated samples. Most miRNAs were upregulated in all γ-irradiated groups compared to control, and functional analysis of these miRNAs revealed involvement in several cancer-related signaling pathways. To identify miRNAs that distinguished exposed mice from controls, nine prediction methods; i.e., six variants of generalized regression models, random-forest, boosted-tree and nearest-shrunken-centroid (PAM) were used. The generalized regression methods seem to outperform the other prediction methods for classification of irradiated and control samples. Using the 21-miRNA panel in the prediction models, we identified sets of candidate miRNA-markers that predict exposure to γ-radiation. Among the top10 miRNA predictors, contributing most in each of the three γ-irradiated groups, three miRNA predictors (miR-140-3p, miR-133a-5p and miR-145a-5p) were common. Three miRNAs, miR-188-3p/26a-5p/26b-5p, were specific for lower dose-rate γ-radiation. Similarly, exposure to the high dose-rates was also correctly predicted, including mice exposed to X-rays. Our approach identifying miRNA-based signature panels may be extended to classify exposure to environmental, nutritional and life-style-related stressors, including chronic low-stress scenarios.
Collapse
Affiliation(s)
- Nur Duale
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway.
| | - Dag M Eide
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway
| | - Maria L Amberger
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway
| | - Anne Graupner
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway
| | - Dag A Brede
- Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway; Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ann K Olsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre of Excellence "Centre for Environmental Radiation" (CERAD), Norway
| |
Collapse
|
21
|
Hui Q, Zhang Q, Li X, Wang K, Zhang J, Zhou Z. Down-regulation of miR-133a-3p protects lung tissue against sepsis-induced acute respiratory distress syndrome by up-regulating SIRT1. Arch Med Sci 2020; 20:289-301. [PMID: 38414466 PMCID: PMC10895959 DOI: 10.5114/aoms.2020.94410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/09/2019] [Indexed: 02/29/2024] Open
Abstract
Introduction MicroRNA-133a-3p (miR-133a-3p) is a potential gene regulator having an important role in the process of inflammation and lung injury. The present work studied the role of miR-133a-3p in sepsis-mediated acute respiratory distress syndrome (ARDS) and the mechanism involved. Material and methods C57BL/6 mice were selected for the study. Protein expression of Bcl-2, cleaved caspase-3 and Bax was assessed by western blot analysis. Expression of mRNA was assessed by RT-PCR. Effects of inflammation were studied by myeloperoxidase (MPO) activity. Quantification of albumin was done by measuring the albumin conjugated with Evan's blue. The alveolar macrophages were separated from the lungs of mice by the bronchoalveolar lavage procedure and were submitted to sepsis challenge in vitro; the macrophages were treated with lipopolysaccharide (LPS). Results Treatment of LPS resulted in upregulation of miR-133a-3p in alveolar macrophages. Suppression of miR-133a-3p halted the over-expression of inflammatory cytokines in macrophages and caused remission of histopathologic changes. The ARDS lungs showed a decrease in levels of proinflammatory cytokines and an increase in levels of apoptotic protein, establishing the protective role for miR-133a-3p. The results suggested sirtuin 1 (SIRT1) as a potential target of miR-133a-3p in the macrophages, also showing that expression of SIRT1 was inversely associated with expression of miR-133a-3p. The protective effect of miR-133a-3p down-regulation in LPS-mediated alveolar macrophages and sepsis-induced ARDS could be corrected by a SIRT1 inhibitor. Conclusions Down-regulation of miR-133a-3p may exert a protective effect on lung tissue against sepsis-mediated ARDS by up-regulating the levels of SIRT1 via suppressing the inflammatory response and inhibiting the cellular apoptosis in lung tissues.
Collapse
Affiliation(s)
- Qin Hui
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xuan Li
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Kundi Wang
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jing Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zhongshu Zhou
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Uemura T, Waguri S. Emerging roles of Golgi/endosome-localizing monomeric clathrin adaptors GGAs. Anat Sci Int 2019; 95:12-21. [DOI: 10.1007/s12565-019-00505-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 01/13/2023]
|
23
|
Beneficial Effects of Neurotensin in Murine Model of Hapten-Induced Asthma. Int J Mol Sci 2019; 20:ijms20205025. [PMID: 31614422 PMCID: PMC6834300 DOI: 10.3390/ijms20205025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Neurotensin (NT) demonstrates ambiguous activity on inflammatory processes. The present study was undertaken to test the potential anti-inflammatory activity of NT in a murine model of non-atopic asthma and to establish the contribution of NTR1 receptors. Asthma was induced in BALB/c mice by skin sensitization with dinitrofluorobenzene followed by intratracheal hapten provocation. The mice were treated intraperitoneally with NT, SR 142948 (NTR1 receptor antagonist) + NT or NaCl. Twenty-four hours after the challenge, airway responsiveness to nebulized methacholine was measured. Bronchoalveolar lavage fluid (BALF) and lungs were collected for biochemical and immunohistological analysis. NT alleviated airway hyperreactivity and reduced the number of inflammatory cells in BALF. These beneficial effects were inhibited by pretreatment with the NTR1 antagonist. Additionally, NT reduced levels of IL-13 and TNF-α in BALF and IL-17A, IL12p40, RANTES, mouse mast cell protease and malondialdehyde in lung homogenates. SR 142948 reverted only a post-NT TNF-α decrease. NT exhibited anti-inflammatory activity in the hapten-induced asthma. Reduced leukocyte accumulation and airway hyperresponsiveness indicate that this beneficial NT action is mediated through NTR1 receptors. A lack of effect by the NTR1 blockade on mast cell activation, oxidative stress marker and pro-inflammatory cytokine production suggests that other pathways can be involved, which requires further research.
