1
|
Zhang R, Vooijs MA, Keulers TG. Key Mechanisms in Lysosome Stability, Degradation and Repair. Mol Cell Biol 2025; 45:212-224. [PMID: 40340648 DOI: 10.1080/10985549.2025.2494762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
Lysosomes are organelles that play pivotal roles in macromolecule digestion, signal transduction, autophagy, and cellular homeostasis. Lysosome instability, including the inhibition of lysosomal intracellular activity and the leakage of their contents, is associated with various pathologies, including cancer, neurodegenerative diseases, inflammatory diseases and infections. These lysosomal-related pathologies highlight the significance of factors contributing to lysosomal dysfunction. The vulnerability of the lysosomal membrane and its components to internal and external stimuli make lysosomes particularly susceptible to damage. Cells are equipped with mechanisms to repair or degrade damaged lysosomes to prevent cell death. Understanding the factors influencing lysosome stabilization and damage repair is essential for developing effective therapeutic interventions for diseases. This review explores the factors affecting lysosome acidification, membrane integrity, and functional homeostasis and examines the underlying mechanisms of lysosomal damage repair. In addition, we summarize how various risk factors impact lysosomal activity and cell fate.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tom Gh Keulers
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
2
|
Wang Z, Li X, Moura AK, Hu JZ, Wang YT, Zhang Y. Lysosome Functions in Atherosclerosis: A Potential Therapeutic Target. Cells 2025; 14:183. [PMID: 39936975 PMCID: PMC11816498 DOI: 10.3390/cells14030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Lysosomes in mammalian cells are recognized as key digestive organelles, containing a variety of hydrolytic enzymes that enable the processing of both endogenous and exogenous substrates. These organelles digest various macromolecules and recycle them through the autophagy-lysosomal system. Recent research has expanded our understanding of lysosomes, identifying them not only as centers of degradation but also as crucial regulators of nutrient sensing, immunity, secretion, and other vital cellular functions. The lysosomal pathway plays a significant role in vascular regulation and is implicated in diseases such as atherosclerosis. During atherosclerotic plaque formation, macrophages initially engulf large quantities of lipoproteins, triggering pathogenic responses that include lysosomal dysfunction, foam cell formation, and subsequent atherosclerosis development. Lysosomal dysfunction, along with the inefficient degradation of apoptotic cells and the accumulation of modified low-density lipoproteins, negatively impacts atherosclerotic lesion progression. Recent studies have highlighted that lysosomal dysfunction contributes critically to atherosclerosis in a cell- and stage-specific manner. In this review, we discuss the mechanisms of lysosomal biogenesis and its regulatory role in atherosclerotic lesions. Based on these lysosomal functions, we propose that targeting lysosomes could offer a novel therapeutic approach for atherosclerosis, shedding light on the connection between lysosomal dysfunction and disease progression while offering new insights into potential anti-atherosclerotic strategies.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Alexandra K. Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Jenny Z. Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| |
Collapse
|
3
|
Jin Z, De U, Tithi TI, Kleberg J, Nataraj A, Jolley E, Carelock ME, Davies BS, Zhang W, Kolb R. ANGPTL4 Suppresses Clear Cell Renal Cell Carcinoma via Inhibition of Lysosomal Acid Lipase. CANCER RESEARCH COMMUNICATIONS 2024; 4:2242-2254. [PMID: 39105498 PMCID: PMC11348483 DOI: 10.1158/2767-9764.crc-24-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Renal cell carcinoma (RCC), the most common form of kidney cancer, is a heterogeneous disease with clear cell RCC (ccRCC) being the most prevalent and aggressive subtype. While most ccRCC tumors have elevated expression of angiopoietin-like4 (ANGPTL4), in our study we identified a significant subset of patients whose cancers show no increase in ANGPTL4 expression. These patients have a worse prognosis compared to the patients with high expression of ANGPTL4. These ANGPTL4-low cancers are characterized by the increased frequency of wild-type Von Hippel-Lindau(WT VHL), a gene that is commonly mutated in ccRCC, and an enrichment for genes associated with lipid metabolism. Using RCC tumor models with WT VHL, we demonstrate that ANGPTL4 behaves as a tumor suppressor. The loss of ANGPTL4 in ccRCC cell lines results in increased tumor growth and colony formation in a lysosomal acid lipase (LAL)-dependent manner, a phenotype rescued by the expression of N-terminus ANGPTL4. At the mechanistic level, the loss of ANGPTL4 increases LAL activity in ccRCC cells. These data suggest that ANGPTL4 enacts its tumor-suppressive effects in ccRCC by regulating LAL activity. Importantly, the identified patient cohort with low ANGPTL4 expression may exhibit increased reliance on lipid metabolism, which can be a point of target for future therapy. SIGNIFICANCE Our data indicate angiopoietin-like 4 (ANGPTL4) acts as a tumor suppressor in clear cell renal cell carcinoma via regulating lipid metabolism and identifies a cohort of patients with lower expression of ANGPTL4 that are correlated with shorter survival.
Collapse
Affiliation(s)
- Zeng Jin
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, Florida.
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida.
| | - Umasankar De
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida.
| | - Tanzia Islam Tithi
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, Florida.
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida.
| | - Jeremy Kleberg
- Department of Biochemistry and Molecular Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida.
| | - Akhila Nataraj
- Department of Health Science, College of Public Health and Health Professions, University of Florida, Gainesville, Florida.
| | - Elena Jolley
- Interdisciplinary Medical Sciences Division, Florida State University, Tallahassee, Florida.
| | - Madison E. Carelock
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, Florida.
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida.
| | - Brandon S. Davies
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa.
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida.
- UF Health Cancer Center, University of Florida, Gainesville, Florida.
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida.
- UF Health Cancer Center, University of Florida, Gainesville, Florida.
| |
Collapse
|
4
|
Zhang JH, Lin AP, Zhang L, Ruan DD, Gao MZ, Chen Q, Yu HP, Liao LS, Lin XF, Fang ZT, Lin F, Lu SY, Luo JW, Zheng XL, Chen MS. Pedigree Analysis of Nonclassical Cholesteryl Ester Storage Disease with Dominant Inheritance in a LIPA I378T Heterozygous Carrier. Dig Dis Sci 2024; 69:2109-2122. [PMID: 38564148 DOI: 10.1007/s10620-024-08395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cholesterol ester storage disorder (CESD; OMIM: 278,000) was formerly assumed to be an autosomal recessive allelic genetic condition connected to diminished lysosomal acid lipase (LAL) activity due to LIPA gene abnormalities. CESD is characterized by abnormal liver function and lipid metabolism, and in severe cases, liver failure can occur leading to death. In this study, one Chinese nonclassical CESD pedigree with dominant inheritance was phenotyped and analyzed for the corresponding gene alterations. METHODS Seven males and eight females from nonclassical CESD pedigree were recruited. Clinical features and LAL activities were documented. Whole genome Next-generation sequencing (NGS) was used to screen candidate genes and mutations, Sanger sequencing confirmed predicted mutations, and qPCR detected LIPA mRNA expression. RESULTS Eight individuals of the pedigree were speculatively thought to have CESD. LAL activity was discovered to be lowered in four living members of the pedigree, but undetectable in the other four deceased members who died of probable hepatic failure. Three of the four living relatives had abnormal lipid metabolism and all four had liver dysfunctions. By liver biopsy, the proband exhibited diffuse vesicular fatty changes in noticeably enlarged hepatocytes and Kupffer cell hyperplasia. Surprisingly, only a newly discovered heterozygous mutation, c.1133T>C (p. Ile378Thr) on LIPA, was found by gene sequencing in the proband. All living family members who carried the p.I378T variant displayed reduced LAL activity. CONCLUSIONS Phenotypic analyses indicate that this may be an autosomal dominant nonclassical CESD pedigree with a LIPA gene mutation.
Collapse
Affiliation(s)
- Jian-Hui Zhang
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ai-Ping Lin
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Digestive, Fujian Provincial Hospital, Fuzhou, China
| | - Li Zhang
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Dan-Dan Ruan
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Mei-Zhu Gao
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Qian Chen
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong-Ping Yu
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Li-Sheng Liao
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Xin-Fu Lin
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Pediatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Zhu-Ting Fang
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Fan Lin
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Shi-Yun Lu
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Digestive, Fujian Provincial Hospital, Fuzhou, China
| | - Jie-Wei Luo
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China.
| | - Xiao-Ling Zheng
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, China
| | - Meng-Shi Chen
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Digestive, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
5
|
Abdelhamed W, El-Kassas M. Rare liver diseases in Egypt: Clinical and epidemiological characterization. Arab J Gastroenterol 2024; 25:75-83. [PMID: 38228442 DOI: 10.1016/j.ajg.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 01/18/2024]
Abstract
Illnesses that afflict a tiny number of individuals are referred to as rare diseases (RDs), sometimes called orphan diseases. The local healthcare systems are constantly under financial, psychological, and medical strain due to low incidence rates, unusual presentations, flawed diagnostic standards, and a lack of treatment alternatives for these RDs. The effective management of the once widely spread viral hepatitis B and C has altered the spectrum of liver diseases in Egypt during the last several years. The detection of uncommon disorders such as autoimmune, cholestatic, and hereditary liver diseases has also been made easier by the increasing knowledge and greater accessibility of specific laboratory testing. Finally, despite Egypt's large population, there are more uncommon liver disorders than previously thought. This review article discusses the clinical and epidemiological characteristics of a few uncommon liver disorders and the information currently accessible concerning these illnesses in Egypt.
