1
|
Lei M, Wu L, Terrar DA, Huang CLH. The modernized classification of cardiac antiarrhythmic drugs: Its application to clinical practice. Heart Rhythm 2025:S1547-5271(25)02300-8. [PMID: 40187508 DOI: 10.1016/j.hrthm.2025.03.1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Cardiac arrhythmias pose a major public health problem, and pharmacologic intervention remains key to their therapy. The 1970 landmark Vaughan Williams (VW) classification utilizing known actions of then available antiarrhythmic drugs (AADs) became and remains central to management, but it requires revision in response to extensive subsequent advances. Our modernized AAD classification reflected and sought to facilitate such fundamental physiological and clinical development. Here we respond to requests for an adaptation of our scheme specifically focused on clinical practice. (1) This adaptation improves the accessibility of our original scheme to clinical practice, focusing on key AADs in clinical use rather than investigational new drugs (INDs) while conserving and encompassing the classic VW scheme. (2) We preserve a rational conceptual framework based on current understanding of the relevant electrophysiological events, their underlying cellular or molecular cardiomyocyte targets, and the functional mechanisms they mediate. (3) The adopted subclasses within each AAD class parallel clinical practice by including only subclasses containing established AADs, or approved potential off-label drugs, as opposed to those only including INDs. (4) The simplified scheme remains flexible, permitting drugs to be placed in multiple classes where required, and the addition of classes and subclasses in light of future investigations and clinical approvals. Thus, we derive from our comprehensive modernized AAD classification a more focused and simpler scheme for clinical use. This both modernizes yet preserves the classic VW classification and remains flexible, thus accommodating future developments.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| | - Lin Wu
- Department of Cardiology, Peking University First Hospital, Beijing, China.
| | - Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
2
|
Lei M, Salvage SC, Jackson AP, Huang CLH. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024; 15:1342761. [PMID: 38505707 PMCID: PMC10949183 DOI: 10.3389/fphys.2024.1342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Huang CLH, Lei M. Cardiomyocyte electrophysiology and its modulation: current views and future prospects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220160. [PMID: 37122224 PMCID: PMC10150219 DOI: 10.1098/rstb.2022.0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023] Open
Abstract
Normal and abnormal cardiac rhythms are of key physiological and clinical interest. This introductory article begins from Sylvio Weidmann's key historic 1950s microelectrode measurements of cardiac electrophysiological activity and Singh & Vaughan Williams's classification of cardiotropic targets. It then proceeds to introduce the insights into cardiomyocyte function and its regulation that subsequently emerged and their therapeutic implications. We recapitulate the resulting view that surface membrane electrophysiological events underlying cardiac excitation and its initiation, conduction and recovery constitute the final common path for the cellular mechanisms that impinge upon this normal or abnormal cardiac electrophysiological activity. We then consider progress in the more recently characterized successive regulatory hierarchies involving Ca2+ homeostasis, excitation-contraction coupling and autonomic G-protein signalling and their often reciprocal interactions with the surface membrane events, and their circadian rhythms. Then follow accounts of longer-term upstream modulation processes involving altered channel expression, cardiomyocyte energetics and hypertrophic and fibrotic cardiac remodelling. Consideration of these developments introduces each of the articles in this Phil. Trans. B theme issue. The findings contained in these articles translate naturally into recent classifications of cardiac electrophysiological targets and drug actions, thereby encouraging future iterations of experimental cardiac electrophysiological discovery, and testing directed towards clinical management. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
4
|
Madan P, Singh V, Singh DP, Diwakar M, Pant B, Kishor A. A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification. Bioengineering (Basel) 2022; 9:152. [PMID: 35447712 PMCID: PMC9025942 DOI: 10.3390/bioengineering9040152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
Arrhythmias are defined as irregularities in the heartbeat rhythm, which may infrequently occur in a human's life. These arrhythmias may cause potentially fatal complications, which may lead to an immediate risk of life. Thus, the detection and classification of arrhythmias is a pertinent issue for cardiac diagnosis. (1) Background: To capture these sporadic events, an electrocardiogram (ECG), a register containing the heart's electrical function, is considered the gold standard. However, since ECG carries a vast amount of information, it becomes very complex and challenging to extract the relevant information from visual analysis. As a result, designing an efficient (automated) system to analyse the enormous quantity of data possessed by ECG is critical. (2) Method: This paper proposes a hybrid deep learning-based approach to automate the detection and classification process. This paper makes two-fold contributions. First, 1D ECG signals are translated into 2D Scalogram images to automate the noise filtering and feature extraction. Then, based on experimental evidence, by combining two learning models, namely 2D convolutional neural network (CNN) and the Long Short-Term Memory (LSTM) network, a hybrid model called 2D-CNN-LSTM is proposed. (3) Result: To evaluate the efficacy of the proposed 2D-CNN-LSTM approach, we conducted a rigorous experimental study using the widely adopted MIT-BIH arrhythmia database. The obtained results show that the proposed approach provides ≈98.7%, 99%, and 99% accuracy for Cardiac Arrhythmias (ARR), Congestive Heart Failure (CHF), and Normal Sinus Rhythm (NSR), respectively. Moreover, it provides an average sensitivity of the proposed model of 98.33% and a specificity value of 98.35%, for all three arrhythmias. (4) Conclusions: For the classification of arrhythmias, a robust approach has been introduced where 2D scalogram images of ECG signals are trained over the CNN-LSTM model. The results obtained are better as compared to the other existing techniques and will greatly reduce the amount of intervention required by doctors. For future work, the proposed method can be applied over some live ECG signals and Bi-LSTM can be applied instead of LSTM.
Collapse
Affiliation(s)
- Parul Madan
- Department of Computer Science and Engineering, Graphic Era Deemed to Be University, Dehradun 248002, India; (V.S.); (D.P.S.); (M.D.); (B.P.)
| | - Vijay Singh
- Department of Computer Science and Engineering, Graphic Era Deemed to Be University, Dehradun 248002, India; (V.S.); (D.P.S.); (M.D.); (B.P.)
| | - Devesh Pratap Singh
- Department of Computer Science and Engineering, Graphic Era Deemed to Be University, Dehradun 248002, India; (V.S.); (D.P.S.); (M.D.); (B.P.)
| | - Manoj Diwakar
- Department of Computer Science and Engineering, Graphic Era Deemed to Be University, Dehradun 248002, India; (V.S.); (D.P.S.); (M.D.); (B.P.)
| | - Bhaskar Pant
- Department of Computer Science and Engineering, Graphic Era Deemed to Be University, Dehradun 248002, India; (V.S.); (D.P.S.); (M.D.); (B.P.)
| | - Avadh Kishor
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India;
| |
Collapse
|
5
|
Brugada-Terradellas C, Hellemans A, Brugada P, Smets P. Sudden cardiac death: A comparative review of humans, dogs and cats. Vet J 2021; 274:105696. [PMID: 34148018 DOI: 10.1016/j.tvjl.2021.105696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Sudden death is one of the most common causes of death in humans in Western countries. Approximately 85% of these cases are of cardiac origin. In dogs and cats, sudden cardiac death (SCD) also commonly occurs, but fewer pathophysiological and prevalence data are available. Both structural, primarily 'electrical' and ischemic heart diseases are known to cause SCD, many of which share similar underlying arrhythmogenic mechanisms between humans and companion animals. As for underlying genetics, numerous mutations on multiple loci have been related to SCD in humans, but only a few mutations associated with dilated cardiomyopathy and SCD have been identified in dogs, e.g. in the phospholamban and titin genes. Information published from human medicine can therefore inform future veterinary studies, but also dogs and cats could act as spontaneous models of SCD in humans. Further research in both fields is therefore warranted to better understand the pathophysiology, genetics, and prevention of SCD.
Collapse
Affiliation(s)
- Celine Brugada-Terradellas
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Arnaut Hellemans
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Pedro Brugada
- Pedro Brugada, Cardiovascular Division, UZ Brussel - VUB, Avenue du Laerbeek 101, 1090 Brussels, Belgium
| | - Pascale Smets
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
6
|
Környei L, Szabó A, Róth G, Kardos A, Fogarasi A. Frequency of syncope as a presenting symptom in channelopathies diagnosed in childhood. Can the multivariable EGSYS score unmask these children? Eur J Pediatr 2021; 180:1553-1559. [PMID: 33447893 DOI: 10.1007/s00431-020-03913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022]
Abstract
Pediatric syncope raises cardiac etiology concern as it might be the first sign of life-threatening arrhythmia syndromes. Our aim was to study the incidence of syncope as the presenting symptom in children with arrhythmia syndromes, and if known, warning signs are helpful to reveal the arrhythmic origin. All data on children with channelopathy was followed by a tertiary pediatric cardiac center between 2000 and 2018 and data were reviewed retrospectively. Forty-eight patients were enrolled, representing long QT syndrome (n = 39), catecholaminergic polymorphic ventricular tachycardia (n = 5), and Brugada syndrome (n = 4). Presenting symptoms were syncope in 13 cases [27%] (including 7 initially mislabeled as epilepsy) and sudden cardiac arrest (SCA) in 9 cases [19%]. In the rest of the group, the concern for arrhythmic etiology was raised by either an abnormal ECG during sports medicine screening (n = 13) [27%] or a positive family history of channelopathy (n = 13) [27%]. None of the patients presenting with SCA had a prior syncopal history. Six patients presenting with syncope and afterward treated with ICD had an appropriate shock. Description of witnessed syncope was available in eight out of thirteen children presenting with syncope. Multivariable EGSYS score suggested cardiac origin (≥ 3 points) in 7 out of 8 (88%) patients.Conclusions: Syncope was a relatively uncommon presenting symptom of channelopathies in this sample and did not always precede sudden cardiac arrests. However, we found that multivariable EGSYS score can identify syncope of arrhythmic origin, raising suspicion for pediatric channelopathies even in patients previously misdiagnosed with epilepsy. What is known: • Cardiac syncope is rare in children but can be the first sign of a potentially fatal primary arrhythmia syndrome and is frequently misdiagnosed as atypical/therapy-resistant epilepsy. • Multivariate EGSYS score is effective to diagnose cardiac syncope in adults. What is new: • Cardiac syncope as a presenting symptom is not common in children with cardiac channelopathies and is not often present before sudden cardiac arrest. • Multivariable EGSYS score might identify cardiac syncope in children with a hereditary and secondary channelopathy.