Collapse
|
24
|
Zhang S, Xu W, Wang H, Cao M, Li M, Zhao J, Hu Y, Wang Y, Li S, Xie Y, Chen G, Liu R, Cheng Y, Xu Z, Zou K, Gong S, Geng L. Inhibition of CREB-mediated ZO-1 and activation of NF-κB-induced IL-6 by colonic epithelial MCT4 destroys intestinal barrier function. Cell Prolif 2019; 52:e12673. [PMID: 31418947 PMCID: PMC6869122 DOI: 10.1111/cpr.12673] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/13/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Inflammatory bowel disease (IBD) is a disorder intestinal inflammation and impaired barrier function, associated with increased epithelial expression of monocarboxylate transporter 4 (MCT4). However, the specific non‐metabolic function and clinical relevance of MCT4 in IBD remain to be fully elucidated. Methods Lentivirus‐mediated overexpression of MCT4 was used to assess the role of MCT4 in transcriptionally regulating ZO‐1 and IL‐6 expression by luciferase assays, WB and ChIP. IP was used to analyse the effect of MCT4 on the interaction NF‐κB‐CBP or CREB‐CBP, and these MCT4‐mediated effects were confirmed in vivo assay. Results We showed that ectopic expression of MCT4 inhibited ZO‐1 expression, while increased pro‐inflammatory factors expression, leading to destroy intestinal epithelial barrier function in vitro and in vivo. Mechanistically, MCT4 contributed NF‐κB p65 nuclear translocation and increased the binding of NF‐κB p65 to the promoter of IL‐6, which is attributed to MCT4 enhanced NF‐κB‐CBP interaction and dissolved CREB‐CBP complex, resulting in reduction of CREB activity and CREB‐mediated ZO‐1 expression. In addition, treatment of experimental colitis with MCT4 inhibitor α‐cyano‐4‐hydroxycinnamate (CHC) ameliorated mucosal intestinal barrier function, which was due to attenuation of pro‐inflammation factors expression and enhancement of ZO‐1 expression. Conclusion These findings suggested a novel role of MCT4 in controlling development of IBD and provided evidence for potential targets of IBD.
Collapse
Affiliation(s)
- Shunxian Zhang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wanfu Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Meiwan Cao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Musheng Li
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junhong Zhao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan Hu
- Department of Anesthesiology, Hainan General Hospital, Haikou, China
| | - Yaodong Wang
- Department of Gastroenterology, Kunshan affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Songyu Li
- Department of Clinical Laboratory, Qionghai Hospital of Traditional Chinese Medicine, Qionghai, China
| | - Yuanwen Xie
- Department of Anorectal, Qionghai Hospital of Traditional Chinese Medicine, Qionghai, China
| | - Guanhua Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ruitao Liu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yang Cheng
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhaohui Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Haikou, China
| | - Sitang Gong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Geng
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Burge K, Gunasekaran A, Eckert J, Chaaban H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int J Mol Sci 2019; 20:ijms20081912. [PMID: 31003422 PMCID: PMC6514688 DOI: 10.3390/ijms20081912] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
26
|
Xiao Y, Zhao XP. Screening pathways and hub genes involved in osteoclastogenesis by gene expression analysis of circulating monocytes based on Gibbs sampling. Exp Ther Med 2019; 17:2529-2534. [PMID: 30906441 PMCID: PMC6425127 DOI: 10.3892/etm.2019.7225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Differential expression pathways and hub genes in circulating monocytes from healthy Chinese women with high peak bone mass (PBM) vs. low PBM were explored using a Markov chain Monte Carlo (MCMC) algorithm. Human circulating monocytes transcription profiling (containing 14 samples with high PBM and 12 samples with low PBM) and KEGG pathways were all downloaded from the public database. Initial state of all the pathways were constructed and Gibbs sampling was performed to obtain a Markov chain and the posterior values of all the pathways were calculated. The probability (α) of occurrence of each pathway was calculated based on the posterior value and it was adjusted by taking gene expression variation into account. Pathways with αadj >0.8 were considered as differentially expressed pathways. Then, these steps were performed again on all the genes in the differentially expressed pathways to find the hub genes in the differential pathways. After Gibbs sampling, neuroactive ligand-receptor interaction (hsa04080) with αadj = 0.986 was screened out as the differentially expressed pathway. Analyzing the genes in this pathway, three genes (neurotensin, tachykinin receptor 3 and follicle-stimulating hormone receptor) with αadj >0.8 were identified as hub genes in circulating monocytes which may associate with osteoporosis development. One pathway and three genes which may possess close relationship with osteoporosis development were found in this study. These results provide insights into our understanding of the role of circulating monocytes in osteoporosis development.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Joint, Tianjin Hospital, Hexi, Tianjin 300211, P.R. China
| | - Xue-Ping Zhao
- Department of Orthopedics, Guizhou Space Hospital, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
27
|
The emerging role of lncRNAs in inflammatory bowel disease. Exp Mol Med 2018; 50:1-14. [PMID: 30523244 PMCID: PMC6283835 DOI: 10.1038/s12276-018-0188-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of long noncoding RNA (lncRNA) expression is linked to the development of various diseases. Recently, an emerging body of evidence has indicated that lncRNAs play important roles in the pathogenesis of inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative Colitis (UC). In IBD, lncRNAs have been shown to be involved in diverse processes, including the regulation of intestinal epithelial cell apoptosis, association with lipid metabolism, and cell–cell interactions, thereby enhancing inflammation and the functional regulation of regulatory T cells. In this review, we aim to summarize the current knowledge regarding the role of lncRNAs in IBD and highlight potential avenues for future investigation. We also collate potentially immune-relevant, IBD-associated lncRNAs identified through a built-by association analysis with respect to their neighboring protein-coding genes within IBD-susceptible loci. We further underscore their importance by highlighting their enrichment for various aspects of immune system regulation, including antigen processing/presentation, immune cell proliferation and differentiation, and chronic inflammatory responses. Finally, we summarize the potential of lncRNAs as diagnostic biomarkers in IBD. Studying long noncoding RNAs (lncRNAs) may improve diagnosis and treatment of inflammatory bowel disease (IBD). These RNAs are found between genes in DNA regions previously thought to be “junk,” and have recently been shown to be important in development of various diseases. IBD, which includes both Crohn’s disease and ulcerative colitis, damages the digestive tract lining, causing pain and chronic diarrhea. A better understanding of IBD’s complex causes is needed to identify more effective treatments. Flemming Pociot at the Steno Diabetes Center in Gentofte, Denmark, and co-workers reviewed recent research linking lncRNAs and IBD. They discuss how lncRNAs’ roles in immunity and inflammation influence IBD development, describing how particular lncRNAs are related to IBD. Promising avenues for further research are highlighted, including the use of lncRNAs as biomarkers of IBD, which can be difficult to diagnose.