Collapse
Affiliation(s)
- Walaa Abdelhamed
- Endemic Medicine Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt.
| |
Collapse
|
6
|
Chen G, Zhang W, Wang C, Chen M, Hu Y, Wang Z. Screening of four lysosome-related genes in sepsis based on RNA sequencing technology. BMC Immunol 2023; 24:50. [PMID: 38057716 PMCID: PMC10699041 DOI: 10.1186/s12865-023-00588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Screening of lysosome-related genes in sepsis patients to provide direction for lysosome-targeted therapy. METHODS Peripheral blood samples were obtained from 22 patients diagnosed with sepsis and 10 normal controls for the purpose of RNA sequencing and subsequent analysis of differential gene expression. Concurrently, lysosome-related genes were acquired from the Gene Ontology database. The intersecting genes between the differential genes and lysosome-related genes were then subjected to PPI, GO and KEGG analyses. Core genes were identified through survival analysis, and their expression trends in different groups were determined using meta-analysis. Single-cell RNA sequencing was used to clarify the cellular localization of core genes. RESULTS The intersection of 1328 sepsis-differential genes with 878 lysosome-related genes yielded 76 genes. PPI analysis showed that intersecting genes were mainly involved in Cellular process, Response to stimulus, Immune system process, Signal transduction, Lysosome. GO and KEGG analysis showed that intersecting genes were mainly involved in leukocyte mediated immunity, cell activation involved in immune response, lytic vacuole, lysosome. Survival analysis screened four genes positively correlated with sepsis prognosis, namely GNLY, GZMB, PRF1 and RASGRP1. The meta-analysis revealed that the expression levels of these four genes were significantly higher in the normal control group compared to the sepsis group, which aligns with the findings from RNA sequencing data. Furthermore, single-cell RNA sequencing demonstrated that T cells and NK cells exhibited high expression levels of GNLY, GZMB, PRF1, and RASGRP1. CONCLUSION GNLY, GZMB, PRF1, and RASGRP1, which are lysosome-related genes, are closely linked to the prognosis of sepsis and could potentially serve as novel research targets for sepsis, offering valuable insights for the development of lysosome-targeted therapy. The clinical trial registration number is ChiCTR1900021261, and the registration date is February 4, 2019.
Collapse
Affiliation(s)
- Guihong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wen Zhang
- Department of Endocrinology and Metabolism, The Traditional Chinese Medicine Hospital of Luzhou City, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Asna Ashari K, Azari-Yam A, Shahrooei M, Ziaee V. Wolman disease presenting with hemophagocytic lymphohistiocytosis syndrome and a novel LIPA gene variant: a case report and review of the literature. J Med Case Rep 2023; 17:369. [PMID: 37641143 PMCID: PMC10463876 DOI: 10.1186/s13256-023-04116-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Wolman disease is a rare disease caused by the absence of functional liposomal acid lipase due to mutations in LIPA gene. It presents with organomegaly, malabsorption, and adrenal calcifications. The presentations can resemble hemophagocytic lymphohistiocytosis, the life threatening hyperinflammatory disorder. Since the disease is very rare, clinicians might not think of it when a patient presents with hemophagocytic lymphohistiocytosis, and the opportunity to treat it properly can be lost, thus leading to demise of the child. CASE PRESENTATION We present a 4.5-month-old Caucasian boy with fever, icterus, and hepatosplenomegaly who was treated according to presumed hemophagocytic lymphohistiocytosis disease. Wolman disease was diagnosed after the death of the child. There are some case reports in the literature presenting patients with Wolman disease primarily diagnosed as hemophagocytic lymphohistiocytosis, which we discuss in this review. The genetic analysis revealed after his demise was compatible with Wolman disease, introducing a novel mutation in LIPA gene: exon 4: NM_001127605: c. G353A (p.G118D), which converts the glycine amino acid to aspartic acid. CONCLUSIONS Considering the similarities in presentation of Wolman disease and hemophagocytic lymphohistiocytosis, the patient's life can be saved if special attention is paid to presenting features of a patient with suspected hemophagocytic lymphohistiocytosis, that is special attention to symptoms, findings on physical exams, laboratory values, and radiologic findings, and the proper treatment is urgently initiated. Reporting the novel mutations of Wolman disease can help geneticists interpret the results of their patients' genetic studies appropriately, leading to correct diagnosis and treatment.
Collapse
Affiliation(s)
- Kosar Asna Ashari
- Children's Medical Center, Pediatrics Center of Excellence, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Rheumatology Society of Iran, Tehran, Iran
- Pediatrics Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aileen Azari-Yam
- Children's Medical Center, Pediatrics Center of Excellence, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Vahid Ziaee
- Children's Medical Center, Pediatrics Center of Excellence, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Rheumatology Society of Iran, Tehran, Iran.
- Pediatrics Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Giraldo P, López de Frutos L, Cebolla JJ. Recommendations for overcoming challenges in the diagnosis of lysosomal acid lipase deficiency. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2022.2131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pilar Giraldo
- Hematology. Hospital Quironsalud. Zaragoza. SPAIN
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG). Zaragoza. SPAIN
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
| | - Laura López de Frutos
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG). Zaragoza. SPAIN
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
| | - Jorge J Cebolla
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza. SPAIN
| |
Collapse
|
9
|
KÖSE E, ÇAĞATAY E, YARAŞ T, TEKE KISA P, GÜLER S, ARSLAN GÜLTEN Z, AKARSU M, OKTAY Y, AYAR KAYALI H, ARSLAN N. Could lysosomal acid lipase enzyme activity be used for clinical follow-up in cryptogenic cirrhosis? Turk J Med Sci 2022; 52:1075-1084. [PMID: 36326406 PMCID: PMC10387917 DOI: 10.55730/1300-0144.5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/10/2022] [Accepted: 03/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cholesterol ester storage disease (CESD) is one of the rare causes that should be kept in mind in the etiology of cirrhosis. Recent studies detected that significantly reduced lysosomal acid lipase deficiency enzyme (LAL) in patients with cryptogenic cirrhosis (CC). Moreover, studies have evaluated that LAL activity is as effective as scoring systems in assessing the severity of cirrhosis. In this study, we aimed to investigate the CESD with LAL level and mutation analysis of LIPA gene in patients diagnosed with CC and to compare LAL activities between patients with CC and healthy volunteers. METHODS Laboratory parameters and cirrhosis stage (CHILD and MELD) were recorded for the patient group included in the study. In addition, blood samples were taken from each case included in the study for LAL activity determination and LIPA gene analysis. RESULTS A statistically significant decrease in LAL activity was found in patients diagnosed with CC compared to the healthy group. LIPA gene analysis did not detect CESD in any patient group. Correlation analysis showed a positive correlation between LAL activity and white blood cell and platelet counts in both healthy volunteers and CC patient groups. In the univariate and multivariate logistic regression analysis of the parameters associated with the MELD of ≥10 in patients with CC, significant relationship was found between the MELD of ≥10 and the LAL activity. DISCUSSION In our study, LAL activity was significantly lower in CC patients than in the normal population. LAL activity level appears to be a parameter that can be used to assess the severity of cirrhosis.
