1
|
Cortellesi E, Savini I, Veneziano M, Gambacurta A, Catani MV, Gasperi V. Decoding the Epigenome of Breast Cancer. Int J Mol Sci 2025; 26:2605. [PMID: 40141248 PMCID: PMC11942310 DOI: 10.3390/ijms26062605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy among women, characterized by extensive heterogeneity stemming from molecular and genetic alterations. This review explores the intricate epigenetic landscape of BC, highlighting the significant role of epigenetic modifications-particularly DNA methylation, histone modifications, and the influence of non-coding RNAs-in the initiation, progression, and prognosis of the disease. Epigenetic alterations drive crucial processes, including gene expression regulation, cell differentiation, and tumor microenvironment interactions, contributing to tumorigenesis and metastatic potential. Notably, aberrations in DNA methylation patterns, including global hypomethylation and hypermethylation of CpG islands, have been associated with distinct BC subtypes, with implications for early detection and risk assessment. Furthermore, histone modifications, such as acetylation and methylation, affect cancer cell plasticity and aggressiveness by profoundly influencing chromatin dynamics and gene transcription. Finally, non-coding RNAs contribute by modulating epigenetic machinery and gene expression. Despite advances in our knowledge, clinical application of epigenetic therapies in BC is still challenging, often yielding limited efficacy when used alone. However, combining epi-drugs with established treatments shows promise for enhancing therapeutic outcomes. This review underscores the importance of integrating epigenetic insights into personalized BC treatment strategies, emphasizing the potential of epigenetic biomarkers for improving diagnosis, prognosis, and therapeutic response in affected patients.
Collapse
Affiliation(s)
- Elisa Cortellesi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Matteo Veneziano
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
- NAST Centre (Nanoscience & Nanotechnology & Innovative Instrumentation), Tor Vergata University of Rome, 00133 Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| |
Collapse
|
2
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z. Non-Coding RNAs in Breast Cancer: Diagnostic and Therapeutic Implications. Int J Mol Sci 2024; 26:127. [PMID: 39795985 PMCID: PMC11719911 DOI: 10.3390/ijms26010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression. Non-coding RNAs are part of an abundant family of single-stranded RNA molecules acting as key regulators in DNA replication, mRNA processing and translation, cell differentiation, growth, and overall genomic stability. In the context of breast cancer, non-coding RNAs are involved in cell cycle control and tumor cell migration and invasion, as well as treatment resistance. Alterations in non-coding RNA expression may contribute to the development and progression of breast cancer, making them promising biomarkers and targets for novel therapeutic approaches. Currently, the use of non-coding RNAs has not yet been applied to routine practice; however, their potential has been very well studied. The present review is a literature overview of current knowledge and its objective is to delineate the function of diverse classes of non-coding RNAs in breast cancer, with a particular emphasis on their potential utility as diagnostic and prognostic markers or as therapeutic targets and tools.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| |
Collapse
|
3
|
Galappaththi SPL, Smith KR, Alsatari ES, Hunter R, Dyess DL, Turbat-Herrera EA, Dasgupta S. The Genomic and Biologic Landscapes of Breast Cancer and Racial Differences. Int J Mol Sci 2024; 25:13165. [PMID: 39684874 DOI: 10.3390/ijms252313165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer is a significant health challenge worldwide and is the most frequently diagnosed cancer among women globally. This review provides a comprehensive overview of breast cancer biology, genomics, and microbial dysbiosis, focusing on its various subtypes and racial differences. Breast cancer is primarily classified into carcinomas and sarcomas, with carcinomas constituting most cases. Epidemiology and breast cancer risk factors are important for public health intervention. Staging and grading, based on the TNM and Nottingham grading systems, respectively, are crucial to determining the clinical outcome and treatment decisions. Histopathological subtypes include in situ and invasive carcinomas, such as invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). The review explores molecular subtypes, including Luminal A, Luminal B, Basal-like (Triple Negative), and HER2-enriched, and delves into breast cancer's histological and molecular progression patterns. Recent research findings related to nuclear and mitochondrial genetic alterations, epigenetic reprogramming, and the role of microbiome dysbiosis in breast cancer and racial differences are also reported. The review also provides an update on breast cancer's current diagnostics and treatment modalities.