Collapse
Affiliation(s)
- László Környei
- Gottsegen György Hungarian Institute of Cardiology, Pediatric Heart Center, Haller u. 29, Budapest, 1096, Hungary.
| | - Andrea Szabó
- Gottsegen György Hungarian Institute of Cardiology, Pediatric Heart Center, Haller u. 29, Budapest, 1096, Hungary
| | - György Róth
- Gottsegen György Hungarian Institute of Cardiology, Pediatric Heart Center, Haller u. 29, Budapest, 1096, Hungary
| | - Attila Kardos
- Gottsegen György Hungarian Institute of Cardiology, Budapest, Hungary
| | - András Fogarasi
- Department of Neurology, Bethesda Children's Hospital, Budapest, Hungary
| |
Collapse
|
7
|
Isart FA, Mason JW, Isart-Infante FJ, Ramos FG. Surface Electrocardiographic Parameters of Children and Adolescents Diagnosed with Attention-Deficit/Hyperactivity Disorder in an Ambulatory Community Pediatric Center: A Focus on Cardiac Repolarization Electrocardiogram Intervals. J Child Adolesc Psychopharmacol 2021; 31:227-232. [PMID: 33635153 PMCID: PMC8066348 DOI: 10.1089/cap.2020.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objectives: Our research aims were to determine if repolarization measures (QTcF, QTcB, JTcF, and JTcB) in attention-deficit/hyperactivity disorder (ADHD) children and adolescents differ from normal subjects and determine if the JTc interval duration, as a purer repolarization measure than QTc, strengthens the differentiation between ADHD and normal children and adolescents. Methods: This study included 418 subjects aged 5-18 years who were diagnosed with ADHD, and 1948 subjects in a historical normal control group. One-way analysis of variance (ANOVA) was performed to compare the independent groups on normal continuous outcomes. Means and standard deviations (SDs) were reported and interpreted for the ANOVA. Logistic regression analysis was performed to test the ability of four variables (QTcB, QTcF, JTcB, and JTcF) to predict an ADHD diagnosis, with age and gender as independent covariates. The log odds with standard errors for each variable were reported and interpreted for the logistic models. Results: In the nominal logistic regressions with JTcF ≥322 or JTcB ≥335 (values 1 SD above the mean of the control group), age and sex were significant contributors to the models that showed that subjects with a JTcF ≥322 ms had a statistically and significantly higher probability to be diagnosed with ADHD in comparison with normal control subjects (odds ratio [OR]: 2.6, 95% confidence interval [95% CI] 2.02-3.33, p < 0.0001). Similarly, those subjects with a JTcB ≥335 ms were 2.7 times more likely to be diagnosed with ADHD than normal control subjects (OR: 2.7, 95% CI 2.1-3.45, p < 0.0001). Conclusions: JTc provided a clearer separation of the groups than QTc. JTcB and JTcF 1 SD above the control group means are strong predictors of ADHD diagnosis and remain so even when strong demographic predictors of longer QTc (age and sex) are included in the regression models. Consideration should be given to recording a pretreatment electrocardiogram in all children and adolescents with ADHD, and to measuring and monitoring JTc in patients with ADHD, especially when considering the addition of QT prolonging drugs.
Collapse
Affiliation(s)
- Fernando A. Isart
- Baylor College of Medicine, Houston, Texas, USA.,Address correspondence to: Fernando A. Isart, MD, Kids'N Teens Clinics, PA, 2925 West T C Jester Blvd ste 1, Houston, TX 77018, USA
| | - Jay W. Mason
- University of Utah, Salt Lake City, Utah, USA.,Spaulding Clinical Research, Milwaukee, Wisconsin, USA
| | | | - Faustino G. Ramos
- Pediatric Cardiology, Department of Pediatrics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
8
|
MANDAL SAURAV, SINHA NABANITA. ARRHYTHMIA DIAGNOSIS FROM ECG SIGNAL ANALYSIS USING STATISTICAL FEATURES AND NOVEL CLASSIFICATION METHOD. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aims to present an efficient model for autodetection of cardiac arrhythmia by the diagnosis of self-affinity and identification of governing processes of a number of Electrocardiogram (ECG) signals taken from MIT-BIH database. In this work, the proposed model includes statistical methods to find the diagnosis pattern for detecting cardiac abnormalities which is useful for the computer aided system for arrhythmia detection. First, the Rescale Range (R/S) analysis has been employed for ECG signals to understand the scaling property of ECG signals. The value of Hurst exponent identifies the presence of abnormality in ECG signals taken for consideration with 92.58% accuracy. In this study, Higuchi method which deals with unifractality or monofractality of signals has been applied and it is found that unifractality is sufficient to detect arrhythmia with 91.61% accuracy. The Multifractal Detrended Fluctuation Analysis (MFDFA) has been used over the present signals to identify and confirm the multifractality. The nature of multifractality is different for arrhythmia patients and normal heart condition. The multifractal analysis is useful to detect abnormalities with 93.75% accuracy. Finally, the autocorrelation analysis has been used to identify the prevalent governing process in the present arrhythmic ECG signals and study confirms that all the signals are governed by stationary autoregressive methods of certain orders. In order to increase the overall efficiency, this present model deals with analyzing all the statistical features extracted from different statistical techniques for a large number of ECG signals of normal and abnormal heart condition. Finally, the result of present analysis altogether possibly indicates that the proposed model is efficient to detect cardiac arrhythmia with 99.3% accuracy.
Collapse
Affiliation(s)
- SAURAV MANDAL
- Department of Radio Physics and Electronics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - NABANITA SINHA
- Department of Radio Physics and Electronics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| |
Collapse
|
9
|
Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021; 8:646932. [PMID: 33659284 PMCID: PMC7917191 DOI: 10.3389/fcvm.2021.646932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Incidence of cardiac arrhythmias increases significantly with age. In order to effectively stratify arrhythmic risk in the aging population it is crucial to elucidate the relevant underlying molecular mechanisms. The changes underlying age-related electrophysiological disruption appear to be closely associated with mitochondrial dysfunction. Thus, the present review examines the mechanisms by which age-related mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions, cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients' mitochondrial function status permits application of appropriate anti-arrhythmic therapies. Here, we discuss novel potential anti-arrhythmic pharmacological interventions that specifically target upstream mitochondrial function and hence ameliorates the need for therapies targeting downstream changes which have constituted traditional antiarrhythmic therapy.
Collapse
Affiliation(s)
- Khalil Saadeh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim Talal Fazmin
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
10
|
Xie D, Wu J, Wu Q, Zhang X, Zhou D, Dai W, Zhu M, Wang D. Integrating proteomic, lipidomic and metabolomic data to construct a global metabolic network of lethal ventricular tachyarrhythmias (LVTA) induced by aconitine. J Proteomics 2021; 232:104043. [PMID: 33161167 DOI: 10.1016/j.jprot.2020.104043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023]
Abstract
Lethal ventricular tachyarrhythmias (LVTA)-related sudden cardiac death (SCD) is one of the major causes of death worldwide. However, the mechanisms underlying LVTA induced by myocardial ion channel diseases (MICDs) are not yet fully understood. Here, we produced an LVTA rat model induced by aconitine, to mimic MICDs-elicited LVTA, and constructed a global pathway network via integrating proteomic and lipidomic data, and our previously published metabolomic data. Results showed that both proteome and lipidome were disturbed during the LVTA process. Most of the differentially expressed proteins and lipid species were correlated. Proteomic data indicated disturbance of energy metabolism (e.g. fatty acid β-oxidation and the tricarboxylic acid cycle) and activation of the protein kinase C and nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase pathway; these alterations led to lowered ATP and elevated ROS, respectively. Altered levels of the Ca2+ handling proteins suggested aberrant intracellular Ca2+ homeostasis, which might also be secondary to the shortage of ATP and oxidative stress. Significantly, the disrupted pathways implied by proteomic data were largely confirmed by lipidomic and metabolomic data. Collectively, we have constructed a metabolic pathway network of aconitine-induced LVTA using a multi-omics strategy, which confers great promise for the deeper interpretation of the mechanisms underlying LVTA. SIGNIFICANCE: In this study, we integrated proteomics, lipidomics and metabolomics to explore the pathophysiological processes of LVTA induced by aconitine. It is innovative to try to integrate these three omics in a study exploring the relative mechanisms. Here, based on the DEPs and differentially abundant lipid species (DALPs) between the LVTA groups and the controls, and the different metabolites discovered previously from the same model, we have successfully constructed a global metabolic network. Taken together, the multi-omics integration strategies used in this study show the potential for a new interpretation of the pathophysiological processes of LVTA induced by different conditions and open the possibility to explore deeper and broader mechanisms of other diseases.
Collapse
Affiliation(s)
- Dezhi Xie
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, China
| | - Jiayan Wu
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology, Shanghai 201203, China
| | - Xiaojun Zhang
- Central laboratory, Shantou University Medical College, Shantou 515041, China
| | - Danya Zhou
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology, Shanghai 201203, China
| | - Mengting Zhu
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, China
| | - Dian Wang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
11
|
Gao Y, Chen B, Zhang X, Yang R, Hua Q, Li B. The anesthetic bupivacaine induces cardiotoxicity by targeting L-type voltage-dependent calcium channels. J Int Med Res 2020; 48:300060520942619. [PMID: 32812463 PMCID: PMC7441289 DOI: 10.1177/0300060520942619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective Bupivacaine is an amide local anesthetic with possible side effects that include an
irregular heart rate. However, the mechanism of bupivacaine-induced cardiotoxicity has
not been fully elucidated, thus we aimed to examine this mechanism. Methods We performed electrocardiogram recordings to detect action potential waveforms in
Sprague Dawley rats after application of bupivacaine, while calcium (Ca2+)
currents in neonatal rat ventricular cells were examined by patch clamp recording.
