1
|
Ng YB, Akincilar SC. Shaping DNA damage responses: Therapeutic potential of targeting telomeric proteins and DNA repair factors in cancer. Curr Opin Pharmacol 2024; 76:102460. [PMID: 38776747 DOI: 10.1016/j.coph.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 05/25/2024]
Abstract
Shelterin proteins regulate genomic stability by preventing inappropriate DNA damage responses (DDRs) at telomeres. Unprotected telomeres lead to persistent DDR causing cell cycle inhibition, growth arrest, and apoptosis. Cancer cells rely on DDR to protect themselves from DNA lesions and exogenous DNA-damaging agents such as chemotherapy and radiotherapy. Therefore, targeting DDR machinery is a promising strategy to increase the sensitivity of cancer cells to existing cancer therapies. However, the success of these DDR inhibitors depends on other mutations, and over time, patients develop resistance to these therapies. This suggests the need for alternative approaches. One promising strategy is co-inhibiting shelterin proteins with DDR molecules, which would offset cellular fitness in DNA repair in a mutation-independent manner. This review highlights the associations and dependencies of the shelterin complex with the DDR proteins and discusses potential co-inhibition strategies that might improve the therapeutic potential of current inhibitors.
Collapse
Affiliation(s)
- Yu Bin Ng
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Semih Can Akincilar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore.
| |
Collapse
|
2
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Time-Dependent Effects of POT1 Knockdown on Proliferation, Tumorigenicity, and HDACi Response of SK-OV3 Ovarian Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7184253. [PMID: 29546066 PMCID: PMC5818924 DOI: 10.1155/2018/7184253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The roles of protection of telomeres 1 (POT1) in human ovarian cancer have not been fully elucidated. Here, we investigated the impact of POT1 knockdown (POT1-KD) on in vitro cell proliferation, tumorigenesis, and histone deacetylase inhibitor (HDACi) response in human ovarian cancer-derived SK-OV3 cells. The POT1 gene was knocked down by infection with POT1 lenti-shRNA. POT1, c-Myc, and hTERT mRNA levels and relative telomere length were determined by qRT-PCR; POT1 protein levels were determined by western blot. The relative telomerase activity levels were detected using qTRAP; cell proliferation was assessed using cumulative population doubling (cPD) experiments. Cell tumorigenicity was evaluated by anchorage-independent cell growth assays, and cell response to HDACi was determined by luminescence cell viability assays. Results indicate that lenti-shRNA-mediated POT1-KD significantly reduced POT1 mRNA and protein expression. POT1-KD immediately downregulated c-Myc expression, which led to the inhibition of cell proliferation, tumorigenesis, and HDACi response. However, after brief suppression, c-Myc expression increased in the medium term, which resulted in enhanced cell proliferation, tumorigenesis, and HDACi response in the POT1-KD cells. Furthermore, we discovered that c-Myc regulated cell proliferation and tumorigenesis via hTERT/telomerase/telomere pathway.
Collapse
|
4
|
Mei PJ, Chen YS, Du Y, Bai J, Zheng JN. PinX1 inhibits cell proliferation, migration and invasion in glioma cells. Med Oncol 2015; 32:73. [PMID: 25698538 DOI: 10.1007/s12032-015-0545-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
PinX1 induces apoptosis and suppresses cell proliferation in some cancer cells, and the expression of PinX1 is frequently decreased in some cancer and negatively associated with metastasis and prognosis. However, the precise roles of PinX1 in gliomas have not been studied. In this study, we found that PinX1 obviously reduced the gliomas cell proliferation through regulating the expressions of cell cycle-relative molecules to arrest cell at G1 phase and down-regulating the expression of component telomerase reverse transcriptase (hTERT in human), which is the hardcore of telomerase. Moreover, PinX1 could suppress the abilities of gliomas cell wound healing, migration and invasion via suppressing MMP-2 expression and increasing TIMP-2 expression. In conclusion, our results suggested that PinX1 may be a potential suppressive gene in the progression of gliomas.