Collapse
Affiliation(s)
- Sapthala P Loku Galappaththi
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36604, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| | - Kelly R Smith
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36604, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| | - Enas S Alsatari
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36604, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| | - Rachel Hunter
- Department of Surgery, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Donna L Dyess
- Department of Surgery, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Elba A Turbat-Herrera
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36604, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| | - Santanu Dasgupta
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36604, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
4
|
Lin W, Wu X, Xu S, Wang D, Chen J, Chen L, Chen X. Expression of histone methyltransferase WHSC1 in invasive breast cancer and its correlation with clinical and pathological data. Pathol Res Pract 2024; 263:155647. [PMID: 39395300 DOI: 10.1016/j.prp.2024.155647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The WHSC1 protein facilitates specific dimethylation of histone H3 at the K36 position, enhancing gene transcription and expression. Studies have confirmed its high expression in diverse malignant tumors. We aimed to identify novel molecular markers to assess the biological behavior of breast cancer cells. METHODS We conducted a comprehensive analysis of mRNA expression in breast cancer and adjacent tissues based on TCGA data. We enrolled 141 breast cancer patients treated at the First Affiliated Hospital of Fujian Medical University between 2012 and 2016. Patient clinical information and pathological specimens were obtained. We utilized tissue microarray (TMA) technology. We employed the chi-square test for between-group comparisons, with p < 0.05 indicating statistical significance. Furthermore, we analyzed the associations between WHSC1 expression and clinical or pathological data. RESULTS WHSC1 mRNA expression was significantly higher in breast cancer tissues than in adjacent tissues (p < 0.001). Moreover, high WHSC1 protein expression in breast cancer was associated with several important clinical parameters, such as pathological type (p = 0.007), high Ki67 expression(Ki67>20 %) (p < 0.001), lymph node metastasis (p < 0.001), T stage (p = 0.011), N stage (p < 0.001), postoperative pathological stage (p < 0.001), premenopausal status (p = 0.004), and positive HER2 status (p < 0.001). Multivariate regression analysis showed that high WHSC1 expression, elevated Ki67 levels, and positive HER2 status were independent risk factors for axillary lymph node metastasis in breast cancer patients. CONCLUSION WHSC1 protein expression is upregulated in breast cancer patients and represents an independent risk factor influencing axillary lymph node metastasis, highlighting its potential significance as a strong candidate biomarker.
Collapse
Affiliation(s)
- Wei Lin
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of General Surgery,Second Division, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xian Wu
- Department of Breast Surgery, the Second Hospital of Longyan City, Longyan 364030, China
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of General Surgery,Second Division, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Dexing Wang
- First Clinical Medical College, Fujian Medical University, Fuzhou 350005, China
| | - Jinshu Chen
- First Clinical Medical College, Fujian Medical University, Fuzhou 350005, China
| | - Linying Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of General Surgery,Second Division, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University,Fuzhou 350005,China.