Collapse
Affiliation(s)
- Engin KÖSE
- Department of Pediatric Metabolism, Faculty of Medicine, Ankara University, Ankara,
Turkey
| | - Elçin ÇAĞATAY
- Department of Molecular Biology and Genetics, International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir,
Turkey
| | - Tutku YARAŞ
- Department of Basic and Translational Research, International Biomedicine and Genome Center, İzmir,
Turkey
| | - Pelin TEKE KISA
- Department of Pediatric Metabolism, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| | - Seminay GÜLER
- Department of Gastroenterology, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| | - Zümrüt ARSLAN GÜLTEN
- Department of Pediatric Metabolism, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| | - Mesut AKARSU
- Department of Gastroenterology, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| | - Yavuz OKTAY
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| | - Hülya AYAR KAYALI
- Department of Science Chemistry, Dokuz Eylül University, İzmir,
Turkey
| | - Nur ARSLAN
- Department of Pediatric Metabolism, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| |
Collapse
|
10
|
Witeck CDR, Schmitz AC, de Oliveira JMD, Porporatti AL, De Luca Canto G, Pires MMDS. Lysosomal acid lipase deficiency in pediatric patients: a scoping review. J Pediatr (Rio J) 2022; 98:4-14. [PMID: 33964214 PMCID: PMC9432115 DOI: 10.1016/j.jped.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Lysosomal acid lipase deficiency (LAL-D) is an underdiagnosed autosomal recessive disease with onset between the first years of life and adulthood. Early diagnosis is crucial for effective therapy and long-term survival. The objective of this article is to recognize warning signs among the clinical and laboratory characteristics of LAL-D in pediatric patients through a scope review. SOURCES Electronic searches in the Embase, PubMed, Livivo, LILACS, Web of Science, Scopus, Google Scholar, Open Gray, and ProQuest Dissertations and Theses databases. The dataset included observational studies with clinical and laboratory characteristics of infants, children and adolescents diagnosed with lysosomal acid lipase deficiency by enzyme activity testing or analysis of mutations in the lysosomal acid lipase gene (LIPA). The reference selection process was performed in two stages. The references were selected by two authors, and the data were extracted in June 2020. SUMMARY OF THE FINDINGS The initial search returned 1593 studies, and the final selection included 108 studies from 30 countries encompassing 206 patients, including individuals with Wolman disease and cholesteryl ester storage disease (CESD). The most prevalent manifestations in both spectra of the disease were hepatomegaly, splenomegaly, anemia, dyslipidemia, and elevated transaminases. CONCLUSIONS Vomiting, diarrhea, jaundice, and splenomegaly may be correlated, and may serve as a starting point for investigating LAL-D. Familial lymphohistiocytosis should be part of the differential diagnosis with LAL-D, and all patients undergoing upper gastrointestinal endoscopy should be submitted to intestinal biopsy.
Collapse
Affiliation(s)
- Camila da Rosa Witeck
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências Médicas, Florianópolis, SC, Brazil.
| | - Anne Calbusch Schmitz
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências Médicas, Florianópolis, SC, Brazil
| | - Júlia Meller Dias de Oliveira
- Universidade Federal de Santa Catarina, Centro Brasileiro de Pesquisas Baseadas em Evidências, Florianópolis, SC, Brazil
| | - André Luís Porporatti
- Universidade Federal de Santa Catarina, Centro Brasileiro de Pesquisas Baseadas em Evidências, Florianópolis, SC, Brazil
| | - Graziela De Luca Canto
- Universidade Federal de Santa Catarina, Centro Brasileiro de Pesquisas Baseadas em Evidências, Florianópolis, SC, Brazil
| | - Maria Marlene de Souza Pires
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências Médicas, Florianópolis, SC, Brazil; Universidade Federal de Santa Catarina, Laboratório de Pesquisa Clínica e Experimental- MENULab, Florianópolis, SC, Brazil; Universidade Federal de Santa Catarina, Departamento de Pediatria, Florianópolis, SC, Brazil
| |
Collapse
|
11
|
Zhang Z, Yue P, Lu T, Wang Y, Wei Y, Wei X. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol 2021; 14:79. [PMID: 33990205 PMCID: PMC8120021 DOI: 10.1186/s13045-021-01087-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Pengfei Yue
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
12
|
López de Frutos L, García-González E, García-Rodríguez B, González-Irazabal Y, Lahoz C, Irún P, Cebolla JJ, Giraldo P. Serum protein profile analysis in lysosomal storage disorders patients. Clin Chim Acta 2020; 510:430-436. [PMID: 32745579 DOI: 10.1016/j.cca.2020.07.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Serum protein electrophoresis (SPE) is a well-established technique to identify alterations in plasma protein profiles, caused by diseases as multiple myeloma (MM). In addition, it could be a cost-effective technique to discover new plasma biomarkers. Relation between MM and lysosomal storage diseases (LSDs) as Gaucher disease has been set out but, it has not been evaluated on other LSDs nor the utility of the SPE as first step on LSDs biomarkers discovery projects. MATERIALS AND METHODS Stored plasma samples at diagnosis from several LSDs patients underwent analysis. Quality control was checked prior to the SPE was analyzed by capillary electrophoresis. The analysis for monoclonal spikes and the differences between each fraction on patients' samples vs the control data previously published, were evaluated. Furthermore, immunoprotein quantification and free light chains ratio were done by nephelometry and turbidimetry. RESULTS Seventy-five samples of LSD patients at diagnosis, were assessed. The frequency of the MGUS on LSDs patients was not higher than in general population whereas one lysosomal acid lipase deficiency infant showed increased IgA and kappa deviation. Regarding to the usefulness of SPE in biomarkers discovery, statistically significant differences were observed on SPE fractions between LSDs and healthy population. DISCUSSION The evaluation of SPE fractions can be a useful tool to understand pathophysiologic aspects in LDSs and, to simplify new marker discovery projects. In some of them, the MGUS appearance is a risk factor for the MM development despite its frequency is not increased on the studied LSDs at diagnosis.
Collapse
Affiliation(s)
- Laura López de Frutos
- GIIS-012. Instituto de Investigación Sanitaria Aragón (IIS Aragón), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain; Fundación para el Estudio y la Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza 50009, Spain.
| | - Elena García-González
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain
| | | | | | - Carlos Lahoz
- Fundación para el Estudio y la Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza 50009, Spain
| | - Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), IISCIII, Instituto de Investigación Sanitaria Aragón (IIS Aragón). Zaragoza 50009, Spain
| | - Jorge J Cebolla
- GIIS-012. Instituto de Investigación Sanitaria Aragón (IIS Aragón), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain; Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Pilar Giraldo
- Fundación para el Estudio y la Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza 50009, Spain
| |
Collapse
|
13
|
Kohli R, Ratziu V, Fiel MI, Waldmann E, Wilson DP, Balwani M. Initial assessment and ongoing monitoring of lysosomal acid lipase deficiency in children and adults: Consensus recommendations from an international collaborative working group. Mol Genet Metab 2020; 129:59-66. [PMID: 31767214 DOI: 10.1016/j.ymgme.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lysosomal acid lipase (LAL) deficiency is an ultra-rare, progressive, autosomal recessive disorder. Functional mutations in LIPA, the gene that encodes LAL, result in accumulation of cholesteryl esters and triglycerides in hepatocytes and in the macrophages of the intestines, vascular endothelial system, and numerous other organs. LAL deficiency has a broad clinical spectrum; children and adults can present with dyslipidemia, liver enzyme elevations, hepatosplenomegaly, hepatic steatosis, liver fibrosis and/or cirrhosis, and vascular disease, which may lead to significant morbidity and premature mortality in some patients. Given the systemic involvement and the wide range of healthcare specialists who manage patients with LAL deficiency, there is a need for guidelines to assess and monitor disease involvement. OBJECTIVES To provide a set of recommendations for the initial assessment and ongoing monitoring of patients with LAL deficiency to help physicians in various disciplines effectively manage the disease based on the observed presentation and progression in each case. METHODS A group of internationally recognized healthcare specialists with expertise in clinical genetics, pathology, hepatology, gastroenterology, cardiology, and lipidology convened to develop an evidence-based consensus of best practices for the initial assessment and ongoing monitoring of children and adults with LAL deficiency, regardless of treatment status; infants with LAL deficiency have been excluded from these guidelines because they require specialized care. RESULTS The authors present guidance for the assessment and monitoring of patients with LAL deficiency based on age and disease manifestations that include the hepatic, cardiovascular, and gastrointestinal systems. A schedule for ongoing monitoring of disease progression is provided. In addition, the need to establish an interdisciplinary and integrated care team to optimize the approach to managing this systemic disease is highlighted. CONCLUSIONS There is currently no published guidance on the assessment and monitoring of patients with LAL deficiency. These consensus recommendations for the initial assessment and ongoing monitoring of children and adults with LAL deficiency are intended to help improve the management of these patients.
