1
|
Fan Z, Xiao Y, Du Y, Zhang Y, Zhou W. Pancreatic cancer subtyping - the keystone of precision treatment. Front Immunol 2025; 16:1563725. [PMID: 40264765 PMCID: PMC12011869 DOI: 10.3389/fimmu.2025.1563725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
In recent years, the incidence and mortality rates of pancreatic cancer have been rising, posing a severe threat to human health. Tumor heterogeneity remains a critical barrier to advancing diagnosis and treatment efforts. The lack of specific early symptoms, limited early diagnostic methods, high biological complexity, and restricted therapeutic options contribute to the poor outcomes and prognosis of pancreatic cancer. Therefore, there is an urgent need to explore the different subtypes in-depth and develop personalized therapeutic strategies tailored to each subtype. Increasing evidence highlights the pivotal role of molecular subtyping in treating pancreatic cancer. This review focuses on recent advancements in classifying molecular subtypes and therapeutic approaches, discussed from the perspectives of gene mutations, genomics, transcriptomics, proteomics, metabolomics, and immunomics.
Collapse
Affiliation(s)
- Zeyang Fan
- The Second Clinical Medical School, Lanzhou University,
Lanzhou, China
| | - Yao Xiao
- The Second Clinical Medical School, Lanzhou University,
Lanzhou, China
| | - Yan Du
- The Second Clinical Medical School, Lanzhou University,
Lanzhou, China
| | - Yan Zhang
- The Second Clinical Medical School, Lanzhou University,
Lanzhou, China
| | - Wence Zhou
- Department of General Surgery , The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Lucas D, Sarkar T, Niemeyer CY, Harnoss JC, Schneider M, Strowitzki MJ, Harnoss JM. IRE1 is a promising therapeutic target in pancreatic cancer. Am J Physiol Cell Physiol 2025; 328:C806-C824. [PMID: 39819023 DOI: 10.1152/ajpcell.00551.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Denise Lucas
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tamal Sarkar
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Clara Y Niemeyer
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian C Harnoss
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Moritz J Strowitzki
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| |
Collapse
|
3
|
Li H, Zhang Z, Shi Z, Zhou S, Nie S, Yu Y, Zhang L, Sun Y, Fang C, Hu J, Niu Y, Schuck K, Wang L, Jiang K, Lu Z, Kahlert C, Roth S, Loos M, Herr I, Sunami Y, Kleeff J, Friess H, Reichert M, Dantes Z, Zou X, Michalski CW, Shen S, Kong B. Disrupting AGR2/IGF1 paracrine and reciprocal signaling for pancreatic cancer therapy. Cell Rep Med 2025; 6:101927. [PMID: 39914384 DOI: 10.1016/j.xcrm.2024.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 12/30/2024] [Indexed: 02/21/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive and characterized by pronounced desmoplasia. PDAC cells communicate with cancer-associated fibroblasts (CAFs) in a paracrine/reciprocal manner, substantially promoting tumor growth and desmoplastic responses. This study highlights the critical role of anterior gradient 2 (AGR2), an endoplasmic reticulum protein disulfide isomerase, secreted by PDAC cells to activate CAFs via the Wnt signaling pathway. Activated CAFs, in turn, secrete insulin-like growth factor 1 (IGF1), which enhances AGR2 expression and secretion in PDAC cells through the IGF1 receptor (IGF1R)/c-JUN axis. Within PDAC cells, AGR2 acts as a thioredoxin, aiding the folding and cell surface presentation of IGF1R, essential for PDAC's response to CAF-derived IGF1. This reciprocal AGR2/IGF1 signaling loop intensifies desmoplasia, immunosuppression, and tumorigenesis, creating a harmful feedback loop. Targeting both pathways disrupts this interaction, reduces desmoplasia, and restores anti-tumor immunity in preclinical models, offering a promising therapeutic strategy against PDAC.