Western blot and quantitative real-time polymerase chain reaction assays were used to
detect the expression levels of targets of interest. Results In the present study, after application of bupivacaine, abnormal action potential
waveforms were detected in Sprague Dawley rats by electrocardiogram recordings, while
decreased Ca2+ currents were confirmed in neonatal rat ventricular cells by
patch clamp recording. These alterations may be attributed to a deficiency of
CaV1.3 (L-type) Ca2+ channels, which may be regulated by the
multifunctional protein calreticulin. Conclusions The present study identifies a possible role of the calreticulin–CaV1.3 axis
in bupivacaine-induced abnormal action potentials and Ca2+ currents, which
may lead to a better understanding anesthetic drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- YaNan Gao
- Anesthesiology Department, Daqing Longnan Hospital, Daqing, People's Republic of China
| | - Bo Chen
- ICU, Daqing Longnan Hospital, Daqing, People's Republic of China
| | - Xue Zhang
- ICU, Daqing Longnan Hospital, Daqing, People's Republic of China
| | - Rui Yang
- Cardiothoracic Surgery Department, Daqing Longnan Hospital, Daqing, People's Republic of China
| | - QingLi Hua
- Anesthesiology Department, Daqing Longnan Hospital, Daqing, People's Republic of China
| | - BaiDong Li
- Cardiothoracic Surgery Department, Daqing Longnan Hospital, Daqing, People's Republic of China
| |
Collapse
|
12
|
Zhang H, Zhang S, Wang W, Wang K, Shen W. A Mathematical Model of the Mouse Atrial Myocyte With Inter-Atrial Electrophysiological Heterogeneity. Front Physiol 2020; 11:972. [PMID: 32848887 PMCID: PMC7425199 DOI: 10.3389/fphys.2020.00972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Biophysically detailed mathematical models of cardiac electrophysiology provide an alternative to experimental approaches for investigating possible ionic mechanisms underlying the genesis of electrical action potentials and their propagation through the heart. The aim of this study was to develop a biophysically detailed mathematical model of the action potentials of mouse atrial myocytes, a popular experimental model for elucidating molecular and cellular mechanisms of arrhythmogenesis. Based on experimental data from isolated mouse atrial cardiomyocytes, a set of mathematical equations for describing the biophysical properties of membrane ion channel currents, intracellular Ca2+ handling, and Ca2+-calmodulin activated protein kinase II and β-adrenergic signaling pathways were developed. Wherever possible, membrane ion channel currents were modeled using Markov chain formalisms, allowing detailed representation of channel kinetics. The model also considered heterogeneous electrophysiological properties between the left and the right atrial cardiomyocytes. The developed model was validated by its ability to reproduce the characteristics of action potentials and Ca2+ transients, matching quantitatively to experimental data. Using the model, the functional roles of four K+ channel currents in atrial action potential were evaluated by channel block simulations, results of which were quantitatively in agreement with existent experimental data. To conclude, this newly developed model of mouse atrial cardiomyocytes provides a powerful tool for investigating possible ion channel mechanisms of atrial electrical activity at the cellular level and can be further used to investigate mechanisms underlying atrial arrhythmogenesis.
Collapse
Affiliation(s)
- Henggui Zhang
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.,Peng Cheng Laboratory, Shenzhen, China
| | - Shanzhuo Zhang
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.,School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wei Wang
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.,Peng Cheng Laboratory, Shenzhen, China.,Shenzhen Key Laboratory of Visual Object Detection and Recognition, Harbin Institute of Technology, Shenzhen, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weijian Shen
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
|
14
|
Saadeh K, Shivkumar K, Jeevaratnam K. Targeting the β-adrenergic receptor in the clinical management of congenital long QT syndrome. Ann N Y Acad Sci 2020; 1474:27-46. [PMID: 32901453 DOI: 10.1111/nyas.14425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/10/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
Abstract
The long QT syndrome (LQTS) is largely treated pharmacologically with β-blockers, despite the role of sympathetic activity in LQTS being poorly understood. Using the trigger-substrate model of cardiac arrhythmias in this review, we amalgamate current experimental and clinical data from both animal and human studies to explain the mechanism of adrenergic stimulation and blockade on LQT arrhythmic risk and hence assess the efficacy of β-adrenoceptor blockade in the management of LQTS. In LQTS1 and LQTS2, sympathetic stimulation increases arrhythmic risk by enhancing early afterdepolarizations and transmural dispersion of repolarization. β-Blockers successfully reduce cardiac events by reducing these triggers and substrates; however, these effects are less marked in LQTS2 compared with LQTS1. In LQTS3, clinical and experimental investigations of the effects of sympathetic stimulation and β-blocker use have produced contradictory findings, resulting in significant clinical uncertainty. We offer explanations for these contradicting results relating to study sample size, the dose of the β-blocker administered associated with its off-target Na+ channel effects, as well as the type of β-blocker used. We conclude that the antiarrhythmic efficacy of β-blockers is a genotype-specific phenomenon, and hence the use of β-blockers in clinical practice should be genotype dependent.
Collapse
Affiliation(s)
- Khalil Saadeh
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Centre, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
15
|
Vlachos K, Mascia G, Martin CA, Bazoukis G, Frontera A, Cheniti G, Letsas KP, Efremidis M, Georgopoulos S, Gkalapis C, Duchateau J, Parmbrun T, Derval N, Hocini M, Haissaguerre M, Jais P, Sacher F. Atrial fibrillation in Brugada syndrome: Current perspectives. J Cardiovasc Electrophysiol 2020; 31:975-984. [PMID: 31961030 DOI: 10.1111/jce.14361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
The incidence of atrial fibrillation (AF) in Brugada syndrome (BrS) has been reported at between 9% and 53% by different series, but the true prevalence is unknown. However, AF may be the presenting feature in some patients. The underlying mechanisms for AF may be a combination of multiple factors, genetic or acquired, that may impact upon autonomic function, atrial structure, and conduction velocities or other unknown factors. The presence of AF has been associated with a more malignant course, with a greater incidence of syncope and ventricular arrhythmias, thus acting as marker of more advanced disease. Regarding the management of patients with AF, antiarrhythmic drugs effective in preventing malignant arrhythmias in BrS such as quinidine or invasive treatment with pulmonary vein isolation (PVI) may be useful in AF treatment. In this review, we aim to present the current perspectives regarding the genetics, pathophysiology, management, and prognosis of AF in patients with BrS.
Collapse
Affiliation(s)
- Konstantinos Vlachos
- Hôpital Cardiologique du Haut Lévèque, CHU de Bordeaux and IHU-LIRYC, Pessac, France
| | - Giuseppe Mascia
- Cardiology and Electrophysiology Unit, Azienda USL Toscana, Florence, Italy
| | - Claire A Martin
- Hôpital Cardiologique du Haut Lévèque, CHU de Bordeaux and IHU-LIRYC, Pessac, France
- Department of Electrophysiology-Cardiology, Royal Papworth Hospital, Cambridge, UK
| | - George Bazoukis
- Laboratory of Electrophysiology, Second Department of Cardiology, General Hospital of Athens "Evangelismos", Athens, Greece
| | - Antonio Frontera
- Hôpital Cardiologique du Haut Lévèque, CHU de Bordeaux and IHU-LIRYC, Pessac, France
| | - Ghassen Cheniti
- Hôpital Cardiologique du Haut Lévèque, CHU de Bordeaux and IHU-LIRYC, Pessac, France
| | - Konstantinos P Letsas
- Laboratory of Electrophysiology, Second Department of Cardiology, General Hospital of Athens "Evangelismos", Athens, Greece
| | - Micheal Efremidis
- Laboratory of Electrophysiology, Second Department of Cardiology, General Hospital of Athens "Evangelismos", Athens, Greece
| | - Stamatis Georgopoulos
- Laboratory of Electrophysiology, Second Department of Cardiology, General Hospital of Athens "Evangelismos", Athens, Greece
| | - Charis Gkalapis
- Department of Electrophysiology-Cardiology, Klinikum Vest, Recklinghausen, Germany
- Department of Cardiology, Akademisches Lehrkrankenhaus, Ruhr-Universität Bochum, Bochum, Germany
| | - Josselin Duchateau
- Hôpital Cardiologique du Haut Lévèque, CHU de Bordeaux and IHU-LIRYC, Pessac, France
| | - Thomas Parmbrun
- Hôpital Cardiologique du Haut Lévèque, CHU de Bordeaux and IHU-LIRYC, Pessac, France
| | - Nicholas Derval
- Hôpital Cardiologique du Haut Lévèque, CHU de Bordeaux and IHU-LIRYC, Pessac, France
| | - Mélèze Hocini
- Hôpital Cardiologique du Haut Lévèque, CHU de Bordeaux and IHU-LIRYC, Pessac, France
| | - Michel Haissaguerre
- Hôpital Cardiologique du Haut Lévèque, CHU de Bordeaux and IHU-LIRYC, Pessac, France
| | - Pierre Jais
- Hôpital Cardiologique du Haut Lévèque, CHU de Bordeaux and IHU-LIRYC, Pessac, France
| | - Frédéric Sacher
- Hôpital Cardiologique du Haut Lévèque, CHU de Bordeaux and IHU-LIRYC, Pessac, France
| |
Collapse
|
16
|
Yazdanfard PD, Christensen AH, Tfelt-Hansen J, Bundgaard H, Winkel BG. Non-diagnostic autopsy findings in sudden unexplained death victims. BMC Cardiovasc Disord 2020; 20:58. [PMID: 32019512 PMCID: PMC7001247 DOI: 10.1186/s12872-020-01361-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several inherited cardiac diseases may lead to sudden cardiac death (SCD) a devastating event in the families. It is crucial to establish a post mortem diagnosis to facilitate relevant work-up and treatment of family members. Sudden unexplained death (SUD) victims constitute roughly one third of all SCD cases in Denmark. METHODS This was a single center, retrospective study investigating SUD cases. Victims who died unexplained due to suspected or confirmed cardiac disease were consecutively referred to a third line referral center established in 2005. All autopsy reports were investigated. Victims were divided into two groups: non-diagnostic cardiac findings and normal cardiac findings. None of the included victims had findings consistent with a diagnosis based on existing criteria. RESULTS In total, 99 SUD cases were referred. The mean age of the victims was 37 years (range 0-62 years, 75% males). A total of 14 (14%) victims had a cardiovascular diagnosis pre-mortem. Thirty-seven cases had normal cardiac findings and non-diagnostic cardiac findings were found in 62 cases (63%). The five most common findings included ventricular hypertrophy and/or enlarged heart (n = 35, 35%), coronary atheromatosis (n = 31, 31%), myocardial fibrosis (n = 19, 19%), dilated chambers (n = 7, 7%) and myocardial inflammation (n = 5, 5%). CONCLUSION One third of SUD victims had normal cardiac findings and non-diagnostic cardiac findings were seen in almost two thirds of the SUD victims. These non-diagnostic findings may be precursors or early markers for underlying structural cardiac disorders or may be innocent bystanders in some cases. Further studies and improved post-mortem examination methods are needed for optimization of diagnostics in SUD.