Collapse
Affiliation(s)
- Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Vlad Ratziu
- Department of HepaGastroenterology, Université Pierre et Marie Curie, Hôpital Pitié Salpêtrière, Paris, France
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, NY, New York, USA
| | - Elisa Waldmann
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Don P Wilson
- Division of Pediatric Endocrinology & Diabetes, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai Hospital, NY, New York, USA.
| |
Collapse
|
14
|
Du J, Ji Y, Qiao L, Liu Y, Lin J. Cellular endo-lysosomal dysfunction in the pathogenesis of non-alcoholic fatty liver disease. Liver Int 2020; 40:271-280. [PMID: 31765080 DOI: 10.1111/liv.14311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), an increasingly devastating human disorder, is characterized by intrahepatic fat accumulation. Although important progress has been made in understanding NAFLD, the fundamental mechanisms involved in the pathogenesis of NAFLD have not been fully explained. The endo-lysosomal trafficking network is central to lipid metabolism, protein degradation and signal transduction, which are involved in a variety of diseases. In recent years, many genes and pathways in the endo-lysosomal trafficking network and involved in lysosomal biogenesis have been associated with the development and progression of NAFLD. Mutations of these genes and impaired signalling lead to dysfunction in multiple steps of the endo-lysosomal network (endocytic trafficking, membrane fusion and lysosomal degradation), resulting in the accumulation of pathogenic proteins. In this review, we will focus on how alterations in these genes and pathways affect endo-lysosomal trafficking as well as the pathophysiology of NAFLD.
Collapse
Affiliation(s)
- Jiang Du
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.,Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yu Ji
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Liang Qiao
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
15
|
Sulaiman RA. Inherited metabolic disorders and dyslipidaemia. J Clin Pathol 2019; 73:384-390. [PMID: 31757783 DOI: 10.1136/jclinpath-2019-205910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 11/04/2022]
Abstract
Monogenic dyslipidaemia is a diverse group of multisystem disorders. Patients may present to various specialities from early childhood to late in adult life, and it usually takes longer before the diagnosis is established. Increased awareness of these disorders among clinicians is imperative for early diagnosis. This best practice review provides an overview of primary dyslipidaemias, highlighting their clinical presentation, relevant biochemical and molecular tests. It also addresses the emerging role of genetics in the early diagnosis and prevention of these disorders.
Collapse
Affiliation(s)
- Raashda A Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Cebolla JJ, Irún P, Mozas P, Giraldo P. Evaluation of two approaches to lysosomal acid lipase deficiency patient identification: An observational retrospective study. Atherosclerosis 2019; 285:49-54. [PMID: 31004967 DOI: 10.1016/j.atherosclerosis.2019.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Lysosomal acid lipase deficiency (LALD) leads to the accumulation of cholesteryl esters and/or triglycerides (TG) in lysosomes due to the lack of the enzyme codified by the LIPA gene. The most common symptoms are dyslipidaemia and hypertransaminasemia, together with manifestations common to other lysosomal storage disorders (LSDs), including visceromegalies and elevated plasma biomarkers. Alteration of the lipid-liver profile (LLP) has been widely applied as a criterion for LALD screening, but the usefulness of biomarkers has not yet been explored. Our purpose was to explore the utility of plasma chitotriosidase activity (ChT) and CCL18/PARC concentration in addition to LLP to identify LALD patients in an observational retrospective study of two different sample collections. METHODS Biological samples refining: Collection 1 (primary hypercholesterolemia suspected) included unrelated individuals with hyperlipidaemia and without LDLR, APOB and PCSK9 gene mutations (Set 1), and Collection 2 (LSD suspected) included individuals without definitive LSD diagnosis (Set 2). We assessed plasma LLP (total cholesterol and its fractions, TG concentration and transaminases activities), as well as plasma ChT and CCL18/PARC. All subjects with anomalous LLP and/or biomarker levels were LIPA sequenced. RESULTS Twenty-four subjects showed altered LLP and/or biomarkers. We identified two LALD patients (one homozygous and one compound heterozygous) and one carrier of a novel LIPA variant. CONCLUSIONS The measurement of plasma ChT and CCL18/PARC combined with LLP will be a useful approach to identifying LALD patients in retrospective LALD patient studies.
Collapse
Affiliation(s)
- Jorge J Cebolla
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), GIIS-012, Zaragoza, 50009, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CB/06/07/1036, Instituto de Salud Carlos III (ISCIII), Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain; Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza, 50008, Spain; Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, 50009, Spain.
| | - Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CB/06/07/1036, Instituto de Salud Carlos III (ISCIII), Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain
| | - Pilar Mozas
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Pilar Giraldo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), GIIS-012, Zaragoza, 50009, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CB/06/07/1036, Instituto de Salud Carlos III (ISCIII), Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain; Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza, 50008, Spain
| |
Collapse
|
17
|
Reynolds TM, Mewies C, Hamilton J, Wierzbicki AS. Identification of rare diseases by screening a population selected on the basis of routine pathology results-the PATHFINDER project: lysosomal acid lipase/cholesteryl ester storage disease substudy. J Clin Pathol 2018; 71:608-613. [PMID: 29358478 DOI: 10.1136/jclinpath-2017-204727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 01/04/2023]
Abstract
AIMS Lysosomal acid lipase deficiency (LALD) is an autosomal recessive disorder of cholesterol ester storage associated with hepatic disease, cirrhosis and accelerated atherosclerosis. Its prevalence in the general population, patients with dyslipidaemia and raised transaminases is unclear. This study attempted to identify the prevalence of LALD from patients with abnormal results in laboratory databases. METHODS Electronic laboratory databases were interrogated to identify from clinical biochemistry records patients with a phenotype of low high-density lipoprotein-cholesterol (≤0.85 mmol/L; 33 mg/dL) and with elevated alanine or aspartate transaminases (≥60 IU/L) on one occasion or more over a 3-year time interval. Patients were recalled, and a dried blood spot sample was collected for lysosomal acid lipase determination by a fluorimetric enzyme assay. Histopathology databases of liver biopsies were interrogated for patients with features of 'microvesicular cirrhosis' or 'cryptogenic cirrhosis' in the report. Histological blocks were sampled, and samples were analysed by next-generation sequencing for the presence of mutations in the LAL gene. RESULTS Samples were obtained from 1825 patients with dyslipidaemia and elevated transaminases. No cases of LALD were identified. Liver biopsies were obtained from six patients. DNA extraction was successful from four patients. Two patients were homozygous for the LAL c.46A>C;p.Thr16Pro unclassified variant in exon 2. CONCLUSIONS Pathology databases hold routine information that can be used to identify patients with specific patterns of results or those who had biopsies to allow targeted testing for possible causes of disease. Biochemical screening suggests that the gene frequency of LAL deficiency in adults is less than 1 in 100.
Collapse
Affiliation(s)
- Timothy M Reynolds
- Department of Chemical Pathology, Queen's Hospital, Burton, UK
- Division of Health Sciences, Wolverhampton University, Wolverhampton, UK
| | - Clare Mewies
- Department of Chemical Pathology, Queen's Hospital, Burton, UK
| | - John Hamilton
- Biochemistry Department, Queen Elizabeth University Hospital Laboratory, Glasgow, UK
| | - Anthony S Wierzbicki
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London, UK
| |
Collapse
|
18
|
Wilson DP, Friedman M, Marulkar S, Hamby T, Bruckert E. Sebelipase alfa improves atherogenic biomarkers in adults and children with lysosomal acid lipase deficiency. J Clin Lipidol 2018; 12:604-614. [PMID: 29628368 DOI: 10.1016/j.jacl.2018.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/31/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Measures of atherogenic cholesterol, with and without concomitant use of lipid-lowering medications (LLMs), are reported with up to 52 weeks of sebelipase alfa treatment in children and adults with lysosomal acid lipase deficiency (LAL-D) participating in the phase 3 Acid Lipase Replacement Investigating Safety and Efficacy study (NCT01757184). OBJECTIVE To examine the effects of sebelipase alfa on levels of atherogenic biomarkers in the Acid Lipase Replacement Investigating Safety and Efficacy study. METHODS Data were prospectively collected for LDL particle (LDL-P) number, LDL-C, HDL-C, apolipoprotein B (apoB), apolipoprotein A1 (apoA1), and LDL-P size. Differences at week 20 between the sebelipase alfa and placebo groups were assessed for the overall LAL-D cohort and for patients receiving and not receiving LLMs. Changes from baseline after up to 52 weeks of treatment were also calculated for the overall cohort and separately for patients receiving and not receiving LLMs. RESULTS Baseline values for LDL-C, LDL-P number, and apoB were elevated while HDL-C and apoA1 were low. Treatment with sebelipase alfa for 20 weeks significantly improved atherogenic measures compared with placebo irrespective of LLM usage. The reduction in LDL-C with sebelipase alfa was associated with a reduction in the LDL-P number. Treatment for up to 52 weeks was associated with sustained improvements of LDL-P, LDL-C, HDL-C, apoB, and apoA1, regardless of LLM use. CONCLUSION Patients with LAL-D have high atherogenic risk. It is essential to address the underlying LAL deficiency to restore cholesterol homeostasis in LAL-D patients, as treatment with sebelipase alfa improves atherogenic measures regardless of LLM use and for a sustained period. Sebelipase alfa appears to reduce LDL-C by decreasing the LDL-P number, suggesting improvement in cardiovascular disease risk in LAL-D patients.