| |
Collapse
|
5
|
Alkhayyat R, Abbas A, Quinn CM, Rakha EA. Tumour 63 protein (p63) in breast pathology: biology, immunohistochemistry, diagnostic applications, and pitfalls. Histopathology 2024; 84:723-741. [PMID: 38012539 DOI: 10.1111/his.15101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Tumour protein 63 (p63) is a transcription factor of the p53 gene family, encoded by the TP63 gene located at chromosome 3q28, which regulates the activity of genes involved in growth and development of the ectoderm and derived tissues. p63 protein is normally expressed in the nuclei of the basal cell layer of glandular organs, including breast, in squamous epithelium and in urothelium. p63 immunohistochemical (IHC) staining has several applications in diagnostic breast pathology. It is commonly used to demonstrate myoepithelial cells at the epithelial stromal interface to differentiate benign and in situ lesions from invasive carcinoma and to characterize and classify papillary lesions including the distinction of breast intraduct papilloma from skin hidradenoma. p63 IHC is also used to identify and profile lesions showing myoepithelial cell and/or squamous differentiation, e.g. adenomyoepithelioma, salivary gland-like tumours including adenoid cystic carcinoma, and metaplastic breast carcinoma including low-grade adenosquamous carcinoma. This article reviews the applications of p63 IHC in diagnostic breast pathology and outlines a practical approach to the diagnosis and characterization of breast lesions through the identification of normal and abnormal p63 protein expression. The biology of p63, the range of available antibodies with emphasis on staining specificity and sensitivity, and pitfalls in interpretation are also discussed. The TP63 gene in humans, which shows a specific genomic structure, resulting in either TAp63 (p63) isoform or ΔNp63 (p40) isoform. As illustrated in the figure, both isoforms contain a DNA-binding domain (Orange box) and an oligomerization domain (Grey box). TAp63 contains an N-terminal transactivation (TA) domain (Green box), while ΔNp63 has an alternative terminus (Yellow box). Antibodies against conventional pan-p63 (TP63) bind to the DNA binding domain common to both isoforms (TAp63 and p40) and does not distinguish between them. Antibodies against TAp63 bind to the N-terminal TA domain, while antibodies specific to ΔNp63 (p40) bind to the alternative terminus. Each isoform has variant isotypes (α, β, γ, δ, and ε).
Collapse
Affiliation(s)
- Rabab Alkhayyat
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospitals, Nottingham, UK
- Department of Pathology, Salmaniya Medical Complex, Government Hospitals, Manama, Kingdom of Bahrain
| | - Areeg Abbas
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospitals, Nottingham, UK
| | - Cecily M Quinn
- Irish National Breast Screening Program, Department of Histopathology, St. Vincent's University Hospital, Dublin, School of Medicine, University College Dublin, Dublin, Ireland
| | - Emad A Rakha
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospitals, Nottingham, UK
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
6
|
Brown RB, Bigelow P, Dubin JA, Neiterman E. Breast cancer, alcohol, and phosphate toxicity. J Appl Toxicol 2024; 44:17-27. [PMID: 37332052 DOI: 10.1002/jat.4504] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
Alcohol consumption is associated with an increased risk of breast cancer, even at low alcohol intake levels, but public awareness of the breast cancer risk associated with alcohol intake is low. Furthermore, the causative mechanisms underlying alcohol's association with breast cancer are unknown. The present theoretical paper uses a modified grounded theory method to review the research literature and propose that alcohol's association with breast cancer is mediated by phosphate toxicity, the accumulation of excess inorganic phosphate in body tissue. Serum levels of inorganic phosphate are regulated through a network of hormones released from the bone, kidneys, parathyroid glands, and intestines. Alcohol burdens renal function, which may disturb the regulation of inorganic phosphate, impair phosphate excretion, and increase phosphate toxicity. In addition to causing cellular dehydration, alcohol is an etiologic factor in nontraumatic rhabdomyolysis, which ruptures cell membranes and releases inorganic phosphate into the serum, leading to hyperphosphatemia. Phosphate toxicity is also associated with tumorigenesis, as high levels of inorganic phosphate within the tumor microenvironment activate cell signaling pathways and promote cancer cell growth. Furthermore, phosphate toxicity potentially links cancer and kidney disease in onco-nephrology. Insights into the mediating role of phosphate toxicity may lead to future research and interventions that raise public health awareness of breast cancer risk and alcohol consumption.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Philip Bigelow
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Joel A Dubin
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Elena Neiterman