Collapse
Affiliation(s)
- Puriya Daniel Yazdanfard
- Department of Cardiology The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2142, 2100 Copenhagen, Denmark
| | - Alex Hørby Christensen
- Department of Cardiology The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2142, 2100 Copenhagen, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2142, 2100 Copenhagen, Denmark
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2142, 2100 Copenhagen, Denmark
| | - Bo Gregers Winkel
- Department of Cardiology The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2142, 2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Huang CLH, Wu L, Jeevaratnam K, Lei M. Update on antiarrhythmic drug pharmacology. J Cardiovasc Electrophysiol 2020; 31:579-592. [PMID: 31930579 DOI: 10.1111/jce.14347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
Cardiac arrhythmias constitute a major public health problem. Pharmacological intervention remains mainstay to their clinical management. This, in turn, depends upon systematic drug classification schemes relating their molecular, cellular, and systems effects to clinical indications and therapeutic actions. This approach was first pioneered in the 1960s Vaughan-Williams classification. Subsequent progress in cardiac electrophysiological understanding led to a lag between the fundamental science and its clinical translation, partly addressed by The working group of the European Society of Cardiology (1991), which, however, did not emerge with formal classifications. We here utilize the recent Revised Oxford Classification Scheme to review antiarrhythmic drug pharmacology. We survey drugs and therapeutic targets offered by the more recently characterized ion channels, transporters, receptors, intracellular Ca2+ handling, and cell signaling molecules. These are organized into their strategic roles in cardiac electrophysiological function. Following analysis of the arrhythmic process itself, we consider (a) pharmacological agents directly targeting membrane function, particularly the Na+ and K+ ion channels underlying depolarizing and repolarizing events in the cardiac action potential. (b) We also consider agents that modify autonomic activity that, in turn, affects both the membrane and (c) the Ca2+ homeostatic and excitation-contraction coupling processes linking membrane excitation to contractile activation. Finally, we consider (d) drugs acting on more upstream energetic and structural remodeling processes currently the subject of clinical trials. Such systematic correlations of drug actions and arrhythmic mechanisms at different molecular to systems levels of cardiac function will facilitate current and future antiarrhythmic therapy.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Department of Biochemistry and Physiological Laboratory, University of Cambridge, Cambridge, UK.,Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Cardiology, Peking University First Hospital, Beijing, China
| | | | - Ming Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Šustr F, Stárek Z, Souček M, Novák J. Non-coding RNAs and Cardiac Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:287-300. [PMID: 32285419 DOI: 10.1007/978-981-15-1671-9_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Cardiac arrhythmias represent wide and heterogenic group of disturbances in the cardiac rhythm. Pathophysiology of individual arrhythmias is highly complex and dysfunction in ion channels/currents involved in generation or spreading of action potential is usually documented. Non-coding RNAs (ncRNAs) represent highly variable group of molecules regulating the heart expression program, including regulation of the expression of individual ion channels and intercellular connection proteins, e.g. connexins.Within this chapter, we will describe basic electrophysiological properties of the myocardium. We will focus on action potential generation and spreading in pacemaker and non-pacemaker cells, including description of individual ion channels (natrium, potassium and calcium) and their ncRNA-mediated regulation. Most of the studies have so far focused on microRNAs, thus, their regulatory function will be described into greater detail. Clinical consequences of altered ncRNA regulatory function will also be described together with potential future directions of the research in the field.
Collapse
Affiliation(s)
- Filip Šustr
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdeněk Stárek
- First Department of Internal Medicine and Cardioangiology of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miroslav Souček
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Novák
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- CEITEC - Central European Institute for Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
19
|
Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2019; 123:224-243. [PMID: 29976690 DOI: 10.1161/circresaha.118.311209] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life threatening ventricular arrhythmias leading to sudden cardiac death are a major cause of morbidity and mortality. In the absence of structural heart disease, these arrhythmias, especially in the younger population, are often an outcome of genetic defects in specialized membrane proteins called ion channels. In the heart, exceptionally well-orchestrated activity of a diversity of ion channels mediates the cardiac action potential. Alterations in either the function or expression of these channels can disrupt the configuration of the action potential, leading to abnormal electrical activity of the heart that can sometimes initiate an arrhythmia. Understanding the pathophysiology of inherited arrhythmias can be challenging because of the complexity of the disorder and lack of appropriate cellular and in vivo models. Recent advances in human induced pluripotent stem cell technology have provided remarkable progress in comprehending the underlying mechanisms of ion channel disorders or channelopathies by modeling these complex arrhythmia syndromes in vitro in a dish. To fully realize the potential of induced pluripotent stem cells in elucidating the mechanistic basis and complex pathophysiology of channelopathies, it is crucial to have a basic knowledge of cardiac myocyte electrophysiology. In this review, we will discuss the role of the various ion channels in cardiac electrophysiology and the molecular and cellular mechanisms of arrhythmias, highlighting the promise of human induced pluripotent stem cell-cardiomyocytes as a model for investigating inherited arrhythmia syndromes and testing antiarrhythmic strategies. Overall, this review aims to provide a basic understanding of the electrical activity of the heart and related channelopathies, especially to clinicians or research scientists in the cardiovascular field with limited electrophysiology background.
Collapse
Affiliation(s)
- Priyanka Garg
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | - Vivek Garg
- Stanford University School of Medicine, CA; Department of Physiology, University of California San Francisco (V.G.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | | | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison (T.J.K.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.) .,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| |
Collapse
|
20
|
MOHANTY MONALISA, BISWAL PRADYUT, SABUT SUKANTA. VENTRICULAR TACHYCARDIA AND FIBRILLATION DETECTION USING DWT AND DECISION TREE CLASSIFIER. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ventricular tachycardia (VT) and ventricular fibrillation (VF) are the life-threatening ventricular arrhythmias that require treatment in an emergency. Detection of VT and VF at an early stage is crucial for achieving the success of the defibrillation treatment. Hence an automatic system using computer-aided diagnosis tool is helpful in detecting the ventricular arrhythmias in electrocardiogram (ECG) signal. In this paper, a discrete wavelet transform (DWT) was used to denoise and decompose the ECG signals into different consecutive frequency bands to reduce noise. The methodology was tested using ECG data from standard CU ventricular tachyarrhythmia database (CUDB) and MIT-BIH malignant ventricular ectopy database (VFDB) datasets of PhysioNet databases. A set of time-frequency features consists of temporal, spectral, and statistical were extracted and ranked by the correlation attribute evaluation with ranker search method in order to improve the accuracy of detection. The ranked features were classified for VT and VF conditions using support vector machine (SVM) and decision tree (C4.5) classifier. The proposed DWT based features yielded the average sensitivity of 98%, specificity of 99.32%, and accuracy of 99.23% using a decision tree (C4.5) classifier. These results were better than the SVM classifier having an average accuracy of 92.43%. The obtained results prove that using DWT based time-frequency features with decision tree (C4.5) classifier can be one of the best choices for clinicians for precise detection of ventricular arrhythmias.
Collapse
Affiliation(s)
- MONALISA MOHANTY
- Department of Electronics & Communication Engineering, ITER, SOA Deemed to be University, Odisha, India
| | - PRADYUT BISWAL
- Department of Electronics and Telecommunication Engineering, IIIT Bhubaneswar, Odisha, India
| | - SUKANTA SABUT
- School of Electronics Engineering, KIIT Deemed to be University, Odisha, India
| |
Collapse
|
21
|
Skinner JR, Winbo A, Abrams D, Vohra J, Wilde AA. Channelopathies That Lead to Sudden Cardiac Death: Clinical and Genetic Aspects. Heart Lung Circ 2019; 28:22-30. [DOI: 10.1016/j.hlc.2018.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 12/19/2022]
|
22
|
Abstract
BACKGROUND Among his major cardiac electrophysiological contributions, Miles Vaughan Williams (1918-2016) provided a classification of antiarrhythmic drugs that remains central to their clinical use. METHODS We survey implications of subsequent discoveries concerning sarcolemmal, sarcoplasmic reticular, and cytosolic biomolecules, developing an expanded but pragmatic classification that encompasses approved and potential antiarrhythmic drugs on this centenary of his birth. RESULTS We first consider the range of pharmacological targets, tracking these through to cellular electrophysiological effects. We retain the original Vaughan Williams Classes I through IV but subcategorize these divisions in light of more recent developments, including the existence of Na+ current components (for Class I), advances in autonomic (often G protein-mediated) signaling (for Class II), K+ channel subspecies (for Class III), and novel molecular targets related to Ca2+ homeostasis (for Class IV). We introduce new classes based on additional targets, including channels involved in automaticity, mechanically sensitive ion channels, connexins controlling electrotonic cell coupling, and molecules underlying longer-term signaling processes affecting structural remodeling. Inclusion of this widened range of targets and their physiological sequelae provides a framework for a modernized classification of established antiarrhythmic drugs based on their pharmacological targets. The revised classification allows for the existence of multiple drug targets/actions and for adverse, sometimes actually proarrhythmic, effects. The new scheme also aids classification of novel drugs under investigation. CONCLUSIONS We emerge with a modernized classification preserving the simplicity of the original Vaughan Williams framework while aiding our understanding and clinical management of cardiac arrhythmic events and facilitating future developments in this area.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, United Kingdom (M.L., D.A.T.)