Collapse
Affiliation(s)
| | | | | | - Tyler Hamby
- Cook Children's Medical Center, Fort Worth, TX
| | | |
Collapse
|
19
|
Access to care in rare liver diseases: New challenges and new opportunities. J Hepatol 2018; 68:577-585. [PMID: 29113911 DOI: 10.1016/j.jhep.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
Patients with rare diseases are often disadvantaged, particularly those with rare liver diseases. Reasons for disadvantage include delayed or overlooked diagnosis, lack of local expertise and high-quality care, poor scientific understanding of the disease process and limited therapeutic options. In adult liver disease this can be compounded by prejudices towards patients with liver disease in general, because of a perception (incorrect for all rare liver diseases) that liver disease is lifestyle related and thus "self-inflicted". In paediatric rare liver diseases, such as biliary atresia, optimising outcomes requires a particularly timely diagnosis. Irrespective of patient age, the scientific and medical community must rise to the challenge of advancing our understanding of rare liver disease, searching for more effective and specific therapies, and providing the infrastructure to provide the best care for all patients, infants, children, young and older adults. The European Reference Network for Rare Liver Diseases is an important step in this direction.
Collapse
|
20
|
Abstract
INTRODUCTION With the growing obesity epidemic, nonalcoholic fatty liver disease (NAFLD) is rapidly becoming one of the leading causes of liver disease worldwide. Although obesity is a main risk factor for the development of NAFLD, it can also develop in lean subjects and can be encountered in different clinical setting and in association with an array of genetic, metabolic, nutritional, infectious and drug-induced disorders. Areas covered: This article discusses causes of fatty liver in non-obese subjects focusing on Lysosomal acid lipase deficiency (LAL-D), a commonly overlooked disorder reviewing its prevalence, genetics, pathogenesis, clinical features, diagnosis and treatment. It will also review other causes of non-alcoholic fatty liver disease, which can be encountered in the absence of obesity and metabolic syndrome. Expert commentary: Although the prevalence of LAL-D has been estimated in the range of 1 in 40,000 and 1 in 300,000, this estimate is much more than the identified cases reported in the literature, which suggests that that the disease may be considerably under-diagnosed. There is a pressing need to educate clinicians about the disease, especially with the development of new promising therapeutic modalities.
Collapse
Affiliation(s)
- Hassan H A-Kader
- a Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics , The University of Arizona , Tucson , AZ , USA
| |
Collapse
|
21
|
Chuang JC, Lopez AM, Turley SD. Quantitation of the rates of hepatic and intestinal cholesterol synthesis in lysosomal acid lipase-deficient mice before and during treatment with ezetimibe. Biochem Pharmacol 2017; 135:116-125. [PMID: 28322747 PMCID: PMC5489310 DOI: 10.1016/j.bcp.2017.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/14/2017] [Indexed: 01/28/2023]
Abstract
Esterified cholesterol (EC) and triglycerides, contained within lipoproteins taken up by cells, are hydrolysed by lysosomal acid lipase (LAL) in the late endosomal/lysosomal (E/L) compartment. The resulting unesterified cholesterol (UC) is transported via Niemann-Pick type C2 and C1 into the cytosolic compartment where it enters a putative pool of metabolically active cholesterol that is utilized in accordance with cellular needs. Loss-of-function mutations in LIPA, the gene encoding LAL, result in dramatic increases in tissue concentrations of EC, a hallmark feature of Wolman disease and cholesteryl ester storage disease (CESD). The lysosomal sequestration of EC causes cells to respond to a perceived deficit of sterol by increasing their rate of cholesterol synthesis, particularly in the liver. A similar compensatory response occurs with treatments that disrupt the enterohepatic movement of cholesterol or bile acids. Here we measured rates of cholesterol synthesis in vivo in the liver and small intestine of a mouse model for CESD given the cholesterol absorption inhibitor ezetimibe from weaning until early adulthood. Consistent with previous findings, this treatment significantly reduced the amount of EC sequestered in the liver (from 132.43±7.35 to 70.07±6.04mg/organ) and small intestine (from 2.78±0.21 to 1.34±0.09mg/organ) in the LAL-deficient mice even though their rates of hepatic and intestinal cholesterol synthesis were either comparable to, or exceeded those in matching untreated Lal-/- mice. These data reveal the role of intestinal cholesterol absorption in driving the expansion of tissue EC content and disease progression in LAL deficiency.
Collapse
Affiliation(s)
- Jen-Chieh Chuang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| |
Collapse
|
22
|
Onal G, Kutlu O, Gozuacik D, Dokmeci Emre S. Lipid Droplets in Health and Disease. Lipids Health Dis 2017; 16:128. [PMID: 28662670 PMCID: PMC5492776 DOI: 10.1186/s12944-017-0521-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
Lipids are essential building blocks synthesized by complex molecular pathways and deposited as lipid droplets (LDs) in cells. LDs are evolutionary conserved organelles found in almost all organisms, from bacteria to mammals. They are composed of a hydrophobic neutral lipid core surrounding by a phospholipid monolayer membrane with various decorating proteins. Degradation of LDs provide metabolic energy for divergent cellular processes such as membrane synthesis and molecular signaling. Lipolysis and autophagy are two main catabolic pathways of LDs, which regulate lipid metabolism and, thereby, closely engaged in many pathological conditons. In this review, we first provide an overview of the current knowledge on the structural properties and the biogenesis of LDs. We further focus on the recent findings of their catabolic mechanism by lipolysis and autophagy as well as their connection ragarding the regulation and function. Moreover, we discuss the relevance of LDs and their catabolism-dependent pathophysiological conditions.
Collapse
Affiliation(s)
- Gizem Onal
- Department of Medical Biology, Hacettepe University, 06100, Ankara, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM) & Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Molecular Biology, Genetics, and Bioengineering Program & Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, 34956, Istanbul, Turkey
| | - Serap Dokmeci Emre
- Department of Medical Biology, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
23
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 21. Testicular Pathology in Heritable Metabolic Disease. Pediatr Dev Pathol 2017; 19:371-382. [PMID: 25361068 DOI: 10.2350/14-06-1519-pb.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inborn errors of metabolism have wide and profound effects in many or all organs, and especially so in those with endocrine functions. The testes are greatly affected by systemic metabolic disorders, leading to specific histological findings that generally reveal the nature of the underlying disorder. Here we describe the main testicular changes seen in the setting of metabolic disease.
Collapse
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo No. 2, Madrid 28029, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | - Pilar González-Peramato
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo No. 2, Madrid 28029, Spain
| | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
24
|
Camarena C, Aldamiz-Echevarria LJ, Polo B, Barba Romero MA, García I, Cebolla JJ, Ros E. Update on lysosomal acid lipase deficiency: Diagnosis, treatment and patient management. Med Clin (Barc) 2017; 148:429.e1-429.e10. [PMID: 28285817 DOI: 10.1016/j.medcli.2016.12.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 01/01/2023]
Abstract
Lysosomal acid lipase deficiency (LALD) is an ultra-rare disease caused by a congenital disorder of the lipid metabolism, characterized by the deposition of cholesterol esters and triglycerides in the organism. In patients with no enzyme function, the disease develops during the perinatal period and is invariably associated with death during the first year of life. In all other cases, the phenotype is heterogeneous, although most patients develop chronic liver diseases and may also develop an early cardiovascular disease. Treatment for LALD has classically included the use of supportive measures that do not prevent the progression of the disease. In 2015, regulatory agencies approved the use of a human recombinant LAL for the treatment of LALD. This long-term enzyme replacement therapy has been associated with significant improvements in the hepatic and lipid profiles of patients with LALD, increasing survival rates in infants with a rapidly progressive disease. Both the severity of LALD and the availability of a specific treatment highlight the need to identify these patients in clinical settings, although its low prevalence and the existing clinical overlap with other more frequent pathologies limit its diagnosis. In this paper we set out practical recommendations to identify and monitor patients with LALD, including a diagnostic algorithm, along with an updated treatment.