Collapse
Affiliation(s)
- Peng-Jin Mei
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
5
|
Zhou Q, Chen H, Yang S, Li Y, Wang B, Chen Y, Wu X. High-fat diet decreases the expression of Kiss1 mRNA and kisspeptin in the ovary, and increases ovulatory dysfunction in postpubertal female rats. Reprod Biol Endocrinol 2014; 12:127. [PMID: 25542298 PMCID: PMC4292805 DOI: 10.1186/1477-7827-12-127] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/15/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Female reproductive health is noticeably compromised by obesity. The underlying mechanisms remain to be elucidated. Accumulating evidence indicates that the expression level of ovarian Kiss1 peaks in the afternoon during prooestrus, suggesting local regulatory roles for Kiss1 in the ovulatory process. We used a diet-induced model of obesity to evaluate whether the ovarian Kiss1 system is affected by obesity, and, to investigate the association of the Kiss1 system with ovulatory disorders in female rats. METHODS Post-weaning, female, Sprague-Dawley rats were randomly fed either a high-fat diet (HFD) or a normal chow diet (NCD) until they reached postnatal day 30 (PND 30), PND 42, or PND 70. The timing of vaginal opening was recorded, and oestrous cyclicity was monitored for 2 consecutive weeks immediately post puberty and again at 8-9 weeks of age. Tissues from the left ovary were collected for determination of the levels of Kiss1 and G protein-coupled receptor 54 (GPR54) mRNA, and tissues from the right ovary were collected for assessment of the immunoreactivity (IR) of the corresponding protein products, kisspeptin and GPR54. RESULTS The high-fat diet resulted in a significantly higher body weight and an earlier puberty onset. Oestrous cyclicity was disrupted by the HFD with significant reductions in the expression of ovulation-related genes. A marked suppression of ovarian Kiss1 mRNA levels was observed during prooestrus and oestrus at PND 42, and, during prooestrus, oestrus, and metoestrus at PND 70 in the HFD rats compared with the NCD controls. In the HFD group, the immunoreactivity of kisspeptin was significantly lower in theca cells from antral follicles during prooestrus and oestrus at PND 42, and, during prooestrus, oestrus at PND 70. At the prooestrus stage, in the HFD group the immunoreactivity of kisspeptin was also lower in the theca cells of preovulatory follicles at both PND 42 and PND 70. CONCLUSIONS Exposure of female rats to an post-weaning, high-fat diet has long-term deleterious effects on ovulation, that may involve down-regulation of ovarian Kiss1 mRNA and kisspeptin.
Collapse
Affiliation(s)
- Qiangyong Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Haiyan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Simeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Yuehua Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Binqiao Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Yuanyuan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Xueqing Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| |
Collapse
|
6
|
Telomere 1 (POT1) gene expression and its association with telomerase activity in colorectal tumor samples with different pathological features. Biomed Pharmacother 2014; 68:841-6. [DOI: 10.1016/j.biopha.2014.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/07/2014] [Indexed: 01/18/2023] Open
|
7
|
Fridley BL, Armasu SM, Cicek MS, Larson MC, Wang C, Winham SJ, Kalli KR, Koestler DC, Rider DN, Shridhar V, Olson JE, Cunningham JM, Goode EL. Methylation of leukocyte DNA and ovarian cancer: relationships with disease status and outcome. BMC Med Genomics 2014; 7:21. [PMID: 24774302 PMCID: PMC4102255 DOI: 10.1186/1755-8794-7-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/16/2014] [Indexed: 12/22/2022] Open
Abstract
Background Genome-wide interrogation of DNA methylation (DNAm) in blood-derived leukocytes has become feasible with the advent of CpG genotyping arrays. In epithelial ovarian cancer (EOC), one report found substantial DNAm differences between cases and controls; however, many of these disease-associated CpGs were attributed to differences in white blood cell type distributions. Methods We examined blood-based DNAm in 336 EOC cases and 398 controls; we included only high-quality CpG loci that did not show evidence of association with white blood cell type distributions to evaluate association with case status and overall survival. Results Of 13,816 CpGs, no significant associations were observed with survival, although eight CpGs associated with survival at p < 10-3, including methylation within a CpG island located in the promoter region of GABRE (p = 5.38 x 10-5, HR = 0.95). In contrast, 53 CpG methylation sites were significantly associated with EOC risk (p <5 x10-6). The top association was observed for the methylation probe cg04834572 located approximately 315 kb upstream of DUSP13 (p = 1.6 x10-14). Other disease-associated CpGs included those near or within HHIP (cg14580567; p =5.6x10-11), HDAC3 (cg10414058; p = 6.3x10-12), and SCR (cg05498681; p = 4.8x10-7). Conclusions We have identified several CpGs in leukocytes that are differentially methylated by case-control status. Since a retrospective study design was used, we cannot differentiate whether DNAm was etiologic or resulting from EOC; thus, prospective studies of EOC-associated loci are the critical next step.