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (M.L., L.W.)
| | - Lin Wu
- Department of Cardiology, Peking University First Hospital, Beijing, China (L.W.)
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (M.L., L.W.)
| | - Derek A Terrar
- Department of Pharmacology, University of Oxford, United Kingdom (M.L., D.A.T.)
| | - Christopher L-H Huang
- Physiological Laboratory (C.L.-H.H.), University of Cambridge, United Kingdom
- Department of Biochemistry (C.L.-H.H.). University of Cambridge, United Kingdom
| |
Collapse
|
23
|
Goldstein SA, Ward CC, Al-Khatib SM. The Use of Implantable Cardioverter-defibrillators in the Prevention of Sudden Cardiac Death: A Focus on Congenital Heart Disease and Inherited Arrhythmia Syndromes. J Innov Card Rhythm Manag 2018; 9:2996-3005. [PMID: 32494470 PMCID: PMC7252881 DOI: 10.19102/icrm.2018.090103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
Some congenital heart diseases (CHDs) and inherited arrhythmia syndromes are associated with an increased risk of sudden cardiac death (SCD). Appropriate selection criteria for implantable cardioverter-defibrillator (ICD) implantation in these patients are poorly defined due to a paucity of data available from randomized clinical trials, leading to current guidelines relying more on non-randomized studies and expert opinions to make their recommendations. This review describes available evidence-based risk stratification methods for identifying patients at risk for SCD, as well as current guideline-driven management strategies for the use of ICDs in patients with CHD and inherited arrhythmia syndromes.
Collapse
Affiliation(s)
| | - Cary C Ward
- Division of Cardiology, Duke University Hospital, Durham, NC, USA.,Duke Clinical Research Institute, Duke University Hospital, Durham, NC, USA
| | - Sana M Al-Khatib
- Division of Cardiology, Duke University Hospital, Durham, NC, USA.,Duke Clinical Research Institute, Duke University Hospital, Durham, NC, USA
| |
Collapse
|
24
|
Campuzano O, Sanchez-Molero O, Fernandez A, Iglesias A, Brugada R. Muerte súbita cardiaca de origen arrítmico: valor del análisis genético post mortem. REVISTA ESPAÑOLA DE MEDICINA LEGAL 2018; 44:32-37. [DOI: 10.1016/j.reml.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
|
25
|
Valli H, Ahmad S, Fraser JA, Jeevaratnam K, Huang CLH. Pro-arrhythmic atrial phenotypes in incrementally paced murine Pgc1β -/- hearts: effects of age. Exp Physiol 2017; 102:1619-1634. [PMID: 28960529 PMCID: PMC5725712 DOI: 10.1113/ep086589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
New Findings What is the central question of this study? Can we experimentally replicate atrial pro‐arrhythmic phenotypes associated with important chronic clinical conditions, including physical inactivity, obesity, diabetes mellitus and metabolic syndrome, compromising mitochondrial function, and clarify their electrophysiological basis? What is the main finding and its importance? Electrocardiographic and intracellular cardiomyocyte recording at progressively incremented pacing rates demonstrated age‐dependent atrial arrhythmic phenotypes in Langendorff‐perfused murine Pgc1β−/− hearts for the first time. We attributed these to compromised action potential conduction and excitation wavefronts, whilst excluding alterations in recovery properties or temporal electrophysiological instabilities, clarifying these pro‐arrhythmic changes in chronic metabolic disease.
Atrial arrhythmias, most commonly manifesting as atrial fibrillation, represent a major clinical problem. The incidence of atrial fibrillation increases with both age and conditions associated with energetic dysfunction. Atrial arrhythmic phenotypes were compared in young (12–16 week) and aged (>52 week) wild‐type (WT) and peroxisome proliferative activated receptor, gamma, coactivator 1 beta (Ppargc1b)‐deficient (Pgc1β−/−) Langendorff‐perfused hearts, previously used to model mitochondrial energetic disorder. Electrophysiological explorations were performed using simultaneous whole‐heart ECG and intracellular atrial action potential (AP) recordings. Two stimulation protocols were used: an S1S2 protocol, which imposed extrasystolic stimuli at successively decremented intervals following regular pulse trains; and a regular pacing protocol at successively incremented frequencies. Aged Pgc1β−/− hearts showed greater atrial arrhythmogenicity, presenting as atrial tachycardia and ectopic activity. Maximal rates of AP depolarization (dV/dtmax) were reduced in Pgc1β−/− hearts. Action potential latencies were increased by the Pgc1β−/− genotype, with an added interactive effect of age. In contrast, AP durations to 90% recovery (APD90) were shorter in Pgc1β−/− hearts despite similar atrial effective recovery periods amongst the different groups. These findings accompanied paradoxical decreases in the incidence and duration of alternans in the aged and Pgc1β−/− hearts. Limiting slopes of restitution curves of APD90 against diastolic interval were correspondingly reduced interactively by Pgc1β−/− genotype and age. In contrast, reduced AP wavelengths were associated with Pgc1β−/− genotype, both independently and interacting with age, through the basic cycle lengths explored, with the aged Pgc1β−/− hearts showing the shortest wavelengths. These findings thus implicate AP wavelength in possible mechanisms for the atrial arrhythmic changes reported here.
Collapse
Affiliation(s)
- Haseeb Valli
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - James A Fraser
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Kamalan Jeevaratnam
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,PU-RCSI School of Medicine, Perdana University, Serdang, Selangor Darul Ehsan, Malaysia.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Valli H, Ahmad S, Chadda KR, Al-Hadithi ABAK, Grace AA, Jeevaratnam K, Huang CLH. Age-dependent atrial arrhythmic phenotype secondary to mitochondrial dysfunction in Pgc-1β deficient murine hearts. Mech Ageing Dev 2017; 167:30-45. [PMID: 28919427 PMCID: PMC5652526 DOI: 10.1016/j.mad.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Ageing and several age-related chronic conditions including obesity, insulin resistance and hypertension are associated with mitochondrial dysfunction and represent independent risk factors for atrial fibrillation (AF). MATERIALS AND METHODS Atrial arrhythmogenesis was investigated in Langendorff-perfused young (3-4 month) and aged (>12 month), wild type (WT) and peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β-/-) murine hearts modeling age-dependent chronic mitochondrial dysfunction during regular pacing and programmed electrical stimulation (PES). RESULTS AND DISCUSSION The Pgc-1β-/- genotype was associated with a pro-arrhythmic phenotype progressing with age. Young and aged Pgc-1β-/- hearts showed compromised maximum action potential (AP) depolarization rates, (dV/dt)max, prolonged AP latencies reflecting slowed action potential (AP) conduction, similar effective refractory periods and baseline action potential durations (APD90) but shortened APD90 in APs in response to extrasystolic stimuli at short stimulation intervals. Electrical properties of APs triggering arrhythmia were similar in WT and Pgc-1β-/- hearts. Pgc-1β-/- hearts showed accelerated age-dependent fibrotic change relative to WT, with young Pgc-1β-/- hearts displaying similar fibrotic change as aged WT, and aged Pgc-1β-/- hearts the greatest fibrotic change. Mitochondrial deficits thus result in an arrhythmic substrate, through slowed AP conduction and altered repolarisation characteristics, arising from alterations in electrophysiological properties and accelerated structural change.
Collapse
Affiliation(s)
- Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Karan R Chadda
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom
| | - Ali B A K Al-Hadithi
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Andrew A Grace
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Kamalan Jeevaratnam
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom; PU-RCSI School of Medicine, Perdana University, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom.
| |
Collapse
|
27
|
Magnesium isoglycyrrhizinate inhibits L-type Ca 2+ channels, Ca 2+ transients, and contractility but not hERG K + channels. Arch Pharm Res 2017; 40:1135-1145. [PMID: 28766238 DOI: 10.1007/s12272-017-0938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
To explore the cardiovascular protective effects of Magnesium isoglycyrrhizinate (MI), especially the underlying cellular mechanisms related to L-type calcium channels and myocardial contractility, and to examine the effects of MI on hERG K+ current expressed in HEK293 cells. We used the whole-cell patch clamp technique, video-based edge detection and dual excitation fluorescence photomultiplier systems to explore the effect of MI on L-type Ca2+ currents (ICa-L) and cell contraction in rat cardiomyocytes. We also examined the rapidly activating delayed rectifier potassium current (IKr) expressed in HEK293 cells using a perforated patch clamp. MI inhibited ICa-L in a dose-dependent manner, with a half-maximal inhibitory concentration (IC50) of 0.22 mg/ml, and the maximal inhibitory effect was 61.10 ± 0.59%. MI at a concentration of 0.3 mg/ml reduced cell shortening by 24.12 ± 3.97% and the peak value of the Ca2+ transient by 36.54 ± 4.96%. MI had no significant influence on hERG K+ channels expressed in HEK293 cells at all test potentials. MI exerts protective effects on the heart via the inhibition of ICa-L and cell shortening in rat cardiomyocytes. However, MI had no significant influence on IKr; thus, MI may exert cardioprotective effects without causing drug-induced long QT syndrome.