Collapse
Affiliation(s)
- Hongzhen Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Zhiheng Zhang
- Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhao Shi
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Shuang Nie
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yuanyuan Yu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Lingling Zhang
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Yifeng Sun
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Chao Fang
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Jingxiong Hu
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Yiqi Niu
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Kathleen Schuck
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Susanne Roth
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Loos
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ingrid Herr
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Maximilian Reichert
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Zahra Dantes
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Christoph W Michalski
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Bo Kong
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
4
|
Loveless IM, Kemp SB, Hartway KM, Mitchell JT, Wu Y, Zwernik SD, Salas-Escabillas DJ, Brender S, George M, Makinwa Y, Stockdale T, Gartrelle K, Reddy RG, Long DW, Wombwell A, Clark JM, Levin AM, Kwon D, Huang L, Francescone R, Vendramini-Costa DB, Stanger BZ, Alessio A, Waters AM, Cui Y, Fertig EJ, Kagohara LT, Theisen B, Crawford HC, Steele NG. Human Pancreatic Cancer Single-Cell Atlas Reveals Association of CXCL10+ Fibroblasts and Basal Subtype Tumor Cells. Clin Cancer Res 2025; 31:756-772. [PMID: 39636224 PMCID: PMC11831110 DOI: 10.1158/1078-0432.ccr-24-2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) patients with tumors enriched for the basal-like molecular subtype exhibit enhanced resistance to standard-of-care treatments and have significantly worse overall survival compared with patients with classic subtype-enriched tumors. It is important to develop genomic resources, enabling identification of novel putative targets in a statistically rigorous manner. EXPERIMENTAL DESIGN We compiled a single-cell RNA sequencing (scRNA-seq) atlas of the human pancreas with 229 patient samples aggregated from publicly available raw data. We mapped cell type-specific scRNA-seq gene signatures in bulk RNA-seq (n = 744) and spatial transcriptomics (ST; n = 22) and performed validation using multiplex immunostaining. RESULTS Analysis of tumor cells from our scRNA-seq atlas revealed nine distinct populations, two of which aligned with the basal subtype, correlating with worse overall survival in bulk RNA-seq. Deconvolution identified one of the basal populations to be the predominant tumor subtype in nondissociated ST tissues and in vitro tumor cell and patient-derived organoid lines. We discovered a novel enrichment and spatial association of CXCL10+ cancer-associated fibroblasts with basal tumor cells. We identified that besides immune cells, ductal cells also express CXCR3, the receptor for CXCL10, suggesting a relationship between these cell types in the PDAC tumor microenvironment. CONCLUSIONS We show that our scRNA-seq atlas (700,000 cells), integrated with ST data, has increased statistical power and is a powerful resource, allowing for expansion of current subtyping paradigms in PDAC. We uncovered a novel signaling niche marked by CXCL10+ cancer-associated fibroblasts and basal tumor cells that could be explored for future targeted therapies.