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Yuan Y, Xiang Z, Xia Y, Xie J, Jiang X, Lu Z. The role of ATP binding cassette (ABC) transporters in breast cancer: Evaluating prognosis, predicting immunity, and guiding treatment. Channels (Austin) 2023; 17:2273247. [PMID: 37905302 PMCID: PMC10761142 DOI: 10.1080/19336950.2023.2273247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Breast cancer is currently the most prevalent form of cancer worldwide. Nevertheless, there remains limited clarity regarding our understanding of the tumor microenvironment and metabolic characteristics associated with it. ATP-binding cassette (ABC) transporters are the predominant transmembrane transporters found in organisms. Therefore, it is essential to investigate the role of ABC transporters in breast cancer. Transcriptome data from breast cancer patients were downloaded from the TCGA database. ABC transporter-related genes were obtained from the Genecards database. By LASSO regression, ABC-associated prognostic signature was constructed in breast cancer. Subsequently, immune microenvironment analysis was performed. Finally, cell experiments were performed to verify the function of ABCB7 in the breast cancer cell lines MDA-MB-231 and MCF-7. Using the ABC transporter-associated signature, we calculated a risk score for each breast cancer patient. Patients with breast cancer were subsequently categorized into high-risk and low-risk groups, utilizing the median risk score as the threshold. Notably, patients in the high-risk group exhibited significantly worse prognosis (P<0.05). Additionally, differences were observed in terms of immune cell infiltration levels, immune correlations, and gene expression of immune checkpoints between the two groups. Functional experiments conducted on breast cancer cell lines MDA-MB-231 and MCF-7 demonstrated that ABCB7 knockdown significantly diminished cell activity, proliferation, invasion, and migration. These findings emphasize the significance of understanding ABC transporter-mediated metabolic and transport characteristics in breast cancer, offering promising directions for further research and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Laboratory Medicine, The Seventh People’s Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhouhong Xiang
- Department of Laboratory Medicine, The Seventh People’s Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhua Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
| | - Jiaheng Xie
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiudi Jiang
- Department of Laboratory Medicine, The Seventh People’s Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhicheng Lu
- Department of Laboratory Medicine, The Seventh People’s Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Xu J, Yu C, Zeng X, Tang W, Xu S, Tang L, Huang Y, Sun Z, Yu T. Visualization of breast cancer-related protein synthesis from the perspective of bibliometric analysis. Eur J Med Res 2023; 28:461. [PMID: 37885035 PMCID: PMC10605986 DOI: 10.1186/s40001-023-01364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer, as a daunting global health threat, has driven an exponential growth in related research activity in recent decades. An area of research of paramount importance is protein synthesis, and the analysis of specific proteins inextricably linked to breast cancer. In this article, we undertake a bibliometric analysis of the literature on breast cancer and protein synthesis, aiming to provide crucial insights into this esoteric realm of investigation. Our approach was to scour the Web of Science database, between 2003 and 2022, for articles containing the keywords "breast cancer" and "protein synthesis" in their title, abstract, or keywords. We deployed bibliometric analysis software, exploring a range of measures such as publication output, citation counts, co-citation analysis, and keyword analysis. Our search yielded 2998 articles that met our inclusion criteria. The number of publications in this area has steadily increased, with a significant rise observed after 2003. Most of the articles were published in oncology or biology-related journals, with the most publications in Journal of Biological Chemistry, Cancer Research, Proceedings of the National Academy of Sciences of the United States of America, and Oncogene. Keyword analysis revealed that "breast cancer," "expression," "cancer," "protein," and "translation" were the most commonly researched topics. In conclusion, our bibliometric analysis of breast cancer and related protein synthesis literature underscores the burgeoning interest in this research. The focus of the research is primarily on the relationship between protein expression in breast cancer and the development and treatment of tumors. These studies have been instrumental in the diagnosis and treatment of breast cancer. Sustained research in this area will yield essential insights into the biology of breast cancer and the genesis of cutting-edge therapies.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Chengdong Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Xiaoqiang Zeng
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Weifeng Tang