Collapse
|
28
|
Liu J, Li SN, Liu L, Zhou K, Li Y, Cui XY, Wan J, Lu JJ, Huang YC, Wang XS, Lin Q. Conventional Acupuncture for Cardiac Arrhythmia: A Systematic Review of Randomized Controlled Trials. Chin J Integr Med 2017; 24:218-226. [PMID: 28432528 DOI: 10.1007/s11655-017-2753-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To exam the effect and safety of conventional acupuncture (CA) on cardiac arrhythmia. METHODS Nine medical databases were searched until February 2016 for randomized controlled trials. Heterogeneity was measured by Cochran Q test. Meta-analysis was conducted if I2 was less than 85% and the characteristics of included trials were similar. RESULTS Nine qualified studies involving 638 patients were included. Only 1 study had definitely low risk of bias, while 7 trials were rated as unclear and 1 as high. Meta-analysis of CA alone did not have a significant benefit on response rate compared to amiodarone in patients with atrial fibrillation (Af) and atrial flutter (AF) [relative risk (RR): 1.09; 95% confidence interval (CI): 0.79-1.49; P=0.61; I2=61%, P=0.11]. However, 1 study with higher methodological quality detected a lower recurrence rate of Af in CA alone as compared with sham acupuncture plus no treatment, and benefits on ventricular rate and time of conversion to normal sinus rhythm were found in CA alone group by 1 study, as well as the response rate in CA plus deslanoside group by another study. Meta-analysis of CA plus anti-arrhythmia drug (AAD) was associated with a significant benefit on the response rate when compared with AAD alone in ventricular premature beat (VPB) patients (RR, 1.19, 95% CI: 1.05-1.34; P=0.005; I2=13%, P=0.32), and an improvement in quality-of-life score (QOLS) of VPB also showed in 1 individual study. Besides, a lower heart rate was detected in the CA alone group by 1 individual study when compared with no treatment in sinus tachycardia patients (MD-21.84 [-27.21,-16.47]) and lower adverse events of CA alone were reported than amiodarone. CONCLUSIONS CA may be a useful and safe alternative or additive approach to AADs for cardiac arrhythmia, especially in VPB and Af patients, which mainly based on a pooled estimate and result from 1 study with higher methodological quality. However, we could not reach a robust conclusion due to low quality of overall evidence.
Collapse
Affiliation(s)
- Jing Liu
- Beijing University of Chinese Medicine, Beijing, 100078, China.,Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Si-Nai Li
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lu Liu
- Beijing University of Chinese Medicine, Beijing, 100078, China.,Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Kun Zhou
- Scientific Research Division, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Yan Li
- Beijing University of Chinese Medicine, Beijing, 100078, China.,Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiao-Yun Cui
- Beijing University of Chinese Medicine, Beijing, 100078, China.,Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Jie Wan
- Intensive Care Unit, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Jin-Jin Lu
- Beijing University of Chinese Medicine, Beijing, 100078, China.,Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Yan-Chao Huang
- Beijing University of Chinese Medicine, Beijing, 100078, China.,Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xu-Sheng Wang
- Intensive Care Unit, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Qian Lin
- Beijing University of Chinese Medicine, Beijing, 100078, China. .,Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
29
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Novoseletsky VN, Volyntseva AD, Shaitan KV, Kirpichnikov MP, Feofanov AV. Modeling of the Binding of Peptide Blockers to Voltage-Gated Potassium Channels: Approaches and Evidence. Acta Naturae 2016; 8:35-46. [PMID: 27437138 PMCID: PMC4947987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Indexed: 11/13/2022] Open
Abstract
Modeling of the structure of voltage-gated potassium (KV) channels bound to peptide blockers aims to identify the key amino acid residues dictating affinity and provide insights into the toxin-channel interface. Computational approaches open up possibilities for in silico rational design of selective blockers, new molecular tools to study the cellular distribution and functional roles of potassium channels. It is anticipated that optimized blockers will advance the development of drugs that reduce over activation of potassium channels and attenuate the associated malfunction. Starting with an overview of the recent advances in computational simulation strategies to predict the bound state orientations of peptide pore blockers relative to KV-channels, we go on to review algorithms for the analysis of intermolecular interactions, and then take a look at the results of their application.
Collapse
Affiliation(s)
- V. N. Novoseletsky
- M.V.Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bldg. 12, 119992 , Moscow, Russia
| | - A. D. Volyntseva
- M.V.Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bldg. 12, 119992 , Moscow, Russia
| | - K. V. Shaitan
- M.V.Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bldg. 12, 119992 , Moscow, Russia
| | - M. P. Kirpichnikov
- M.V.Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bldg. 12, 119992 , Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya str. 16/10, 117997, Moscow, Russia
| | - A. V. Feofanov
- M.V.Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bldg. 12, 119992 , Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya str. 16/10, 117997, Moscow, Russia
| |
Collapse
|
31
|
Kügler P. Early Afterdepolarizations with Growing Amplitudes via Delayed Subcritical Hopf Bifurcations and Unstable Manifolds of Saddle Foci in Cardiac Action Potential Dynamics. PLoS One 2016; 11:e0151178. [PMID: 26977805 PMCID: PMC4792449 DOI: 10.1371/journal.pone.0151178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/24/2016] [Indexed: 01/01/2023] Open
Abstract
Early afterdepolarizations (EADs) are pathological oscillations in cardiac action potentials during the repolarization phase and may be caused by drug side effects, ion channel disease or oxidative stress. The most widely observed EAD pattern is characterized by oscillations with growing amplitudes. So far, its occurence has been explained in terms of a supercritical Hopf bifurcation in the fast subsystem of the action potential dynamics from which stable limit cycles with growing amplitudes emerge. The novel contribution of this article is the introduction of two alternative explanations of EAD genesis with growing amplitudes that do not involve stable limit cycles in fast subsystems. In particular, we demonstrate that EAD patterns with growing amplitudes may alternatively arise due to a delayed subcritical Hopf bifurcation or an unstable manifold of a saddle focus fixed point in the full fast-slow system modelling the action potential. Our work extends the list of possible dynamical EAD mechanisms and may contribute to a classification of drug effects in preclinical cardiotoxicity testing.
Collapse
Affiliation(s)
- Philipp Kügler
- Institute of Applied Mathematics and Statistics, University of Hohenheim, Schloss 1, 70599 Stuttgart, Germany
- Research Group Mathematical Methods in Molecular and Systems Biology, Radon Institute for Computational and Applied Mathematics, Altenbergerstrasse 69, 4040 Linz, Austria
- * E-mail:
| |
Collapse
|
32
|
Affiliation(s)
- Michael Sampson
- BHF Arrhythmia Nurse Specialist, St George's Hospital, Senior Lecturer, School of Health and Social Care, London South Bank University, and BHF Alliance member, London
| | - Anthony McGrath
- Head of Department, Department of Adult Nursing and Midwifery Studies, School of Health and Social Care, London South Bank University, London
| |
Collapse
|
33
|
Affiliation(s)
- Michael Sampson
- BHF Arrhythmia Nurse Specialist, St George's Hospital and Senior Lecturer, School of Health and Social Care, London South Bank University, and BHF Alliance member, London
| | - Anthony McGrath
- Head of Department, Department of Adult Nursing and Midwifery Studies, School of Health and Social Care, London South Bank University, London
| |
Collapse
|
34
|
McNamara DA, Goldberger JJ, Berendsen MA, Huffman MD. Implantable defibrillators versus medical therapy for cardiac channelopathies. Cochrane Database Syst Rev 2015; 2015:CD011168. [PMID: 26445202 PMCID: PMC6599851 DOI: 10.1002/14651858.cd011168.pub2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Sudden cardiac death is a significant cause of mortality in both the US and globally. However, 5% to 15% of people with sudden cardiac death have no structural abnormalities, and most of these events are attributed to underlying cardiac ion channelopathies. Rates of cardiac ion channelopathy diagnosis are increasing. However, the optimal treatment for such people is poorly understood and current guidelines rely primarily on expert opinion. OBJECTIVES To compare the effect of implantable cardioverter defibrillators (ICD) with antiarrhythmic drugs or usual care in reducing the risk of all-cause mortality, fatal and non-fatal cardiovascular events, and adverse events in people with cardiac ion channelopathies. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL, 2015, Issue 6), EMBASE, MEDLINE, Conference Proceedings Citation Index - Science (CPCI-S), ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) in July 2015. We applied no language restrictions. SELECTION CRITERIA We included all randomized controlled trials of people aged 18 years and older with ion channelopathies, including congenital long QT syndrome, congenital short QT syndrome, Brugada syndrome, or catecholaminergic polymorphic ventricular tachycardia. Participants must have been randomized to ICD implantation and compared to antiarrhythmic drug therapy or usual care. DATA COLLECTION AND ANALYSIS Two authors independently selected studies for inclusion and extracted the data. We included all-cause mortality, fatal and non-fatal cardiovascular events, and adverse events for our primary outcome analyses and non-fatal cardiovascular events, rates of inappropriate ICD firing, quality of life, and cost for our secondary outcome analyses. We calculated risk ratios (RR) and associated 95% confidence intervals (CIs) for dichotomous outcomes, both for independent and pooled study analyses. MAIN RESULTS From the 468 references identified after removing duplicates, we found two trials comprising 86 participants that met our inclusion criteria. Both trials included participants with Brugada syndrome who were randomized to ICD versus β-blocker therapy for secondary prevention for sudden cardiac death. Both studies were small, were performed by the same investigators, and exhibited a high risk of bias across multiple domains. In the group randomized to ICD therapy, there was a nine-fold lower risk of mortality compared with people randomized to medical therapy (0% with ICD versus 18% with medical therapy; RR 0.11, 95% CI 0.01 to 0.83; 2 trials, 86 participants). There was low quality evidence of a difference in the rates of combined fatal and non-fatal cardiovascular events, and the results were imprecise (26% with ICD versus 18% with medical therapy; RR 1.49, 95% CI 0.66 to 3.34; 2 trials, 86 participants). The rates of adverse events were higher in the ICD group, but these results were imprecise (28% with ICD versus 10% with medical therapy; RR 2.44, 95% CI 0.92 to 6.44; 2 trials, 86 participants). For secondary outcomes, the risk of non-fatal cardiovascular events was higher in the ICD group, but these results were imprecise and were driven entirely by appropriate ICD-termination of cardiac arrhythmias (26% with ICD versus 0% with medical therapy; RR 11.4, 95% CI 1.57 to 83.3; 2 trials, 86 participants). Approximately 25% of the ICD group experienced inappropriate ICD firing, all of which was corrected by device reprogramming. No data were available for quality of life or cost. We considered the quality of evidence low using the GRADE methodology, due to study limitations and imprecision of effects. AUTHORS' CONCLUSIONS Among people with Brugada syndrome who have survived a prior episode of sudden cardiac death, ICD therapy appeared to reduce mortality when compared to β-blocker therapy, but the true magnitude may be substantially different from the estimate of the effect because of study limitations and imprecision. Due to the large magnitude of effect, it is unlikely that there will be additional studies evaluating the role of ICDs for secondary prevention in this population. Further studies are necessary to determine the optimal treatment, if any, to prevent an initial episode of sudden cardiac death in people with cardiac ion channelopathies.