Collapse
Affiliation(s)
- Ian M. Loveless
- Department of Public Health Sciences, Center for Bioinformatics, Henry Ford Health, Detroit, Michigan
- Medical Imaging and Data Integration Lab, Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan
| | - Samantha B. Kemp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kailee M. Hartway
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jacob T. Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Yuesong Wu
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan
| | - Samuel D. Zwernik
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Daniel James Salas-Escabillas
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Cancer Biology, University of Michigan, Ann Arbor, Michigan
| | - Sydney Brender
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Madison George
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Yetunde Makinwa
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Thais Stockdale
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | | | - Rohit G. Reddy
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Daniel W. Long
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Allison Wombwell
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Julie M. Clark
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Albert M. Levin
- Department of Public Health Sciences, Center for Bioinformatics, Henry Ford Health, Detroit, Michigan
| | - David Kwon
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Ling Huang
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Ralph Francescone
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | | | - Ben Z. Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Alessio
- Medical Imaging and Data Integration Lab, Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan
- Department of Radiology, MSU, Michigan State University, East Lansing, Michigan
| | - Andrew M. Waters
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- The Skip Viragh Center for Clinical and Translational Research, Baltimore, Maryland
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Brian Theisen
- Department of Pathology, Henry Ford Health, Detroit, Michigan
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Cancer Biology, University of Michigan, Ann Arbor, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Nina G. Steele
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| |
Collapse
|
5
|
Ekstrom TL, Rosok RM, Abdelrahman AM, Parassiadis C, Manjunath M, Dittrich MY, Wang X, Kutschat AP, Kanakan A, Rajput A, Schacherer N, Lukic T, Carlson DM, Thiel J, Kopp W, Stroebel P, Ellenrieder V, Gaedcke J, Dong M, Najafova Z, Truty MJ, Hessmann E, Johnsen SA. Glucocorticoid receptor suppresses GATA6-mediated RNA polymerase II pause release to modulate classical subtype identity in pancreatic cancer. Gut 2025:gutjnl-2024-334374. [PMID: 39884837 DOI: 10.1136/gutjnl-2024-334374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with a 5-year survival rate of 12%. It has two major molecular subtypes: classical and basal, regulated by the master transcription factors (MTFs) GATA6 and ΔNp63, respectively. OBJECTIVE This study sought to uncover the transcriptional regulatory mechanisms controlling PDAC subtype identity. DESIGN We integrated primary tumour single-cell RNA-seq, patient-derived xenograft RNA-seq and multispectral imaging to identify MTF-dependent, subtype-specific markers. We created subtype-specific fluorescent reporter systems and conducted drug screenings to find actionable targets. We analysed chromatin accessibility (ATAC-seq), genome-wide occupancy (ChIP-seq) for epigenetic status (H3K27ac), MTFs (GATA6, ΔNp63), RNA polymerase II (Pol II), H3K4me3-anchored chromatin topology (HiChIP) and nascent RNA capture sequencing (PRO-seq). Additionally, we used nuclease-dead Cas9 (dCas9) to manipulate transcriptional regulatory mechanisms. RESULTS Our approach identified glucocorticoid receptor (GR) agonists as agents that suppress the classical transcriptional programme by interacting with GATA6. GATA6 regulates classical-specific transcription through promoter-proximal pause release. Depletion of GATA6 increased Pol II occupancy at GATA6-bound enhancers and transcriptional start sites, stabilising enhancer-promoter interactions. Artificially inducing pausing at GATA6-bound enhancers with dCas9 abrogated target gene expression and induced pausing at both the enhancer and target gene promoter. Conversely, in basal PDAC ΔNp63 promotes Pol II recruitment and stabilises enhancer-promoter interactions. CONCLUSION This study provides new insights into the transcriptional control and role of GR agonists in controlling PDAC molecular subtype identity.
Collapse
Affiliation(s)
- Thomas L Ekstrom
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Raya M Rosok
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | | | | | | | | | - Xin Wang
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Ana P Kutschat