Collapse
|
28
|
Deng H, Wang H, Zhang H, Wang M, Giglio B, Ma X, Jiang G, Yuan H, Wu Z, Li Z. Imaging Neurotensin Receptor in Prostate Cancer With 64Cu-Labeled Neurotensin Analogs. Mol Imaging 2018; 16:1536012117711369. [PMID: 28849698 PMCID: PMC6081756 DOI: 10.1177/1536012117711369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Neurotensin receptor 1 (NTR-1) is expressed and activated in prostate cancer cells. In this study, we explore the NTR expression in normal mouse tissues and study the positron emission tomography (PET) imaging of NTR in prostate cancer models. MATERIALS AND METHODS Three 64Cu chelators (1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid [DOTA], 1,4,7-triazacyclononane-N,N',N″-triacetic acid [NOTA], or AmBaSar) were conjugated to an NT analog. Neurotensin receptor binding affinity was evaluated using cell binding assay. The imaging profile of radiolabeled probes was compared in well-established NTR+ HT-29 tumor model. Stability of the probes was tested. The selected agents were further evaluated in human prostate cancer PC3 xenografts. RESULTS All 3 NT conjugates retained the majority of NTR binding affinity. In HT-29 tumor, all agents demonstrated prominent tumor uptake. Although comparable stability was observed, 64Cu-NOTA-NT and 64Cu-AmBaSar-NT demonstrated improved tumor to background contrast compared with 64Cu-DOTA-NT. Positron emission tomography/computed tomography imaging of the NTR expression in PC-3 xenografts showed high tumor uptake of the probes, correlating with the in vitro Western blot results. Blocking experiments further confirmed receptor specificity. CONCLUSIONS Our results demonstrated that 64Cu-labeled neurotensin analogs are promising imaging agents for NTR-positive tumors. These agents may help us identify NTR-positive lesions and predict which patients and individual tumors are likely to respond to novel interventions targeting NTR-1.
Collapse
Affiliation(s)
- Huaifu Deng
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,2 PET/CT Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - He Zhang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,3 Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Mengzhe Wang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ben Giglio
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaofen Ma
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,4 Department of Medical Imaging, Provincial People's Hospital, Guangzhou, China
| | - Guihua Jiang
- 4 Department of Medical Imaging, Provincial People's Hospital, Guangzhou, China
| | - Hong Yuan
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhanhong Wu
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zibo Li
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Shi Y, He C, Ma C, Yu T, Cong Y, Cai W, Liu Z. Smad nuclear interacting protein 1 (SNIP1) inhibits intestinal inflammation through regulation of epithelial barrier function. Mucosal Immunol 2018; 11:835-845. [PMID: 29426045 DOI: 10.1038/mi.2017.95] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 09/29/2017] [Indexed: 02/08/2023]
Abstract
Smad nuclear interacting protein 1 (SNIP1) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms involved are still largely unknown. Our results demonstrated that SNIP1 was markedly decreased in intestinal epithelial cells (IEC) from IBD patients compared with healthy controls. Impaired expression of SNIP1 caused a significant decrease of transepithelial electrical resistance but an increase of fluorescein isothiocyanate-dextran flux in Caco-2 monolayers, whereas overexpression of SNIP1 reversed such effects. Overexpression of SNIP1 also inhibited the activity of NF-κB p65 and proinflammatory cytokine production (e.g., TNF-α, IL-1β, and IL-8) by IEC. Importantly, supplementation of exogenous SNIP1 significantly ameliorated intestinal mucosal inflammation in experimental colitis, characterized by less-severe intestinal epithelial barrier damage and decreased proinflammatory cytokine production. Our data thus demonstrated a novel mechanism whereby SNIP1 regulates intestinal inflammation through modulating intestinal epithelial barrier function. Targeting SNIP1 may provide a therapeutic approach for the treatment of IBD.