Collapse
Affiliation(s)
- Brooke L Fridley
- Department of Biostatistics, University of Kansas, Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Panero J, Stanganelli C, Arbelbide J, Fantl DB, Kohan D, García Rivello H, Rabinovich GA, Slavutsky I. Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression. Blood Cells Mol Dis 2013; 52:134-9. [PMID: 24239198 DOI: 10.1016/j.bcmd.2013.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 02/08/2023]
Abstract
The core complex of telomere-associated proteins, named the shelterin complex, plays a critical role in telomere protection and telomere length (TL) homeostasis. In this study, we have explored changes in the expression of telomere-associated genes POT1, TIN2, RAP1 and TPP1, in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). A total of 154 patients: 70 with MGUS and 84 with MM were studied. Real-time quantitative PCR was used to quantify gene expression. TL was evaluated by Terminal Restriction Fragments. Our data showed increased expression of POT1, TPP1, TIN2 and RAP1 in MM with respect to MGUS patients, with significant differences for POT1 gene (p=0.002). In MM, the correlation of gene expression profiles with clinical characteristics highlighted POT1 for its significant association with advanced clinical stages, high calcium and β2-microglobulin levels (p=0.02) and bone lesions (p=0.009). In multivariate analysis, POT1 expression (p=0.04) was a significant independent prognostic factor for overall survival as well as the staging system (ISS) (p<0.02). Our findings suggest for the first time the participation of POT1 in the transformation process from MGUS to MM, and provide evidence of this gene as a useful prognostic factor in MM as well as a possible molecular target to design new therapeutic strategies.
Collapse
Affiliation(s)
- Julieta Panero
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Jorge Arbelbide
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Argentina
| | - Dorotea Beatriz Fantl
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Argentina
| | - Dana Kohan
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, Argentina
| | | | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Hao SY, Yu JC. Shelterin complex and digestive system tumor. Shijie Huaren Xiaohua Zazhi 2012; 20:3124-3129. [DOI: 10.11569/wcjd.v20.i32.3124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Shelterin complex is the crucial components of telomere binding proteins. The regulation of this complex, together with telomerase and the alterative lengthening of telomeres (ALT mechanism), plays a critical role in maintaining telomere functions. Telomeres are DNA-protein complexes that contain short repeat sequences added on to the ends of chromosome by the telomerase for protecting the ends of chromosome and preventing chromosome fusion. The loss of protective function of telomeres is closely related to genome instability, and this is the molecular basis for tumor development. Thus, telomeres play key roles in the process of malignant tumor development. Many studies have shown that telomere binding proteins are associated with gastric, colorectal and liver cancers, and other digestive system tumors. This review will focus on the role of the shelterin complex in digestive system neoplasms to provide an insight into prevention and targeted therapy of these malignancies.
Collapse
|