Collapse
Affiliation(s)
- David A McNamara
- Northwestern University Feinberg School of MedicineDepartment of MedicineGalter 3‐150251 East Huron StreetChicagoILUSA60611
| | - Jeffrey J Goldberger
- Northwestern University Feinberg School of MedicineDepartment of Medicine (Cardiology)251 E HuronFeinberg Pavilion 8?503ChicagoILUSAIL 60611
| | - Mark A Berendsen
- Northwestern UniversityGalter Health Sciences Library303 E. Chicago AvenueChicagoILUSA60611
| | - Mark D Huffman
- Northwestern University Feinberg School of MedicineDepartments of Preventive Medicine and Medicine (Cardiology)680 N. Lake Shore Drive, Suite 1400ChicagoILUSA60611
| | | |
Collapse
|
35
|
Lv Y, Bai S, Zhang H, Zhang H, Meng J, Li L, Xu Y. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes. Br J Pharmacol 2015; 172:5596-608. [PMID: 25857626 DOI: 10.1111/bph.13163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. EXPERIMENTAL APPROACH Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. KEY RESULTS The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. CONCLUSIONS AND IMPLICATIONS Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF.
Collapse
Affiliation(s)
- Yankun Lv
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China.,Heart Center, Hebei General Hospital, Shijiazhuang, China
| | - Song Bai
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China
| | - Hua Zhang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China
| | - Hongxue Zhang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China
| | - Jing Meng
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China
| | - Li Li
- Heart Center, Hebei General Hospital, Shijiazhuang, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China
| |
Collapse
|
36
|
Fabregat-Andres O, Munoz-Macho A, Adell-Beltran G, Ibanez-Catala X, Macia A, Facila L. Evaluation of a New Shirt-Based Electrocardiogram Device for Cardiac Screening in Soccer Players: Comparative Study With Treadmill Ergospirometry. Cardiol Res 2014; 5:101-107. [PMID: 28348705 PMCID: PMC5358170 DOI: 10.14740/cr333w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2014] [Indexed: 01/23/2023] Open
Abstract
Background Prevention of cardiac events during competitive sports is fundamental. New technologies with remote monitoring systems integrated into clothing could facilitate the screening of heart disease. Our aim was to evaluate the feasibility of Nuubo system during a field stress test performed by soccer players, comparing results with treadmill ergospirometry as test reference. Methods Nineteen male professional soccer players (19.2 ± 1.6 years) were studied. Wireless electrocardiographic monitoring during a Yo-Yo intermittent recovery test level 1 in soccer field and subsequent analysis of arrhythmias were firstly performed. Subsequently, in a period no longer than 4 weeks, each player underwent cardiopulmonary exercise testing in hospital. Results During Yo-Yo test, electrocardiogram (ECG) signal was interpretable in 16 players (84.2%). In the other three players, ECG artifacts did not allow a proper analysis. Estimation of maximum oxygen consumption was comparable between two exercise tests (VO2 max 53.3 ± 2.4 vs. 53.7 ± 3.0 mL/kg/min for Yo-Yo test and ergometry respectively; intra-class correlation coefficient 0.84 (0.63 - 0.93), P < 0.001). No arrhythmias were detected in any player during both tests. Conclusions The use of Nuubo’s technology allows an accurate single-lead electrocardiographic recording and estimation of reliable performance variables during exercise testing in field, and provides a new perspective to cardiac remote monitoring in collective sports.
Collapse
Affiliation(s)
- Oscar Fabregat-Andres
- Department of Cardiology, Consorcio Hospital General Universitario, Valencia, Spain; Villarreal Club de Futbol SAD Medical Services, Villarreal, Spain
| | | | | | | | | | - Lorenzo Facila
- Department of Cardiology, Consorcio Hospital General Universitario, Valencia, Spain
| |
Collapse
|
37
|
Campuzano O, Allegue C, Brugada R. [Genetics of sudden unexplained death]. Med Clin (Barc) 2014; 142:265-269. [PMID: 24018251 DOI: 10.1016/j.medcli.2013.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Sudden unexplained death is defined by death without a conclusive diagnosis after autopsy and it is responsible for a large percentage of sudden deaths. The progressive interaction between genetics and forensics in post-mortem studies has identified inheritable alterations responsible for pathologies associated with arrhythmic sudden death. The genetic diagnosis of the deceased enables the undertaking of preventive measures in family members, many of them asymptomatic but at risk. The implications of this multidisciplinary translational medical approach are complex, requiring the dedication of a specialized team.
Collapse
Affiliation(s)
- Oscar Campuzano
- Centro de Genética Cardiovascular, IdIBGi-Universitat de Girona, Girona, España
| | - Catarina Allegue
- Centro de Genética Cardiovascular, IdIBGi-Universitat de Girona, Girona, España
| | - Ramon Brugada
- Centro de Genética Cardiovascular, IdIBGi-Universitat de Girona, Girona, España.
| |
Collapse
|
38
|
Tian C, Zhu R, Zhu L, Qiu T, Cao Z, Kang T. Potassium Channels: Structures, Diseases, and Modulators. Chem Biol Drug Des 2013; 83:1-26. [DOI: 10.1111/cbdd.12237] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chuan Tian
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian Liaoning 116600 China
| | - Ruixin Zhu
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Lixin Zhu
- Department of Pediatrics; Digestive Diseases and Nutrition Center; The State University of New York at Buffalo; Buffalo NY 14226 USA
| | - Tianyi Qiu
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Zhiwei Cao
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Tingguo Kang
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian Liaoning 116600 China
| |
Collapse
|
39
|
Ruckh TT, Mehta AA, Dubach JM, Clark HA. Polymer-free optode nanosensors for dynamic, reversible, and ratiometric sodium imaging in the physiological range. Sci Rep 2013; 3:3366. [PMID: 24284431 PMCID: PMC3842545 DOI: 10.1038/srep03366] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/12/2013] [Indexed: 11/10/2022] Open
Abstract
This work introduces a polymer-free optode nanosensor for ratiometric sodium imaging. Transmembrane ion dynamics are often captured by electrophysiology and calcium imaging, but sodium dyes suffer from short excitation wavelengths and poor selectivity. Optodes, optical sensors composed of a polymer matrix with embedded sensing chemistry, have been translated into nanosensors that selectively image ion concentrations. Polymer-free nanosensors were fabricated by emulsification and were stable by diameter and sensitivity for at least one week. Ratiometric fluorescent measurements demonstrated that the nanosensors are selective for sodium over potassium by ~1.4 orders of magnitude, have a dynamic range centered at 20 mM, and are fully reversible. The ratiometric signal changes by 70% between 10 and 100 mM sodium, showing that they are sensitive to changes in sodium concentration. These nanosensors will provide a new tool for sensitive and quantitative ion imaging.
Collapse
Affiliation(s)
- Timothy T. Ruckh
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
- These authors contributed equally to this work
| | - Ankeeta A. Mehta
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
- These authors contributed equally to this work
| | - J. Matthew Dubach
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Heather A. Clark
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| |
Collapse
|
40
|
Sabir IN, Matthews GDK, Huang CLH. Sudden arrhythmic death: from basic science to clinical practice. Front Physiol 2013; 4:339. [PMID: 24324440 PMCID: PMC3839408 DOI: 10.3389/fphys.2013.00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 12/05/2022] Open
Affiliation(s)
- Ian N Sabir
- The Rayne Institute, St. Thomas' Hospital London, UK
| | | | | |
Collapse
|
41
|
Moretti A, Laugwitz KL, Dorn T, Sinnecker D, Mummery C. Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med 2013; 3:3/11/a014027. [PMID: 24186488 DOI: 10.1101/cshperspect.a014027] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding the molecular basis of many cardiac diseases has been hampered by the lack of appropriate in vitro cell culture models that accurately reflect the human disease phenotypes. In the past few years, remarkable advances in stem cell biology have made possible this long-standing ambition-the generation of human and even patient-specific cellular models of diseases. Combined with other novel technologies in the fields of human genetics, tissue engineering, and gene-targeted manipulation, disease modeling with pluripotent stem cells has the promise to influence modern cardiovascular medicine on several fronts: molecular understanding of pathological mechanisms, early diagnosis, drug development, and effective treatment.