Collapse
Affiliation(s)
- Y Shi
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - C He
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - C Ma
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - T Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Y Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - W Cai
- Department of General Surgery, Ruijin Hospital of Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Z Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Soroosh A, Koutsioumpa M, Pothoulakis C, Iliopoulos D. Functional role and therapeutic targeting of microRNAs in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2018; 314:G256-G262. [PMID: 29146677 PMCID: PMC5866423 DOI: 10.1152/ajpgi.00268.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory gastrointestinal diseases, primarily consisting of ulcerative colitis and Crohn's disease. The complex nature of the disease, as well as the limited therapeutic options characterized by low efficiency and major side effects, highlights the importance of developing novel strategies of therapeutic intervention in IBD. Susceptibility loci related to IBD are present only in a small percentage of IBD patients, implying that epigenetic modifications could influence the pathogenesis of the disease. MicroRNAs (miRNAs) are small noncoding RNAs that regulate multiple molecular pathways involved in IBD pathobiology. MiRNA inhibitors targeting the IBD-activated miRNAs could have therapeutic value for IBD patients. This review provides an overview of the recent advances in miRNA biology related to IBD pathogenesis and the pharmacological development of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Artin Soroosh
- 1Center for Systems Biomedicine, University of California at Los Angeles, Los Angeles, California
| | - Marina Koutsioumpa
- 1Center for Systems Biomedicine, University of California at Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- 2Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- 1Center for Systems Biomedicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
31
|
Fang K, Law IKM, Padua D, Sideri A, Huang V, Kevil CG, Iliopoulos D, Pothoulakis C. MicroRNA-31-3p Is Involved in Substance P (SP)-Associated Inflammation in Human Colonic Epithelial Cells and Experimental Colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:586-599. [PMID: 29253460 DOI: 10.1016/j.ajpath.2017.10.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023]
Abstract
Substance P (SP) mediates colitis. SP signaling regulates the expression of several miRNAs, including miR-31-3p, in human colonocytes. However, the role of miR-31-3p in colitis and the underlying mechanisms has not been elucidated. We performed real-time PCR analysis of miR-31-3p expression in human colonic epithelial cells overexpressing neurokinin-1 receptor (NCM460 NK-1R) in response to SP stimulation and in NCM460 cells after IL-6, IL8, tumor necrosis factor (TNF)-α, and interferon-γ exposure. Functions of miR-31-3p were tested in NCM460-NK-1R cells and the trinitrobenzene sulfonic acid (TNBS) and dextran sodium sulfate (DSS) models of colitis. Targets of miRNA-31-3p were confirmed by Western blot analysis and luciferase reporter assay. Jun N-terminal kinase inhibition decreased SP-induced miR-31-3p expression. miR-31-3p expression was increased in both TNBS- and DSS-induced colitis and human colonic biopsies from ulcerative colitis, compared with controls. Intracolonic administration of a miR-31-3p chemical inhibitor exacerbated TNBS- and DSS-induced colitis and increased colonic TNF-α, CXCL10, and chemokine (C-C motif) ligand 2 (CCL2) mRNA expression. Conversely, overexpression of miR-31-3p ameliorated the severity of DSS-induced colitis. Bioinformatic, luciferase reporter assay, and Western blot analyses identified RhoA as a target of miR-31-3p in NCM460 cells. Constitutive activation of RhoA led to increased expression of CCL2, IL6, TNF-α, and CXCL10 in NCM460-NK-1R cells on SP stimulation. Our results reveal a novel SP-miR-31-3p-RhoA pathway that protects from colitis. The use of miR-31-3p mimics may be a promising approach for colitis treatment.
Collapse
Affiliation(s)
- Kai Fang
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - David Padua
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Aristea Sideri
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Vanessa Huang
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California.
| |
Collapse
|
32
|
Law IKM, Padua DM, Iliopoulos D, Pothoulakis C. Role of G protein-coupled receptors-microRNA interactions in gastrointestinal pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 313:G361-G372. [PMID: 28774868 PMCID: PMC5792214 DOI: 10.1152/ajpgi.00144.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 01/31/2023]
Abstract
G protein-coupled receptors (GPCRs) make up the largest transmembrane receptor superfamily in the human genome and are expressed in nearly all gastrointestinal cell types. Coupling of GPCRs and their respective ligands activates various phosphotransferases in the cytoplasm, and, thus, activation of GPCR signaling in intestine regulates many cellular and physiological processes. Studies in microRNAs (miRNAs) demonstrate that they represent critical epigenetic regulators of different pathophysiological responses in different organs and cell types in humans and animals. Here, we reviewed recent research on GPCR-miRNA interactions related to gastrointestinal pathophysiology, such as inflammatory bowel diseases, irritable bowel syndrome, and gastrointestinal cancers. Given that the presence of different types of cells in the gastrointestinal tract suggests the importance of cell-cell interactions in maintaining gastrointestinal homeostasis, we also discuss how GPCR-miRNA interactions regulate gene expression at the cellular level and subsequently modulate gastrointestinal pathophysiology through molecular regulatory circuits and cell-cell interactions. These studies helped identify novel molecular pathways leading to the discovery of potential biomarkers for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - David Miguel Padua
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Dimitrios Iliopoulos
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and ,2Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| |
Collapse
|
33
|
Ohno M, Nishida A, Sugitani Y, Nishino K, Inatomi O, Sugimoto M, Kawahara M, Andoh A. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One 2017; 12:e0185999. [PMID: 28985227 PMCID: PMC5630155 DOI: 10.1371/journal.pone.0185999] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/22/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND AIMS Curcumin is a hydrophobic polyphenol derived from turmeric, a traditional Indian spice. Curcumin exhibits various biological functions, but its clinical application is limited due to its poor absorbability after oral administration. A newly developed nanoparticle curcumin shows improved absorbability in vivo. In this study, we examined the effects of nanoparticle curcumin (named Theracurmin) on experimental colitis in mice. METHODS BALB/c mice were fed with 3% dextran sulfate sodium (DSS) in water. Mucosal cytokine expression and lymphocyte subpopulation were analyzed by real-time PCR and flow cytometry, respectively. The profile of the gut microbiota was analyzed by real-time PCR. RESULTS Treatment with nanoparticle curcumin significantly attenuated body weight loss, disease activity index, histological colitis score and significantly improved mucosal permeability. Immunoblot analysis showed that NF-κB activation in colonic epithelial cells was significantly suppressed by treatment with nanoparticle curcumin. Mucosal mRNA expression of inflammatory mediators was significantly suppressed by treatment with nanoparticle curcumin. Treatment with nanoparticle curcumin increased the abundance of butyrate-producing bacteria and fecal butyrate level. This was accompanied by increased expansion of CD4+ Foxp3+ regulatory T cells and CD103+ CD8α- regulatory dendritic cells in the colonic mucosa. CONCLUSIONS Treatment with nanoparticle curcumin suppressed the development of DSS-induced colitis potentially via modulation of gut microbial structure. These responses were associated with induction of mucosal immune cells with regulatory properties. Nanoparticle curcumin is one of the promising candidates as a therapeutic option for the treatment of IBD.