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Akshay Kanakan
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Ashish Rajput
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | | | - Teodora Lukic
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Danielle M Carlson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julia Thiel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Waltraut Kopp
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
- Clinical Research Group 5002, University Medical Center Göttingen, Göttingen, Germany
| | - Philipp Stroebel
- Clinical Research Group 5002, University Medical Center Göttingen, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
- Clinical Research Group 5002, University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Clinical Research Group 5002, University Medical Center Göttingen, Göttingen, Germany
- Department of General & Visceral Surgery, Karlsruhe Municipal Hospital, Karlsruhe, Germany
| | - Meng Dong
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | | | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
- Clinical Research Group 5002, University Medical Center Göttingen, Göttingen, Germany
| | - Steven A Johnsen
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Trinh VQH, Ankenbauer KE, Torbit SM, Liu J, Batardiere M, Kumar B, Maurer HC, Revetta F, Chen Z, Kruse A, Judd A, Copeland C, Wong J, Ben-Levy O, Jarvis B, Brown M, Brown JW, Das K, Makino Y, Spraggins JM, Lau K, Azadi P, Maitra A, Tan MCB, DelGiorno KE. Mutant GNAS drives a pyloric metaplasia with tumor suppressive glycans in intraductal papillary mucinous neoplasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.25.581948. [PMID: 38464029 PMCID: PMC10925208 DOI: 10.1101/2024.02.25.581948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BACKGROUND & AIMS Intraductal Papillary Mucinous Neoplasms (IPMNs) are cystic lesions and bona fide precursors for pancreatic ductal adenocarcinoma (PDAC). Recent studies have shown that pancreatic precancer is characterized by a transcriptomic program similar to gastric metaplasia. The aims of this study were to assay IPMN for pyloric markers, to identify molecular drivers, and to determine a functional role for this program in the pancreas. METHODS Pyloric marker expression was evaluated by RNA-seq and multiplex immunostaining in patient samples. Cell lines and organoids expressing KrasG12D +/- GNASR201C underwent RNA sequencing. A PyScenic-based regulon analysis was performed to identify molecular drivers, and candidates were evaluated by RNA-seq, immunostaining, and small interfering RNA knockdown. Glycosylation profiling was performed to identify GNASR201C-driven changes. Glycan abundance was evaluated in patient samples. RESULTS Pyloric markers were identified in human IPMN. GNASR201C drove expression of this program as well as an indolent phenotype characterized by distinct glycosyltransferase changes. Glycan profiling identified an increase in LacdiNAcs and loss of pro-tumorigenic Lewis antigens. Knockdown of transcription factors Spdef or Creb3l1 or chitinase treatment reduced LacdiNAc deposition and reversed the indolent phenotype. LacdiNAc and 3-sulfoLeA/C abundance discriminated low from high grade patient IPMN. CONCLUSION GNASR201C drives an indolent phenotype in IPMN by amplifying a differentiated, pyloric phenotype through SPDEF/CREB3L1 which is characterized by distinct glycans. Acting as a glycan rheostat, mutant GNAS elevates LacdiNAcs at the expense of pro-tumorigenic acidic Lewis epitopes, inhibiting cancer cell invasion and disease progression. LacdiNAc and 3-Sulfo-LeA/C are mutually exclusive and may serve as markers of disease progression.
Collapse
|
7
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Luo H, Gong WY, Zhang YY, Liu YY, Chen Z, Feng XL, Jiao QB, Zhang XW. IRE1β evolves to be a guardian of respiratory and gastrointestinal mucosa. Heliyon 2024; 10:e39011. [PMID: 39524875 PMCID: PMC11550042 DOI: 10.1016/j.heliyon.2024.e39011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/31/2024] Open
Abstract
Inositol-requiring enzyme 1 (IRE1), a mediator of the unfolded protein response, shows the highest degree of evolutionary conservation. Vertebrates express two IRE1 paralogs: IRE1α, which is universally expressed and IRE1β, which shows specific expression within mucus secreted cells in respiratory and gastrointestinal tracts. The biological properties and regulation of the two IRE1 duplicates show evolutionary differences. As recently suggested, IRE1β-deficient mice display impairment in secreted protein expression and mucosal homeostasis. Abnormal changes in IRE1β caused by external and internal factors can disrupt mucosal homeostasis and further lead to respiratory and gastrointestinal diseases. Here, we highlight the physiological functions of IRE1β in the respiratory and gastrointestinal tracts in response to environmental microbes, viruses, toxins, and food components.