Collapse
Affiliation(s)
- Alessandra Moretti
- Klinikum rechts der Isar-Technische Universität München, I. Medical Department-Cardiology, 81675 Munich, Germany
| | | | | | | | | |
Collapse
|
42
|
Jagu B, Charpentier F, Toumaniantz G. Identifying potential functional impact of mutations and polymorphisms: linking heart failure, increased risk of arrhythmias and sudden cardiac death. Front Physiol 2013; 4:254. [PMID: 24065925 PMCID: PMC3778269 DOI: 10.3389/fphys.2013.00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/29/2013] [Indexed: 01/22/2023] Open
Abstract
Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure, and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behavior has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction, or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis, and the degradation of ion channel a-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking. The aim of this review is to inventory, through the description of few representative examples, the role of these different biogenic mechanisms in arrhythmogenesis, HF and SCD in order to help the researcher to identify all the processes that could lead to arrhythmias. Identification of novel targets for drug intervention should result from further understanding of these fundamental mechanisms.
Collapse
Affiliation(s)
- Benoît Jagu
- INSERM, UMR1087, l'institut du thorax, IRS-UN Nantes, France ; CNRS, UMR6291 Nantes, France ; Faculté de Médecine, Université de Nantes Nantes, France
| | | | | |
Collapse
|
43
|
Meng J, Shi C, Li L, Du Y, Xu Y. Compound ICA-105574 prevents arrhythmias induced by cardiac delayed repolarization. Eur J Pharmacol 2013; 718:87-97. [PMID: 24041920 DOI: 10.1016/j.ejphar.2013.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 01/14/2023]
Abstract
Impaired ventricular repolarization can lead to long QT syndrome (LQT), a proarrhythmic disease with high risk of developing lethal ventricular tachyarrhythmias. The compound ICA-105574 is a recently developed hERG activator and it enhances IKr current with very high potency by removing the channel inactivation. The present study was designed to investigate antiarrhythmic properties of ICA-105574. For comparison, the effects of another compound NS1643 was in-parallel assessed, which also acts primarily to attenuate channel inactivation with moderate potency. We found that both ICA-105574 and NS1643 concentration-dependently shortened action potential duration (APD) in ventricular myocytes, and QT/QTc intervals in isolated guinea-pig hearts. ICA-105574, but not NS1643, completely prevented ventricular arrhythmias in intact guinea-pig hearts caused by IKr and IKs inhibitors, although both ICA-105574 and NS1643 could reverse the drug-induced prolongation of APD in ventricular myocytes. Reversing prolongation of QT/QTc intervals and antagonizing the increases in transmural dispersion of repolarization and instability of the QT interval induced by IKr and IKs inhibitors contributed to antiarrhythmic effect of ICA-105574. Meanwhile, ICA-105574 at higher concentrations showed a potential proarrhythmic risk in normal hearts. Our results suggest that ICA-105574 has more efficient antiarrhythmic activity than NS1643. However, its potential proarrhythmic risk implies that benefits and risks should be seriously taken into consideration for further developing this type of hERG activators.
Collapse
Affiliation(s)
- Jing Meng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Hebei Province, Shijiazhuang 050017, China; Department of Pharmaceutical Chemistry, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
44
|
Matthews GDK, Guzadhur L, Sabir IN, Grace AA, Huang CLH. Action potential wavelength restitution predicts alternans and arrhythmia in murine Scn5a(+/-) hearts. J Physiol 2013; 591:4167-88. [PMID: 23836691 PMCID: PMC3779110 DOI: 10.1113/jphysiol.2013.254938] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reductions in cardiac action potential wavelength, and the consequent wavebreak, have been implicated in arrhythmogenesis. Tachyarrhythmias are more common in the Brugada syndrome, particularly following pharmacological challenge, previously modelled using Scn5a+/− murine hearts. Propagation latencies and action potential durations (APDs) from monophasic action potential recordings were used to assess wavelength changes with heart rate in Langendorff-perfused wild-type (WT) and Scn5a+/− hearts. Recordings were obtained from right (RV) and left (LV) ventricular, epicardial and endocardial surfaces during incremental pacing, before and following flecainide or quinidine challenge. Conduction velocities (θ′), action potential wavelengths (λ′= APD ×θ′), and their corresponding alternans depended non-linearly upon diastolic interval (DI). Maximum θ′ was lower in Scn5a+/− RV epicardium than endocardium. Flecainide further reduced θ′, accentuating this RV conduction block. Quinidine reduced maximum θ′ in WT and caused earlier conduction failure in the RV of both Scn5a+/− and WT. Use of recovery wavelengths (λ′0= DI ×θ′) rather than DI, provided novel λ restitution plots of λ′ against λ′0, which sum to a basic cycle distance permitting feedback analysis. λ′ restitution gradient better correlated with alternans magnitude than either APD or θ restitution gradient. The large differences in θ′ and APD restitution contrasted with minor differences in maximum λ′ between epi- and endocardia of untreated hearts, and quinidine-treated WT hearts. Strikingly, all regions and conditions converged to a common instability point, implying a conserved relationship. Flecainide or quinidine decreased the pacing rates at which this occurred, through reducing basic cycle distance, in the Scn5a+/− RV epicardium, directly predictive of its arrhythmic phenotype.
Collapse
Affiliation(s)
- Gareth D K Matthews
- G. D. K. Matthews: Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | | | | | |
Collapse
|
45
|
Modelling human channelopathies using induced pluripotent stem cells: a comprehensive review. Stem Cells Int 2013; 2013:496501. [PMID: 23766769 PMCID: PMC3666272 DOI: 10.1155/2013/496501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/16/2013] [Indexed: 12/13/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPS cells) has pioneered the field of regenerative medicine and developmental biology. They can be generated by overexpression of a defined set of transcription factors in somatic cells derived from easily accessible tissues such as skin or plucked hair or even human urine. In case of applying this tool to patients who are classified into a disease group, it enables the generation of a disease- and patient-specific research platform. iPS cells have proven a significant tool to elucidate pathophysiological mechanisms in various diseases such as diabetes, blood disorders, defined neurological disorders, and genetic liver disease. One of the first successfully modelled human diseases was long QT syndrome, an inherited cardiac channelopathy which causes potentially fatal cardiac arrhythmia. This review summarizes the efforts of reprogramming various types of long QT syndrome and discusses the potential underlying mechanisms and their application.
Collapse
|
46
|
Kim GH. MicroRNA regulation of cardiac conduction and arrhythmias. Transl Res 2013; 161:381-92. [PMID: 23274306 PMCID: PMC3619003 DOI: 10.1016/j.trsl.2012.12.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 01/01/2023]
Abstract
MicroRNAs are now recognized as important regulators of cardiovascular genes with critical roles in normal development and physiology, as well as disease development. MicroRNAs (miRNAs) are small noncoding RNAs approximately 22 nucleotides in length that regulate expression of target genes through sequence-specific hybridization to the 3' untranslated region of messenger RNAs and either block translation or direct degradation of their target messenger RNA. They have been shown to participate in cardiovascular disease pathogenesis including atherosclerosis, coronary artery disease, myocardial infarction, heart failure, and cardiac arrhythmias. Broadly defined, cardiac arrhythmias are a variation from the normal heart rate or rhythm. Arrhythmias are common and result in significant morbidity and mortality. Ventricular arrhythmias constitute a major cause for cardiac death, particularly sudden cardiac death in the setting of myocardial infarction and heart failure. As advances in pharmacologic, device, and ablative therapy continue to evolve, the molecular insights into the basis of arrhythmia is growing with the ambition of providing additional therapeutic options. Electrical remodeling and structural remodeling are identified mechanisms underlying arrhythmia generation; however, published studies focusing on miRNAs and cardiac conduction are sparse. Recent studies have highlighted the role of miRNAs in cardiac rhythm through regulation of key ion channels, transporters, and cellular proteins in arrhythmogenic conditions. This article aims to review the studies linking miRNAs to cardiac excitability and other processes pertinent to arrhythmia.
Collapse
Affiliation(s)
- Gene H Kim
- University of Chicago, Institute for Cardiovascular Research, Chicago, IL 60637, USA.
| |
Collapse
|
47
|
Wilders R. Cardiac ion channelopathies and the sudden infant death syndrome. ISRN CARDIOLOGY 2012; 2012:846171. [PMID: 23304551 PMCID: PMC3529486 DOI: 10.5402/2012/846171] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/23/2012] [Indexed: 12/13/2022]
Abstract
The sudden infant death syndrome (SIDS) causes the sudden death of an apparently healthy infant, which remains unexplained despite a thorough investigation, including the performance of a complete autopsy. The triple risk model for the pathogenesis of SIDS points to the coincidence of a vulnerable infant, a critical developmental period, and an exogenous stressor. Primary electrical diseases of the heart, which may cause lethal arrhythmias as a result of dysfunctioning cardiac ion channels (“cardiac ion channelopathies”) and are not detectable during a standard postmortem examination, may create the vulnerable infant and thus contribute to SIDS. Evidence comes from clinical correlations between the long QT syndrome and SIDS as well as genetic analyses in cohorts of SIDS victims (“molecular autopsy”), which have revealed a large number of mutations in ion channel-related genes linked to inheritable arrhythmogenic syndromes, in particular the long QT syndrome, the short QT syndrome, the Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia. Combining data from population-based cohort studies, it can be concluded that at least one out of five SIDS victims carries a mutation in a cardiac ion channel-related gene and that the majority of these mutations are of a known malignant phenotype.
Collapse
Affiliation(s)
- Ronald Wilders
- Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
48
|
ZHANG YANMIN, WU JINGJING, JEEVARATNAM KAMALAN, KING JAMESH, GUZADHUR LAILA, REN XIAOLEI, GRACE ANDREWA, LEI MING, HUANG CHRISTOPHERLH, FRASER JAMESA. Conduction Slowing Contributes to Spontaneous Ventricular Arrhythmias in Intrinsically Active Murine RyR2-P2328S
Hearts. J Cardiovasc Electrophysiol 2012; 24:210-8. [DOI: 10.1111/jce.12015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|