Collapse
Affiliation(s)
- Masashi Ohno
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yoshihiko Sugitani
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kyohei Nishino
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | - Masahiro Kawahara
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
34
|
Xu M, Zuo D, Liu X, Fan H, Chen Q, Deng S, Shou Z, Tang Q, Yang J, Nan Z, Wu H, Dong Y, Liu Y. MiR-155 contributes to Th17 cells differentiation in dextran sulfate sodium (DSS)-induced colitis mice via Jarid2. Biochem Biophys Res Commun 2017; 488:6-14. [DOI: 10.1016/j.bbrc.2017.04.143] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/23/2017] [Accepted: 04/27/2017] [Indexed: 01/08/2023]
|
35
|
Abstract
Maintaining intestinal homeostasis is a key prerequisite for a healthy gut. Recent evidence points out that microRNAs (miRNAs) act at the epicenter of the signaling networks regulating this process. The fine balance in the interaction between gut microbiota, intestinal epithelial cells, and the host immune system is achieved by constant transmission of signals and their precise regulation. Gut microbes extensively communicate with the host immune system and modulate host gene expression. On the other hand, sensing of gut microbiota by the immune cells provides appropriate tolerant responses that facilitate the symbiotic relationships. While the role of many regulatory proteins, receptors and their signaling pathways in the regulation of the intestinal homeostasis is well documented, the involvement of non-coding RNA molecules in this process has just emerged. This review discusses the most recent knowledge about the contribution of miRNAs in the regulation of the intestinal homeostasis.
Collapse
Affiliation(s)
- Antoaneta Belcheva
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
36
|
He C, Shi Y, Wu R, Sun M, Fang L, Wu W, Liu C, Tang M, Li Z, Wang P, Cong Y, Liu Z. miR-301a promotes intestinal mucosal inflammation through induction of IL-17A and TNF-α in IBD. Gut 2016; 65:1938-1950. [PMID: 26338824 DOI: 10.1136/gutjnl-2015-309389] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE MicroRNA (miR)-301a is known to be involved in the tumourigenesis and pathogenesis of several autoimmune diseases, but it remains unclear whether miR-301a is associated with the pathogenesis of IBD. METHODS miR-301a expression was assessed in peripheral blood mononuclear cells (PBMC) and inflamed mucosa of patients with IBD by quantitative real-time-PCR. Peripheral blood CD4+ T cells were transduced with lentivirus-encoding pre-miR-301a (LV-miR-301a) or a reverse complementary sequence of miR-301a (LV-anti-miR-301a), and their differentiation and activation were investigated in vitro. Antisense miR-301a was administered into mice during trinitrobenzene sulphonic acid (TNBS)-induced colitis to determine its role in colitis. RESULTS miR-301a expression was significantly upregulated in PBMC and inflamed mucosa of patients with IBD compared with healthy controls. Stimulation with tumour necrosis factor-α (TNF-α) significantly enhanced miR-301a expression in IBD CD4+ T cells, which was markedly reversed by anti-TNF-α mAb (Infliximab) treatment. Transduction of LV-miR-301a into CD4+ T cells from patients with IBD promoted the Th17 cell differentiation and TNF-α production compared with the cells with expression of LV-anti-miR-301a. SNIP1 as a functional target of miR-301a was reduced in miR-301a expression but increased in LV-anti-miR-301a expression. Knockdown of SNIP1 could enhance Th17 cell differentiation. Furthermore, intracolonical administration of antisense miR-301a in TNBS-induced mouse colitis model significantly decreased numbers of interleukin (IL)-17A+ cells and amounts of pro-inflammatory cytokines (eg, IL-17A, TNF-α) in inflamed colon. CONCLUSIONS Our data reveal a novel mechanism in which the elevated miR-301a in PBMC and inflamed mucosa of IBD promotes Th17 cell differentiation through downregulation of SNIP1. Blockade of miR-301a in vivo may serve as a novel therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Chong He
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yan Shi
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ruijin Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Mingming Sun
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Leilei Fang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Changqin Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Maochun Tang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhong Li
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ping Wang
- Central Laboratory for Medical Research, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
37
|
Padua D, Mahurkar-Joshi S, Law IKM, Polytarchou C, Vu JP, Pisegna JR, Shih D, Iliopoulos D, Pothoulakis C. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. Am J Physiol Gastrointest Liver Physiol 2016; 311:G446-G457. [PMID: 27492330 PMCID: PMC5076004 DOI: 10.1152/ajpgi.00212.2016] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/12/2016] [Indexed: 01/31/2023]
Abstract