Collapse
Affiliation(s)
- Carmen Camarena
- Servicio de Hepatología Infantil, Hospital La Paz, Madrid, España
| | - Luis J Aldamiz-Echevarria
- Unidad de Enfermedades Metabólicas Pediátricas, Hospital Universitario Cruces, Bilbao, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, España; CSUR de Enfermedades Metabólicas Congénitas, Ministerio de Sanidad, Madrid, España
| | - Begoña Polo
- Servicio de Gastroenterología y Hepatología Pediátrica, Hospital La Fe, Valencia, España
| | - Miguel A Barba Romero
- Servicio de Medicina Interna, Complejo Hospitalario y Universitario de Albacete, Universidad de Castilla-La Mancha, Albacete, España
| | - Inmaculada García
- Unidad de Enfermedades Metabólicas Pediátricas, Hospital Miguel Servet, Zaragoza, España
| | - Jorge J Cebolla
- Instituto de Investigación Sanitaria Aragón, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - Emilio Ros
- Unidad de Lípidos, Servicio de Endocrinología y Nutrición, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, España; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, España.
| |
Collapse
|
25
|
Orekhov AN, Ivanova EA, Melnichenko AA, Sobenin IA. Circulating desialylated low density lipoprotein. COR ET VASA 2017. [DOI: 10.1016/j.crvasa.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Evans TD, Sergin I, Zhang X, Razani B. Target acquired: Selective autophagy in cardiometabolic disease. Sci Signal 2017; 10:eaag2298. [PMID: 28246200 PMCID: PMC5451512 DOI: 10.1126/scisignal.aag2298] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The accumulation of damaged or excess proteins and organelles is a defining feature of metabolic disease in nearly every tissue. Thus, a central challenge in maintaining metabolic homeostasis is the identification, sequestration, and degradation of these cellular components, including protein aggregates, mitochondria, peroxisomes, inflammasomes, and lipid droplets. A primary route through which this challenge is met is selective autophagy, the targeting of specific cellular cargo for autophagic compartmentalization and lysosomal degradation. In addition to its roles in degradation, selective autophagy is emerging as an integral component of inflammatory and metabolic signaling cascades. In this Review, we focus on emerging evidence and key questions about the role of selective autophagy in the cell biology and pathophysiology of metabolic diseases such as obesity, diabetes, atherosclerosis, and steatohepatitis. Essential players in these processes are the selective autophagy receptors, defined broadly as adapter proteins that both recognize cargo and target it to the autophagosome. Additional domains within these receptors may allow integration of information about autophagic flux with critical regulators of cellular metabolism and inflammation. Details regarding the precise receptors involved, such as p62 and NBR1, and their predominant interacting partners are just beginning to be defined. Overall, we anticipate that the continued study of selective autophagy will prove to be informative in understanding the pathogenesis of metabolic diseases and to provide previously unrecognized therapeutic targets.
Collapse
Affiliation(s)
- Trent D Evans
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiangyu Zhang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
Pant M, Oshima K. Cholesteryl Ester Storage Disease: An underdiagnosed cause of cirrhosis in adults. Ann Diagn Pathol 2017; 31:66-70. [PMID: 28318950 DOI: 10.1016/j.anndiagpath.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/29/2022]
Abstract
Cholesteryl Ester Storage Disease (CESD), is a rare multisystem autosomal recessive disorder and belongs to the broad family of lysosomal storage disorders. It can present anytime from infancy and childhood to even adulthood. The clinical manifestations are generally severe in infants and with milder forms in adults. One of the prominent sites of involvement is liver. Due to low awareness of this condition among physicians including surgical pathologists, majority of the liver biopsies, especially from the adults are often misdiagnosed as non-alcoholic fatty liver disease/non-alcoholic steatohepatitis or cryptogenic cirrhosis. Given the recent availability of safe and effective enzyme replacement therapy that can alter the natural course of CESD, the pathologists signing out adult and pediatric liver biopsies should be aware of this entity, thus contributing to timely patient management. This review discusses the clinical features, pathogenesis, diagnostic approach, differential diagnosis and management of CESD in adults.
Collapse
Affiliation(s)
- Mamta Pant
- Department of Pathology, Medical College of Wisconsin, Milwaukee, United States
| | - Kiyoko Oshima
- Department of Pathology, Medical College of Wisconsin, Milwaukee, United States.
| |
Collapse
|
28
|
Sukhorukov VN, Karagodin VP, Orekhov AN. [Atherogenic modification of low-density lipoproteins]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:391-402. [PMID: 27562992 DOI: 10.18097/pbmc20166204391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the first manifestations of atherosclerosis is accumulation of extra- and intracellular cholesterol esters in the arterial intima. Formation of foam cells is considered as a trigger in the pathogenesis of atherosclerosis. Low density lipoprotein (LDL) circulating in human blood is the source of lipids accumulated in the arterial walls. This review considered features and role in atherogenesis different modified forms of LDL: oxidized, small dense, electronegative and especially desialylated LDL. Desialylated LDL of human blood plasma is capable to induce lipid accumulation in cultured cells and it is atherogenic. LDL possesses numerous alterations of protein, carbohydrate and lipid moieties and therefore can be termed multiple-modified LDL. Multiple modification of LDL occurs in human blood plasma and represents a cascade of successive changes in the lipoprotein particle: desialylation, loss of lipids, reduction in the particle size, increase of surface electronegative charge, etc. In addition to intracellular lipid accumulation, stimulatory effects of naturally occurring multiple-modified LDL on other processes involved in the development of atherosclerotic lesions, namely cell proliferation and fibrosis, were shown.
Collapse
Affiliation(s)
- V N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - V P Karagodin
- Plekhanov Russian University of Economics, Moscow, Russia
| | - A N Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, PO Box #21, Moscow, Russia
| |
Collapse
|
29
|
Poinsot P, Collardeau Frachon S, Restier L, Sérusclat A, Di Filippo M, Charrière S, Moulin P, Lachaux A, Peretti N. Childhood/adult-onset lysosomal acid lipase deficiency: A serious metabolic and vascular phenotype beyond liver disease-four new pediatric cases. J Clin Lipidol 2017; 11:167-177.e3. [PMID: 28391883 DOI: 10.1016/j.jacl.2016.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The childhood/adult-onset lysosomal acid lipase deficiency (LALD; late-onset LALD) is a rare genetic disease. Children present severe fatty liver disease with early cirrhosis. Before enzyme replacement therapy, statins were the standard treatment to improve the severe dyslipidemia. However, late-onset LALD should be considered as a systemic metabolic disease: chronic hyper-low-density lipoprotein and hypo-high-density lipoprotein cholesterolemia induces early atherosclerosis in addition to the liver morbidity. OBJECTIVE To assess 4 new pediatric cases of late-onset LALD with an evaluation of hepatic, metabolic, and vascular evolution under statin. METHODS Four patients were retrospectively described. Anthropometric data (weight, height, and body mass index) and laboratory data (LIPA mutations, acid lipase residual activity, liver and lipid profile, and homeostatic model assessment index) were collected. Liver histology was assessed by the noninvasive tests FibroScan and FibroTest and confirmed by liver biopsy. Vascular impact was followed up by carotid intima-media thickness (cIMT) assessment. RESULTS The 4 cases of late-onset LALD came from 2 families, each with a boy (aged 8.6 and 11 years at diagnosis) and a girl (aged 10.6 and 13 years at diagnosis). Treatment with statins was performed for 8 and 5 years, respectively, from diagnosis. Statins decreased the low-density lipoprotein cholesterol mean value of 40%. All children showed significant liver fibrosis (F3 [n = 3]; F2 [n = 1]). cIMT showed the following for all children: abnormal measures without improvement and atherosclerotic plaques. One child developed a deleterious metabolic phenotype with obesity and insulin resistance (homeostatic model assessment = 3.08) associated with higher mean hepatic transaminases (149 vs 98, 88, and 61 IU/L) and increased mean cIMT values (raising from 0.47 to 0.5 mm vs 0.43 and 0.43 mm). CONCLUSION Late-onset LALD is a rare metabolic disease with a larger impact than liver disease. Our work shows the importance of having a global metabolic view and to evaluate the cardiovascular impact of the new enzymatic treatment.
Collapse
Affiliation(s)
- Pierre Poinsot
- Univ Lyon, Hospices Civils de Lyon, Service d'Hépathologie, Gastro-entérologie et Nutrition Pédiatrique, Hopital Femme Mere Enfant, Bron, France.