- Fuzhou Medical College of Nanchang University, Fuzhou, 344000, China
| | - Siyi Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Lei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Yanxiao Huang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| |
Collapse
|
9
|
Martínez-Illescas NG, Leal S, González P, Graña-Castro O, Muñoz-Oliveira JJ, Cortés-Peña A, Gómez-Gil M, Vega Z, Neva V, Romero A, Quintela-Fandino M, Ciruelos E, Sanz C, Aragón S, Sotolongo L, Jiménez S, Caleiras E, Mulero F, Sánchez C, Malumbres M, Salazar-Roa M. miR-203 drives breast cancer cell differentiation. Breast Cancer Res 2023; 25:91. [PMID: 37542268 PMCID: PMC10401798 DOI: 10.1186/s13058-023-01690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
A hallmark of many malignant tumors is dedifferentiated (immature) cells bearing slight or no resemblance to the normal cells from which the cancer originated. Tumor dedifferentiated cells exhibit a higher capacity to survive to chemo and radiotherapies and have the ability to incite tumor relapse. Inducing cancer cell differentiation would abolish their self-renewal and invasive capacity and could be combined with the current standard of care, especially in poorly differentiated and aggressive tumors (with worst prognosis). However, differentiation therapy is still in its early stages and the intrinsic complexity of solid tumor heterogeneity demands innovative approaches in order to be efficiently translated into the clinic. We demonstrate here that microRNA 203, a potent driver of differentiation in pluripotent stem cells (ESCs and iPSCs), promotes the differentiation of mammary gland tumor cells. Combining mouse in vivo approaches and both mouse and human-derived tridimensional organoid cultures, we report that miR-203 influences the self-renewal capacity, plasticity and differentiation potential of breast cancer cells and prevents tumor cell growth in vivo. Our work sheds light on differentiation-based antitumor therapies and offers miR-203 as a promising tool for directly confronting the tumor-maintaining and regeneration capability of cancer cells.
Collapse
Affiliation(s)
- Nuria G Martínez-Illescas
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Osvaldo Graña-Castro
- Bioinformatics Unit, CNIO, Madrid, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), San Pablo-CEU University, Madrid, Spain
| | | | - Alfonso Cortés-Peña
- Flow Cytometry and Fluorescence Microscopy Unit (CAI), Complutense University, Madrid, Spain
| | | | - Zaira Vega
- Histopathology Unit, CNIO, Madrid, Spain
| | | | | | | | - Eva Ciruelos
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Consuelo Sanz
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Sofía Aragón
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Leisy Sotolongo
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Sara Jiménez
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | | | | | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Cancer Cell Cycle Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
- ICREA, Passeig Lluís Companys 23, Barcelona, Spain.
| | - María Salazar-Roa
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain.
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
10
|
Lučić I, Kurtović M, Mlinarić M, Piteša N, Čipak Gašparović A, Sabol M, Milković L. Deciphering Common Traits of Breast and Ovarian Cancer Stem Cells and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:10683. [PMID: 37445860 DOI: 10.3390/ijms241310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Lučić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Nikolina Piteša
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Rakha EA, Tse GM, Quinn CM. An update on the pathological classification of breast cancer. Histopathology 2023; 82:5-16. [PMID: 36482272 PMCID: PMC10108289 DOI: 10.1111/his.14786] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) is a heterogeneous disease, encompassing a diverse spectrum of tumours with varying morphological, biological, and clinical phenotypes. Although tumours may show phenotypic overlap, they often display different biological behaviour and response to therapy. Advances in high-throughput molecular techniques and bioinformatics have contributed to improved understanding of BC biology and refinement of molecular taxonomy with the identification of specific molecular subclasses. Although the traditional pathological morphological classification of BC is of paramount importance and provides diagnostic and prognostic information, current interest focusses on the use of a single gene and multigene assays to stratify BC into distinct groups to guide decisions on systemic therapy. This review considers approaches to the classification of BC, including their limitations, and with particular emphasis on the fundamental role of morphology in establishing an accurate diagnosis of primary invasive carcinoma of breast origin. This forms the basis for further morphological characterization and for all other approaches to BC classification that are used to provide prognostic and therapeutic predictive information.