High-throughput technologies revealed new categories of genes, including the long noncoding RNAs (lncRNAs), involved in the pathogenesis of human disease; however, the role of lncRNAs in the ulcerative colitis (UC) has not been evaluated. Gene expression profiling was used to develop lncRNA signatures in UC samples. Jurkat T cells were activated by PMA/ionomycin subsequently interferon-γ (IFNG) and tumor necrosis factor (TNF)-α protein levels were assessed by ELISA. Anti-sense molecules were designed to block IFNG-AS1 expression. A unique set of lncRNAs was differentially expressed between UC and control samples. Of these, IFNG-AS1 was among the highest statistically significant lncRNAs (fold change: 5.27, P value: 7.07E-06). Bioinformatic analysis showed that IFNG-AS1 was associated with the IBD susceptibility loci SNP rs7134599 and its genomic location is adjacent to the inflammatory cytokine IFNG. In mouse models of colitis, active colitis samples had increased colonic expression of this lncRNA. Utilizing the Jurkat T cell model, we found IFNG-AS1 to positively regulate IFNG expression. Novel lncRNA signatures differentiate UC patients with active disease, patients in remission, and control subjects. A subset of these lncRNAs was found to be associated with the clinically validated IBD susceptibility loci. IFNG-AS1 was one of these differentially expressed lncRNAs in UC patients and found to regulate the key inflammatory cytokine, IFNG, in CD4 T cells. Taking these findings together, our study revealed novel lncRNA signatures deregulated in UC and identified IFNG-AS1 as a novel regulator of IFNG inflammatory responses, suggesting the potential importance of noncoding RNA mechanisms on regulation of inflammatory bowel disease-related inflammatory responses.
Collapse
Affiliation(s)
- David Padua
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Swapna Mahurkar-Joshi
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ivy Ka Man Law
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Christos Polytarchou
- Center for Systems Biomedicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - John P Vu
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; and
| | - Joseph R Pisegna
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; and
| | - David Shih
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dimitrios Iliopoulos
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Center for Systems Biomedicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California;
| |
Collapse
|
38
|
Qi QQ, Chen FX, Zhao DY, Li LX, Wang P, Li YQ, Zuo XL. Colonic mucosal N-methyl-D-aspartate receptor mediated visceral hypersensitivity in a mouse model of irritable bowel syndrome. J Dig Dis 2016; 17:448-57. [PMID: 27356126 DOI: 10.1111/1751-2980.12374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/11/2016] [Accepted: 06/19/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether colonic mucosal N-methyl-D-aspartate receptor (NMDAR) participates in visceral hypersensitivity in irritable bowel syndrome (IBS). METHODS C57BL/6 mice were administered intrarectally with trinitrobenzenesulfonic acid (TNBS) for the establishment of an IBS-like visceral hypersensitivity model. Those received an equivalent volume of 50% ethanol were regarded as the controls. Abdominal withdrawal reflex (AWR) scores in response to colorectal distention (CRD) were used to assess visceral sensitivity. NMDAR levels in the colonic mucosa were detected by both immunohistochemistry and Western blot. The concentrations of glutamate and ammonia in the feces of the mice were measured. Changes in visceral sensitivity after the intracolonic administration of ammonia or NMDAR antagonist were recorded. RESULTS The established IBS-like mouse model of visceral hypersensitivity showed no evident inflammation in the colon. NMDAR levels in the colonic mucosa of the IBS-like mice were significantly higher compared with the controls, and were positively associated with AWR scores. The glutamate level in the feces of the TNBS-treated mice was similar to that of the controls, although the ammonia level was significantly higher. Intracolonic administration of ammonia induced visceral hypersensitivity in mice, which was repressed by pretreatment with NMDAR antagonist MK801. CONCLUSIONS Overexpressed NMDAR in the colonic mucosa may participate in the pathogenesis of visceral hypersensitivity in IBS. Our study identifies the effect of ammonia in the colonic lumen on NMDAR in the colonic mucosa as a potential novel targeted mechanism for IBS treatment.
Collapse
Affiliation(s)
- Qing Qing Qi
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Fei Xue Chen
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Dong Yan Zhao
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Li Xiang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Peng Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yan Qing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiu Li Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
39
|
Li X, Nie J, Mei Q, Han WD. MicroRNAs: Novel immunotherapeutic targets in colorectal carcinoma. World J Gastroenterol 2016; 22:5317-5331. [PMID: 27340348 PMCID: PMC4910653 DOI: 10.3748/wjg.v22.i23.5317] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/23/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common types of cancer worldwide and the prognosis for CRC patients with recurrence or metastasis is extremely poor. Although chemotherapy and radiation therapy can improve survival, there are still numerous efforts to be performed. Immunotherapy is frequently used, either alone or in combination with other therapies, for the treatment of CRC and is a safe and feasible way to improve CRC treatment. Furthermore, the significance of the immune system in the biology of CRC has been demonstrated by retrospective assessments of immune infiltrates in resected CRC tumors. MicroRNAs (miRNAs) are short, non-coding RNAs that can regulate multiple target genes at the post-transcriptional level and play critical roles in cell proliferation, differentiation and apoptosis. MiRNAs are required for normal immune system development and function. Nevertheless, aberrant expression of miRNAs is often observed in various tumor types and leads to immune disorders or immune evasion. The immunomodulatory function of miRNAs indicates that miRNAs may ultimately be part of the portfolio of anti-cancer targets. Herein, we will review the potential roles of miRNAs in the regulation of the immune response in CRC and then move on to discuss how to utilize different miRNA targets to treat CRC. We also provide an overview of the major limitations and challenges of using miRNAs as immunotherapeutic targets.