Collapse
Affiliation(s)
- Hui Luo
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wen-Yan Gong
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuan-Yuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying-Ying Liu
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhen Chen
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Lin Feng
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qi-Bin Jiao
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Wei Zhang
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
9
|
Singhal A, Styers HC, Rub J, Li Z, Torborg SR, Kim JY, Grbovic-Huezo O, Feng H, Tarcan ZC, Ozkan HS, Hallin J, Basturk O, Yaeger R, Christensen JG, Betel D, Yan Y, Chio IIC, de Stanchina E, Tammela T. A Classical Epithelial State Drives Acute Resistance to KRAS Inhibition in Pancreatic Cancer. Cancer Discov 2024; 14:2122-2134. [PMID: 38975873 PMCID: PMC11624508 DOI: 10.1158/2159-8290.cd-24-0740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Intratumoral heterogeneity in pancreatic ductal adenocarcinoma (PDAC) is characterized by a balance between basal and classical epithelial cancer cell states, with basal dominance associating with chemoresistance and a dismal prognosis. Targeting oncogenic KRAS, the primary driver of pancreatic cancer, shows early promise in clinical trials, but efficacy is limited by acquired resistance. Using genetically engineered mouse models and patient-derived xenografts, we find that basal PDAC cells are highly sensitive to KRAS inhibitors. Employing fluorescent and bioluminescent reporter systems, we longitudinally track cell-state dynamics in vivo and reveal a rapid, KRAS inhibitor-induced enrichment of the classical state. Lineage tracing uncovers that these enriched classical PDAC cells are a reservoir for disease relapse. Genetic or chemotherapy-mediated ablation of the classical cell state is synergistic with KRAS inhibition, providing a preclinical proof of concept for this therapeutic strategy. Our findings motivate combining classical state-directed therapies with KRAS inhibitors to deepen responses and counteract resistance in pancreatic cancer. Significance: KRAS inhibitors hold promise in pancreatic cancer, but responses are limited by acquired resistance. We find that a classical epithelial cancer cell state is acutely resistant to KRAS inhibition and serves as a reservoir for disease relapse. Targeting the classical state alongside KRAS inhibition deepens responses, revealing a potent therapeutic strategy. See related commentary by Marasco and Misale, p. 2018.
Collapse
Affiliation(s)
- Anupriya Singhal
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah C. Styers
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jonathan Rub
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhuxuan Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, New York, USA
| | - Stefan R. Torborg
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Jung Yun Kim
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Olivera Grbovic-Huezo
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Huijin Feng
- Institute for Cancer Genetics, Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Zeynep Cagla Tarcan
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hulya Sahin Ozkan
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jill Hallin
- Mirati Therapeutics, San Diego, California 92121, USA
| | - Olca Basturk
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rona Yaeger
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Hematology & Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Yan Yan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Current address: College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Current address: Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Elisa de Stanchina
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, MSKCC
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Tonelli C, Deschênes A, Gaeth V, Jensen A, Vithlani N, Yao MA, Zhao Z, Park Y, Tuveson DA. Ductal pancreatic cancer interception by FGFR2 abrogation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618726. [PMID: 39463990 PMCID: PMC11507947 DOI: 10.1101/2024.10.16.618726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Activating KRAS mutations are a key feature of pancreatic ductal adenocarcinoma (PDA) and drive tumor initiation and progression. However, mutant KRAS by itself is weakly oncogenic. The pathways that cooperate with mutant KRAS to induce tumorigenesis are less-defined. Analyzing organoids and murine and human pancreatic specimens, we found that the receptor tyrosine kinase FGFR2 was progressively up-regulated in mutant KRAS-driven metaplasia, pre-neoplasia and Classical PDA. Using genetic mouse models, we showed that FGFR2 supported mutant KRAS-driven transformation of acinar cells by promoting proliferation and MAPK pathway activation. FGFR2 abrogation significantly delayed tumor formation and extended the survival of these mice. Furthermore, we discovered that FGFR2 collaborated with EGFR and dual blockade of these receptor signaling pathways significantly reduced mutant KRAS-induced pre-neoplastic lesion formation. Together, our data have uncovered a pivotal role for FGFR2 in the early phases of pancreatic tumorigenesis, paving the way for future therapeutic applications of FGFR2 inhibitors for pancreatic cancer interception. STATEMENT OF SIGNIFICANCE Mutant KRAS-expressing pancreatic intraepithelial neoplasias (PanINs), the precursor lesions of PDA, are prevalent in the average healthy adult but rarely advance to invasive carcinoma. Here, we discovered that FGFR2 promoted PDA progression by amplifying mutant KRAS signaling and that inactivation of FGFR2 intercepted disease progression.