| | - Sophie Collardeau Frachon
- Univ Lyon, Hospices Civils de Lyon, Centre de Pathologie Est, Groupement Hospitalier Est, Bron, France
| | - Lioara Restier
- Univ Lyon, Hospices Civils de Lyon, Service d'Hépathologie, Gastro-entérologie et Nutrition Pédiatrique, Hopital Femme Mere Enfant, Bron, France
| | - André Sérusclat
- Univ Lyon, Hospices Civils de Lyon, Service d'Imagerie Médicale, Hôpital Louis Pradel, Bron, France
| | - Mathilde Di Filippo
- Univ Lyon, Hospices Civils de Lyon, Centre de Biologie Est, Groupement Hospitalier Est, Bron, France; Univ Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, Oullins, France
| | - Sybil Charrière
- Univ Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, Oullins, France; Univ Lyon, Hospices Civils de Lyon, Service Diabétologie, Endocrinologie, Maladies Métaboliques et Nutrition, Hôpital Louis Pradel, Bron, France; Univ Lyon, Faculté de Médecine Lyon-Est, Lyon, France
| | - Philippe Moulin
- Univ Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, Oullins, France; Univ Lyon, Hospices Civils de Lyon, Service Diabétologie, Endocrinologie, Maladies Métaboliques et Nutrition, Hôpital Louis Pradel, Bron, France; Univ Lyon, Faculté de Médecine Lyon-Est, Lyon, France
| | - Alain Lachaux
- Univ Lyon, Hospices Civils de Lyon, Service d'Hépathologie, Gastro-entérologie et Nutrition Pédiatrique, Hopital Femme Mere Enfant, Bron, France; Univ Lyon, Faculté de Médecine Lyon-Est, Lyon, France
| | - Noel Peretti
- Univ Lyon, Hospices Civils de Lyon, Service d'Hépathologie, Gastro-entérologie et Nutrition Pédiatrique, Hopital Femme Mere Enfant, Bron, France; Univ Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, Oullins, France; Univ Lyon, Faculté de Médecine Lyon-Est, Lyon, France
| |
Collapse
|
30
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an important cause of liver disease that is often associated with the metabolic syndrome. There is a growing awareness that extrahepatic complications occur in individuals with NAFLD, especially an increased risk of cardiovascular disease. Development of diabetes mellitus, chronic kidney disease, colorectal cancer, and endocrinopathies has been linked to NAFLD. This article reviews the extrahepatic complications affecting individuals with NAFLD and the pathogenesis underlying their development.
Collapse
Affiliation(s)
- Kristina R Chacko
- Department of Medicine, Albert Einstein College of Medicine, 111 East 210th Street, Rosenthal 2C, Bronx, NY 10467, USA
| | - John Reinus
- Department of Medicine, Albert Einstein College of Medicine, 111 East 210th Street, Rosenthal 2C, Bronx, NY 10467, USA.
| |
Collapse
|
31
|
Brautbar A, Leary E, Rasmussen K, Wilson DP, Steiner RD, Virani S. Genetics of familial hypercholesterolemia. Curr Atheroscler Rep 2015; 17:491. [PMID: 25712136 DOI: 10.1007/s11883-015-0491-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol and premature cardiovascular disease, with a prevalence of approximately 1 in 200-500 for heterozygotes in North America and Europe. Monogenic FH is largely attributed to mutations in the LDLR, APOB, and PCSK9 genes. Differential diagnosis is critical to distinguish FH from conditions with phenotypically similar presentations to ensure appropriate therapeutic management and genetic counseling. Accurate diagnosis requires careful phenotyping based on clinical and biochemical presentation, validated by genetic testing. Recent investigations to discover additional genetic loci associated with extreme hypercholesterolemia using known FH families and population studies have met with limited success. Here, we provide a brief overview of the genetic determinants, differential diagnosis, genetic testing, and counseling of FH genetics.
Collapse
Affiliation(s)
- Ariel Brautbar
- Division of Genetics, Cook Children's Medical Center, Fort Worth, TX, USA,
| | | | | | | | | | | |
Collapse
|
32
|
Sergin I, Evans T, Razani B. Degradation and beyond: the macrophage lysosome as a nexus for nutrient sensing and processing in atherosclerosis. Curr Opin Lipidol 2015; 26:394-404. [PMID: 26241101 PMCID: PMC5027838 DOI: 10.1097/mol.0000000000000213] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The ability of macrophage lysosomes to degrade both exogenous and internally derived cargo is paramount to handling the overabundance of lipid and cytotoxic material present in the atherosclerotic plaque. We will discuss recent insights in both classical and novel functions of the lysosomal apparatus, as it pertains to the pathophysiology of atherosclerosis. RECENT FINDINGS Lipid-mediated dysfunction in macrophage lysosomes appears to be a critical event in plaque progression. Consequences include enhanced inflammatory signalling [particularly the inflammasome/interleukin-1β axis] and an inability to interface with autophagy leading to a proatherogenic accumulation of dysfunctional organelles and protein aggregates. Aside from degradation, several novel functions have recently been ascribed to lysosomes, including involvement in macrophage polarization, generation of lipid signalling intermediates and serving as a nutrient depot for mechanistic target of rapamycin activation, each of which can have profound implications in atherosclerosis. Finally, the discovery of the transcription factor transcription factor EB as a mechanism of inducing lysosomal biogenesis can have therapeutic value by reversing lysosomal dysfunction in macrophages. SUMMARY Lysosomes are a central organelle in the processing of exogenous and intracellular biomolecules. Together with recent data that implicate the degradation products of lysosomes in modulation of signalling pathways, these organelles truly do lay at a nexus in nutrient sensing and processing. Dissecting the full repertoire of lysosome function and ensuing dysfunction in plaque macrophages is pivotal to our understanding of atherogenesis.
Collapse
Affiliation(s)
- Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Trent Evans
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
33
|
Baratta F, Pastori D, Del Ben M, Polimeni L, Labbadia G, Di Santo S, Piemonte F, Tozzi G, Violi F, Angelico F. Reduced Lysosomal Acid Lipase Activity in Adult Patients With Non-alcoholic Fatty Liver Disease. EBioMedicine 2015; 2:750-754. [PMID: 26288848 PMCID: PMC4534687 DOI: 10.1016/j.ebiom.2015.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by intra-hepatic fat accumulation and mechanisms involved in its pathogenesis are not fully explained. Lysosomal Acid Lipase (LAL) is a key enzyme in lipid metabolism. We investigated its activity in patients with fatty liver. LAL activity (nmol/spot/h) was measured in 100 adult healthy subjects (HS) and in 240 NAFLD patients. A sub-analysis on 35 patients with biopsy-proven non-alcoholic steatohepatitis (NASH) was performed. Median LAL activity was 1.15 (0.95-1.72) in HS. It was significantly reduced in NAFLD [0.78 (0.61-1.01), p < 0.001 vs. HS]. A further reduction was observed in the subgroup of NASH [0.67 (0.51-0.77), p < 0.001 vs. HS]. Patients with LAL activity below median had higher values of serum total cholesterol (p < 0.05) and LDL-c (p < 0.05), and increased serum liver enzymes (ALT, p < 0.001; AST, p < 0.01; GGT, p < 0.01). At multivariable logistic regression analysis, factors associated with LAL activity below median were ALT (OR: 1.018, 95% CI 1.004-1.032, p = 0.011) and metabolic syndrome (OR: 2.551, 95% CI 1.241-5.245, p = 0.011), whilst statin use predicted a better LAL function (OR: 0.464, 95% CI 0.248-0.866, p = 0.016). Our findings suggest a strong association between impaired LAL activity and NAFLD. A better knowledge of the role of LAL may provide new insights in NAFLD pathogenesis.
Collapse
Affiliation(s)
- Francesco Baratta
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Italy
| | - Daniele Pastori
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Italy
| | - Maria Del Ben
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Italy
| | - Licia Polimeni
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Italy
| | - Giancarlo Labbadia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Italy
| | - Serena Di Santo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Fiorella Piemonte
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute “Bambino Gesù”, Rome, Italy
| | - Giulia Tozzi
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute “Bambino Gesù”, Rome, Italy
| | - Francesco Violi
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Italy
| | - Francesco Angelico
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| |
Collapse
|
34
|
Novel mutation in a patient with cholesterol ester storage disease. Case Rep Genet 2015; 2015:347342. [PMID: 25722898 PMCID: PMC4334435 DOI: 10.1155/2015/347342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/27/2015] [Indexed: 11/23/2022] Open
Abstract
Cholesterol ester storage disease (CESD) is a chronic liver disease that typically presents with hepatomegaly. It is characterized by hypercholesterolemia, hypertriglyceridemia, high-density lipoprotein deficiency, and abnormal lipid deposition within multiple organs. It is an autosomal recessive disease that is due to a deficiency in lysosomal acid lipase (LAL) activity, which is coded by the lysosomal acid lipase gene (LIPA). We describe the case of a 5-year-old south Asian female incidentally found to have hepatomegaly, and subsequent workup confirmed the diagnosis of CESD. DNA sequencing confirmed the presence of a novel hepatic mutation. It is a four-nucleotide deletion c.57_60delTGAG in exon 2 of the LIPA gene. This mutation is predicted to result in a premature translation stop downstream of the deletion (p.E20fs) and, therefore, is felt to be a disease-causing mutation.