Collapse
|
40
|
Bakirtzi K, Law IKM, Xue X, Iliopoulos D, Shah YM, Pothoulakis C. Neurotensin Promotes the Development of Colitis and Intestinal Angiogenesis via Hif-1α-miR-210 Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 196:4311-21. [PMID: 27076683 DOI: 10.4049/jimmunol.1501443] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
Neurotensin (NT) via its receptor 1 (NTR1) modulates the development of colitis, decreases HIF-1α/PHD2 interaction, stabilizes and increases HIF-1α transcriptional activity, and promotes intestinal angiogenesis. HIF-1α induces miR-210 expression, whereas miR-210 is strongly upregulated in response to NT in NCM460 human colonic epithelial cells overexpressing NTR1 (NCM460-NTR1). In this study, we examined whether NT activates a NTR1-HIF-1α-miR-210 cascade using in vitro (NCM460-NTR1 cells) and in vivo (transgenic mice overexpressing [HIF-1α-OE] or lacking HIF-1α [HIF-1α-knockout (KO)] in intestinal epithelial cells and mice lacking NTR1 [NTR1-KO]) models. Pretreatment of NCM460-NTR1 cells with the HIF-1α inhibitor PX-478 or silencing of HIF-1α (small interfering HIF-1α) attenuated miR-210 expression in response to NT. Intracolonic 2,4,6-trinitrobenzenesulfonic acid (TNBS) administration (2-d model) increased colonic miR-210 expression that was significantly reduced in NTR1-KO, HIF-1α-KO mice, and wild-type mice pretreated intracolonically with locked nucleic acid anti-miR-210. In contrast, HIF-1α-OE mice showed increased miR-210 expression at baseline that was further increased following TNBS administration. HIF-1α-OE mice had also exacerbated TNBS-induced neovascularization compared with TNBS-exposed wild-type mice. TNBS-induced neovascularization was attenuated in HIF-1α-KO mice, or mice pretreated intracolonically with anti-miR-210. Intracolonic anti-miR-210 also reduced colitis in response to TNBS (2 d). Importantly, miR-210 expression was increased in tissue samples from ulcerative colitis patients. We conclude that NT exerts its proinflammatory and proangiogenic effects during acute colitis via a NTR1-prolyl hydroxylase 2/HIF-1α-miR-210 signaling pathway. Our results also demonstrate that miR-210 plays a proinflammatory role in the development of colitis.
Collapse
Affiliation(s)
- Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Xiang Xue
- Division of Gastroenterology, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Dimitrios Iliopoulos
- Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Yatrik M Shah
- Division of Gastroenterology, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109; Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095;
| |
Collapse
|
41
|
Law IKM, Jensen D, Bunnett NW, Pothoulakis C. Neurotensin-induced miR-133α expression regulates neurotensin receptor 1 recycling through its downstream target aftiphilin. Sci Rep 2016; 6:22195. [PMID: 26902265 PMCID: PMC4763298 DOI: 10.1038/srep22195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/09/2016] [Indexed: 01/05/2023] Open
Abstract
Neurotensin (NT) triggers signaling in human colonic epithelial cells by activating the G protein-coupled receptor, the neurotensin receptor 1 (NTR1). Activated NTR1 traffics from the plasma membrane to early endosomes, and then recycles. Although sustained NT/NTR1 signaling requires efficient NTR1 recycling, little is known about the regulation of NTR1 recycling. We recently showed that NT/NTR1 signaling increases expression of miR-133α. Herein, we studied the mechanism of NT-regulated miR-133α expression and examined the role of miR-133α in intracellular NTR1 trafficking in human NCM460 colonocytes. We found that NT-induced miR-133α upregulation involves the negative transcription regulator, zinc finger E-box binding homeobox 1. Silencing of miR-133α or overexpression of aftiphilin (AFTPH), a binding target of miR-133α, attenuated NTR1 trafficking to plasma membrane in human colonocytes, without affecting NTR1 internalization. We localized AFTPH to early endosomes and the trans-Golgi network (TGN) in unstimulated human colonic epithelial cells. AFTPH overexpression reduced NTR1 localization in early endosomes and increased expression of proteins related to endosomes and the TGN trafficking pathway. AFTPH overexpression and de-acidification of intracellular vesicles increased NTR1 expression. Our results suggest a novel mechanism of GPCR trafficking in human colonic epithelial cells by which a microRNA, miR-133α regulates NTR1 trafficking through its downstream target AFTPH.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, California, USA
| | - Dane Jensen
- Monash Institute of Pharmaceutical Sciences, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Parkville, Monash University, Australia
- Department of Anesthesia and Peri-operative Medicine, Monash University, Australia
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Parkville, Monash University, Australia
- Department of Anesthesia and Peri-operative Medicine, Monash University, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Australia
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
42
|
Association of Tag SNPs and Rare CNVs of the MIR155HG/miR-155 Gene with Epilepsy in the Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2015; 2015:837213. [PMID: 26425555 PMCID: PMC4575730 DOI: 10.1155/2015/837213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/28/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND miR-155 likely acts as an important modulator in the inflammatory mechanism of epilepsy, and this study investigated its association with epilepsy from the perspective of molecular genetics. METHODS This study enrolled 249 epileptic patients and 289 healthy individuals of the Chinese Han population; 4 tag single-nucleotide polymorphisms (SNPs: rs969885, rs12483428, rs987195, and rs4817027) of the MIR155HG/miR-155 gene were selected, and their association with epilepsy was investigated. Additionally, this study determined the copy numbers of the MIR155HG/miR-155 gene. RESULTS The TCA haplotype (rs12483428-rs987195-rs4817027) and the AA genotype at rs4817027 conferred higher vulnerability to epilepsy in males. Stratification by age of onset revealed that the CC haplotype (rs969885-rs987195) was a genetic susceptibility factor for early-onset epilepsy. Further stratification by drug-resistant status indicated the CC haplotype (rs969885-rs987195) and the AA genotype at rs4817027 were genetic susceptibility factors for drug-resistant epilepsy (DRE) but the CG haplotype (rs987195-rs969885) was a genetically protective factor against DRE. Besides, 3 epileptic patients with copy number variants of the MIR155HG/miR-155 gene were observed. CONCLUSIONS This study first demonstrates the association of MIR155HG/miR-155 tag SNPs with epilepsy and shows that rare CNVs were found exclusively in epileptic patients, clarifying the genetic role of miR-155 in epilepsy.