Collapse
|
11
|
Jacquemin P. On the Effects of Gene Mutations in Pancreatic Tumorigenesis, Depending on the Cell Types and Times When They Are Induced. Cell Mol Gastroenterol Hepatol 2024; 18:101394. [PMID: 39288898 PMCID: PMC11519692 DOI: 10.1016/j.jcmgh.2024.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Affiliation(s)
- Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium.
| |
Collapse
|
12
|
Karamitopoulou E, Wenning AS, Acharjee A, Aeschbacher P, Marinoni I, Zlobec I, Gloor B, Perren A. Spatial Heterogeneity of Immune Regulators Drives Dynamic Changes in Local Immune Responses, Affecting Disease Outcomes in Pancreatic Cancer. Clin Cancer Res 2024; 30:4215-4226. [PMID: 39007872 DOI: 10.1158/1078-0432.ccr-24-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is considered a low-immunogenic (LI) tumor with a "cold" tumor microenvironment and is mostly unresponsive to immune checkpoint blockade therapies. In this study, we decipher the impact of intratumoral heterogeneity of immune determinants on antitumor responses. EXPERIMENTAL DESIGN We performed spatial proteomic and transcriptomic analyses and multiplex immunofluorescence on multiple tumor regions, including tumor center (TC) and invasive front (IF), from 220 patients with PDAC, classified according to their transcriptomic immune signaling into high-immunogenic PDAC (HI-PDAC, n = 54) and LI PDAC (LI-PDAC, n = 166). Spatial compartments (tumor: pancytokeratin+/CD45- and leukocytes: pancytokeratin-/CD45+) were defined by fluorescence imaging. RESULTS HI-PDAC exhibited higher densities of cytotoxic T lymphocytes with upregulation of T-cell priming-associated immune determinants, including CD40, ITGAM, glucocorticoid-induced TNF-related receptor, CXCL10, granzyme B, IFNG, and HLA-DR, which were significantly more prominent at the IF than at the TC. In contrast, LI-PDAC exhibited immune-evasive tumor microenvironments with downregulation of immune determinants and a negative gradient from TC to IF. Patients with HI-PDAC had significantly better outcomes but showed more frequently exhausted immune phenotypes. CONCLUSIONS Our results indicate strategic differences in the regulation of immune determinants, leading to different levels of effectiveness of antitumor responses between HI and LI tumors and dynamic spatial changes, which affect the evolution of immune evasion and patient outcomes. This finding supports the coevolution of tumor and immune cells and may help define therapeutic vulnerabilities to improve antitumor immunity and harness the responsiveness to immune checkpoint inhibitors in patients with PDAC.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Anna S Wenning
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Animesh Acharjee
- University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Pauline Aeschbacher
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Ilaria Marinoni
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Bodas C, Felipe I, Chanez B, Lafarga M, López de Maturana E, Martínez-de-Villarreal J, Del Pozo N, Malumbres M, Vargiu P, Cayuela A, Peset I, Connelly KE, Hoskins JW, Méndez R, Amundadottir LT, Malats N, Ortega S, Real FX. A common CTRB misfolding variant associated with pancreatic cancer risk causes ER stress and inflammation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604778. [PMID: 39211105 PMCID: PMC11361044 DOI: 10.1101/2024.07.23.604778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective Genome wide association studies have identified an exon 6 CTRB2 deletion variant that associates with increased risk of pancreatic cancer. To acquire evidence on its causal role, we developed a new mouse strain carrying an equivalent variant in Ctrb1 , the mouse orthologue of CTRB2 . Design We used CRISPR/Cas9 to introduce a 707bp deletion in Ctrb1 encompassing exon 6 ( Ctrb1 Δexon6 ). This mutation closely mimics the human deletion variant. Mice carrying the mutant allele were extensively profiled at 3 months to assess their phenotype. Results Ctrb1 Δexon6 mutant mice express a truncated CTRB1 that accumulates in the ER. The pancreas of homozygous mutant mice displays