Collapse
|
35
|
Yan C, Du H. Lysosomal acid lipase is critical for myeloid-derived suppressive cell differentiation, development, and homeostasis. World J Immunol 2014; 4:42-51. [DOI: 10.5411/wji.v4.i2.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/02/2014] [Accepted: 06/18/2014] [Indexed: 02/05/2023] Open
Abstract
Lysosomal acid lipase (LAL) cleaves cholesteryl esters (CE) and triglycerides (TG) to generate cholesterol and free fatty acid in lysosomes of cells. The downstream metabolic products of fatty acids are ligands for activation of peroxisome proliferator-activated receptor gamma (PPARγ). Accumulation of CEs and TGs is resulted from lack of functional LAL in lysosomes of cells, especially in myeloid cells. One characteristic phenotype in LAL knock-out (lal-/-) mice is systemic elevation of myeloid-derived suppressive cells (MDSCs). MDSCs infiltrate into multiple distal organs, alter T cell development, and suppress T cell proliferation and lymphokine production in lal-/- mice, which lead to severe pathogeneses in multiple organs. The gene transcriptional profile analysis in MDSCs from the bone marrow has identified multiple defects responsible for MDSCs malformation and malfunction in lal-/- mice, including G protein signaling, cell cycles, glycolysis metabolism, mitochondrial bioenergetics, mTOR pathway etc. In a separate gene transcriptional profile analysis in the lung of lal-/- mice, matrix metalloproteinase 12 (MMP12) and apoptosis inhibitor 6 (Api6) are highly overexpressed due to lack of ligand synthesis for PPARγ. PPARγ negatively regulates MMP12 and Api6. Blocking the PPAR signaling by overexpression of a dominant negative PPARγ (dnPPARγ) form, or overexpressing MMP12 or Api6 in myeloid or lung epithelial cells in inducible transgenic mouse models results in elevated MDSCs and inflammation-induced tumorigenesis. These studies demonstrate that LAL and its downstream effectors are critical for MDSCs development, differentiation and malfunction.
Collapse
|
36
|
Sun Y, Xu YH, Du H, Quinn B, Liou B, Stanton L, Inskeep V, Ran H, Jakubowitz P, Grilliot N, Grabowski GA. Reversal of advanced disease in lysosomal acid lipase deficient mice: a model for lysosomal acid lipase deficiency disease. Mol Genet Metab 2014; 112:229-41. [PMID: 24837159 DOI: 10.1016/j.ymgme.2014.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
Abstract
Lysosomal acid lipase (LAL) is an essential enzyme that hydrolyzes triglycerides (TG) and cholesteryl esters (CE) in lysosomes. Mutations of the LIPA gene lead to Wolman disease (WD) and cholesterol ester storage disease (CESD). The disease hallmarks include hepatosplenomegaly and extensive storage of CE and/or TG. The effects of intravenous investigational enzyme therapy (ET) on survival and efficacy were evaluated in Lipa knock out, lal-/- mice with advanced disease using recombinant human LAL (rhLAL). Comparative ET was conducted with lower doses (weekly, 0.8 and 3.2mg/kg) beginning at 16 weeks (study 1), and with higher dose (10mg/kg) in early (8-weeks), middle (16-weeks) and late (24-weeks) disease stages (study 2). In study 1, rhLAL extended the life span of lal-/- mice in a dose dependent manner by 52 (0.8 mg/kg) or 94 (3.2mg/kg) days. This was accompanied by partial correction of cholesterol and TG levels in spleen and liver. In study 2, the high dose resulted in a significant improvement in organ size (liver, spleen and small intestine) and tissue histology as well as significant decreases in cholesterol and TG in all three groups. In the treated livers and spleens the cholesterol and TG levels were reduced to below treatment initiation levels indicating a reversal of disease manifestations, even in advanced disease. ET diminished liver fibrosis and macrophage proliferation. These results show that LAL deficiency can be improved biochemically and histopathologically by various dosages of ET, even in advanced disease.
Collapse
Affiliation(s)
- Ying Sun
- The Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, USA; The Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, OH 45229, USA.
| | - You-Hai Xu
- The Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, USA; The Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, OH 45229, USA
| | - Hong Du
- The Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA
| | - Brian Quinn
- The Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, USA
| | - Benjamin Liou
- The Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, USA
| | - Lori Stanton
- The Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, USA
| | - Venette Inskeep
- The Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, USA
| | - Huimin Ran
- The Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, USA
| | - Phillip Jakubowitz
- The Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, USA; University of Cincinnati, OH 45221, USA
| | - Nicholas Grilliot
- The Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, USA; University of Cincinnati, OH 45221, USA
| | - Gregory A Grabowski
- The Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, USA; The Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, OH 45229, USA; Synageva BioPharma Corp., Lexington, MA 02421, USA
| |
Collapse
|
37
|
Reiner Ž, Guardamagna O, Nair D, Soran H, Hovingh K, Bertolini S, Jones S, Ćorić M, Calandra S, Hamilton J, Eagleton T, Ros E. Lysosomal acid lipase deficiency--an under-recognized cause of dyslipidaemia and liver dysfunction. Atherosclerosis 2014; 235:21-30. [PMID: 24792990 DOI: 10.1016/j.atherosclerosis.2014.04.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/15/2022]
Abstract
Lysosomal acid lipase deficiency (LAL-D) is a rare autosomal recessive lysosomal storage disease caused by deleterious mutations in the LIPA gene. The age at onset and rate of progression vary greatly and this may relate to the nature of the underlying mutations. Patients presenting in infancy have the most rapidly progressive disease, developing signs and symptoms in the first weeks of life and rarely surviving beyond 6 months of age. Children and adults typically present with some combination of dyslipidaemia, hepatomegaly, elevated transaminases, and microvesicular hepatosteatosis on biopsy. Liver damage with progression to fibrosis, cirrhosis and liver failure occurs in a large proportion of patients. Elevated low-density lipoprotein cholesterol levels and decreased high-density lipoprotein cholesterol levels are common features, and cardiovascular disease may manifest as early as childhood. Given that these clinical manifestations are shared with other cardiovascular, liver and metabolic diseases, it is not surprising that LAL-D is under-recognized in clinical practice. This article provides practical guidance to lipidologists, endocrinologists, cardiologists and hepatologists on how to recognize individuals with this life-limiting disease. A diagnostic algorithm is proposed with a view to achieving definitive diagnosis using a recently developed blood test for lysosomal acid lipase. Finally, current management options are reviewed in light of the ongoing development of enzyme replacement therapy with sebelipase alfa (Synageva BioPharma Corp., Lexington, MA, USA), a recombinant human lysosomal acid lipase enzyme.
Collapse
Affiliation(s)
- Željko Reiner
- University Hospital Center, School of Medicine, University of Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia.
| | - Ornella Guardamagna
- Department of Public and Health Sciences, Medical School, University of Turin, Piazza Polonia 94, I-10126 Turin, Italy
| | - Devaki Nair
- Department of Clinical Biochemistry, Royal Free Hospital NHS Foundation Trust, Pond Street, London NW3 2QG, UK
| | - Handrean Soran
- Cardiovascular Trials Unit, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV n. 6, 16132 Genoa, Italy
| | - Simon Jones
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, St. Mary's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Marijana Ćorić
- University Hospital Center, School of Medicine, University of Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, I-41125 Modena, Italy
| | - John Hamilton
- Biochemistry Department, Yorkhill Hospital, Glasgow, G3 8SJ, UK
| | - Terence Eagleton
- Synageva BioPharma Corp., 33 Hayden Ave., Lexington, MA 02421, USA
| | - Emilio Ros
- Lipid Clinic, Endocrinology & Nutrition Service, Institut d'Investigations Biomèdiques August Pi Sunyer, Hospital Clínic, C. Villarroel, 170, 08036 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carloss III (ISCIII), Spain.
| |
Collapse
|
38
|
Capitalizing on the autophagic response for treatment of liver disease caused by alpha-1-antitrypsin deficiency and other genetic diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:459823. [PMID: 25025052 PMCID: PMC4065733 DOI: 10.1155/2014/459823] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/23/2014] [Indexed: 11/29/2022]
Abstract
Alpha-1-antitrypsin deficiency (ATD) is one of the most common genetic causes of liver disease and is a prototype of liver diseases caused by the pathologic accumulation of aggregated mutant alpha-1-antitrypsin Z (ATZ) within liver cells. In the case of ATD-associated liver disease, the resulting “gain-of-function” toxicity can lead to serious clinical manifestations, including cirrhosis and hepatocellular carcinoma. Currently, the only definitive therapy for ATD-associated liver disease is liver transplantation, but recent efforts have demonstrated the exciting potential for novel therapies that target disposal of the mutant protein aggregates by harnessing a cellular homeostasis mechanism called autophagy. In this review, we will summarize research advances on autophagy and genetic liver diseases. We will discuss autophagy enhancer strategies for liver disease due to ATD and another genetic liver disease, inherited hypofibrinogenemia, caused by the proteotoxic effects of a misfolded protein. On the basis of recent evidence that autophagy plays a role in cellular lipid degradation, we also speculate about autophagy enhancer strategies for treatment of hepatic lipid storage diseases such as cholesterol ester storage disease.
Collapse
|