Collapse
|
43
|
Fang K, Sideri A, Law IKM, Bakirtzi K, Polytarchou C, Iliopoulos D, Pothoulakis C. Identification of a novel substance P (SP)-neurokinin-1 receptor (NK-1R) microRNA-221-5p inflammatory network in human colonic epithelial cells. Cell Mol Gastroenterol Hepatol 2015; 1:503-515. [PMID: 26645045 PMCID: PMC4669978 DOI: 10.1016/j.jcmgh.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Substance P (SP), a neuropeptide member of the tachykinin family, plays a critical role in colitis. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression. However, whether SP modulates expression of microRNAs in human colonic epithelial cells remains unknown. METHODS We performed microRNA profiling analysis of SP-stimulated human colonic epithelial NCM460 cells overexpressing neurokinin-1 receptor (NCM460-NK-1R). Targets of SP-regulated microRNAs were validated by real time polymerase chain reaction (RT-PCR). Functions of miRNAs were tested in NCM460-NK-1R cells and the TNBS and DSS models of colitis. RESULTS SP stimulated differential expression of 29 microRNAs, including miR-221-5p, the highest up regulated miR (by 12.6-fold) upon SP stimulation. Bioinformatic and luciferase reporter analyses identified interleukin 6 receptor (IL-6R) mRNA as a direct target of miR-221-5p in NCM460 cells. Accordingly, SP exposure of NCM460-NK-1R cells increased IL-6R mRNA expression, while overexpression of miR-221-5p reduced IL-6R expression. NF-κB and JNK inhibition decreased SP-induced miR-221-5p expression. MiR-221-5p expression was increased in both TNBS- and DSS-induced colitis and colonic biopsies from Ulcerative Colitis, but not Crohn's Disease subjects, compared to controls. In mice, intracolonic administration of a miR-221-5p chemical inhibitor, exacerbated TNBS-and DSS-induced colitis, and increased colonic TNF-α, Cxcl10, and Col2 α 1 mRNA expression. In situ hybridization in TNBS-and DSS-exposed colons revealed increased miR-221-5p expression primarily in colonocytes. CONCLUSIONS Our results reveal a novel NK-1R-miR-221-5p-IL-6R network that protects from colitis. The use of miR-221-5p mimics may be a promising approach for colitis treatment.
Collapse
Affiliation(s)
- Kai Fang
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Aristea Sideri
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Christos Polytarchou
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, California,Correspondence Address correspondence to: Charalabos Pothoulakis, MD, Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California at Los Angeles, 675 Charles E. Young Drive, South MRL Building 1240, Los Angeles, California 90095.
| |
Collapse
|
44
|
Choi HJ, Kim HG, Kim J, Park SH, Park J, Oh CG, Do KH, Lee SJ, Park YC, Ahn SC, Kim YS, Moon Y. Pro-apoptotic action of macrophage inhibitory cytokine 1 and counteraction of activating transcription factor 3 in carrageenan-exposed enterocytes. Toxicol Lett 2014; 231:1-8. [PMID: 25180886 DOI: 10.1016/j.toxlet.2014.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
Abstract
Carrageenan (CGN), a widely used food additive, has been shown to injure the epithelial barrier in animal models. This type of damage is a clinical feature of inflammatory bowel disease (IBD) in humans. In the present study, the effects of CGN on pro-apoptotic responses associated with macrophage inhibitory cytokine 1 (MIC-1) regulation in human enterocytes were evaluated. CGN up-regulated the expression of MIC-1 that promoted epithelial cell apoptosis. Although MIC-1 induction was dependent on pro-apoptotic p53 protein, the pro-survival protein activating transcription factor 3 (ATF3) was negatively regulated by p53 expression. However, MIC-1 enhanced the expression of the pro-survival protein ATF3 in enterocytes exposed to CGN. Functionally, MIC-1-mediated epithelial cell apoptosis was counteracted by the pro-survival action of ATF3 in response to CGN exposure. These findings demonstrated that the counterbalance between MIC-1 and ATF3 is critical for deciding the fate of enterocytes under the food chemical stress.
Collapse
Affiliation(s)
- Hye Jin Choi
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Hwi-Gon Kim
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Pusan, South Korea
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Jiyeon Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Chang Gyu Oh
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Kee Hun Do
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Seung Joon Lee
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Young Chul Park
- Department of Microbiology and Immunology and Medical Research Institute, Pusan National University, Pusan, South Korea
| | - Soon Cheol Ahn
- Department of Microbiology and Immunology and Medical Research Institute, Pusan National University, Pusan, South Korea
| | - Yong Sik Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea; Department of Microbiology and Immunology and Medical Research Institute, Pusan National University, Pusan, South Korea; Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Busan, South Korea.
| |
Collapse
|