reduced chymotrypsin activity and total protein synthesis. The histological aspect of the pancreas is inconspicuous but ultrastructural analysis shows evidence of dramatic ER stress and cytoplasmic and nuclear inclusions. Transcriptomic analyses of the pancreas of mutant mice reveals acinar program down-regulation and increased activity of ER stress-related and inflammatory pathways. Heterozygous mice have an intermediate phenotype. Agr2 is one of the most up-regulated genes in mutant pancreata. Ctrb1 Δexon6 mice exhibit impaired recovery from acute caerulein-induced pancreatitis. Administration of TUDCA or sulindac partially alleviates the phenotype. A transcriptomic signature derived from the mutant pancreata is significantly enriched in normal human pancreas of CTRB2 exon 6 deletion variant carriers from the GTEx cohort. Conclusions This mouse strain provides formal evidence that the Ctrb1 Δexon6 variant causes ER stress and inflammation in vivo , providing an excellent model to understand its contribution to pancreatic ductal adenocarcinoma development and to identify preventive strategies. SUMMARY BOX What is already known about this subject?: - CTRB2 is one of the most abundant proteins produced by human pancreatic acinar cells. - A common exon 6 deletion variant in CTRB2 has been associated with an increased risk of pancreatic ductal adenocarcinoma. - Misfolding of digestive enzymes is associated with pancreatic pathology.What are the new findings?: - We developed a novel genetic model that recapitulates the human CTRB2 deletion variant in the mouse orthologue, Ctrb1 . - Truncated CTRB1 misfolds and accumulates in the ER; yet, mutant mice display a histologically normal pancreas at 3 months age.- CTRB1 and associated chaperones colocalize in the ER, the cytoplasm, and the nucleus of acinar cells.- Transcriptomics analysis reveals reduced activity of the acinar program and increased activity of pathways involved in ER stress, unfolded protein response, and inflammation.- Mutant mice are sensitized to pancreatic damage and do not recover properly from a mild caerulein-induced pancreatitis.- TUDCA administration partially relieves the ER stress in mutant mice.How might it impact on clinical practice in the foreseeable future?: - The new mouse model provides a tool to identify the mechanisms leading to increased pancreatic cancer risk in CTRB2 exon 6 carriers. - The findings suggest that drugs that cause ER stress relief and/or reduce inflammation might provide preventive opportunities.
Collapse
|
14
|
Qu S, Jia W, Nie Y, Shi W, Chen C, Zhao Z, Song W. AGR2: The Covert Driver and New Dawn of Hepatobiliary and Pancreatic Cancer Treatment. Biomolecules 2024; 14:743. [PMID: 39062458 PMCID: PMC11275012 DOI: 10.3390/biom14070743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The anterior gradient protein 2 (AGR2) plays a crucial role in facilitating the formation of protein disulfide bonds within the endoplasmic reticulum (ER). Research suggests that AGR2 can function as an oncogene, with its heightened expression linked to the advancement of hepatobiliary and pancreatic cancers through invasion and metastasis. Notably, AGR2 not only serves as a pro-oncogenic agent but also as a downstream targeting protein, indirectly fostering cancer progression. This comprehensive review delves into the established functions and expression patterns of AGR2, emphasizing its pivotal role in cancer progression, particularly in hepatobiliary and pancreatic malignancies. Furthermore, AGR2 emerges as a potential cancer prognostic marker and a promising target for immunotherapy, offering novel avenues for the treatment of hepatobiliary and pancreatic cancers and enhancing patient outcomes.
Collapse
Affiliation(s)
- Shen Qu
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Weili Jia
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Ye Nie
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Wen Shi
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Chao Chen
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Zihao Zhao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| |
Collapse
|