Collapse
Affiliation(s)
- Emad A Rakha
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital Nottingham, Nottingham, UK
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong SAR
| | - Cecily M Quinn
- Department of Histopathology, St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
12
|
McDonald SJ, Cranford TL, VanderVeen BN, Cardaci TD, Velázquez KT, Enos RT, Chatzistamou I, Fan D, Murphy EA. miR155 deficiency reduces breast tumor burden in the MMTV-PyMT mouse model. Physiol Genomics 2022; 54:433-442. [PMID: 36121133 PMCID: PMC9602813 DOI: 10.1152/physiolgenomics.00057.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
miRNA155 (miR155) has emerged as an important regulator of breast cancer (BrCa) development. Studies have consistently noted an increase in miR155 levels in serum and/or tissues in patients with BrCa. However, what is less clear is whether this increase in miR155 is a reflection of oncogenic or tumor suppressive properties. To study the effects of miR155 in a transgenic model of BrCA, we developed an MMTV-PyMT mouse deficient in miR155 (miR155-/- PyMT). miR155-/- mice (n = 11) exhibited reduced tumor number and volume palpations at ∼14-18 wk of age compared with miR155 sufficient littermates (n = 12). At 19 wk, mammary glands were excised from tumors for RT-PCR, and tumors were counted, measured, and weighed. miR155-/- PyMT mice exhibited reduced tumor volume, number, and weight, which was confirmed by histopathological analysis. There was an increase in apoptosis with miR155 deficiency and a decrease in proliferation. As expected, miR155 deficiency resulted in upregulated gene expression of suppressor of cytokine signaling 1 (Socs1)-its direct target. There was a reduction in gene expression of macrophage markers (CD68, Adgre1, Itgax, Mrc1) with miR-155-/- and this was confirmed with immunofluorescence staining for F4/80. miR155-/- increased expression of M1 macrophage marker Nos2 and reduced expression of M2 macrophage markers IL-10, IL-4, Arg1, and MMP9. Overall, miR155 deficiency reduced BrCA and improved the tumor microenvironment through the reduction of genes associated with protumorigenic processes. However, given the inconsistencies in the literature, additional studies are needed before any attempts are made to harness miR155 as a potential oncogenic or tumor suppressive miRNA.NEW & NOTEWORTHY To examine the effects of miR155 in a transgenic model of breast cancer, we developed an MMTV-PyMT mouse-deficient in miR155. We demonstrate that global loss of miR155 resulted in blunted tumor growth through modulating the tumor microenvironment. Specifically, miR155-deficient mice had smaller and less invasive tumors, an increase in apoptosis and a decrease in proliferation, a reduction in tumor-associated macrophages, and the expression of genes associated with protumoral processes.
Collapse
Affiliation(s)
- Sierra J McDonald
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Taryn L Cranford
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
- Precision Medicine Initiatives, Caris Life Sciences, Phoenix, Arizona
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
- AcePre, LLC, Columbia, South Carolina
| | - Thomas D Cardaci
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Kandy T Velázquez
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Reilly T Enos
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
- AcePre, LLC, Columbia, South Carolina
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
- AcePre, LLC, Columbia, South Carolina
| |
Collapse
|
13
|
Rakha E, Tan PH. Head to head: Do neuroendocrine tumours in the breast truly exist? Histopathology 2022; 81:2-14. [PMID: 35133666 DOI: 10.1111/his.14627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/30/2022]
Abstract
Breast cancer (BC) is a heterogeneous disease with a spectrum of morphological features. Concepts of histogenesis and differentiation in BC remain controversial. Recent evidence supports differentiation rather than histogenesis as the underlying mechanism for the myriad morphological appearances of BC. Prognosis and response to therapy are determined by a combination of factors including tumour grade, stage and receptor status whereas tumour histological types play an independent role in only limited examples. Neuroendocrine tumours (NETs) comprise one of the most debated entities in the breast since their first description. Apart from the rare small cell NE carcinoma (NEC) which has well-characterised features similar to their counterparts in other organs, the true existence, diagnostic criteria and clinical significance of NE neoplasms (NENs) in the breast are shrouded in controversy. At the core of this discussion is whether normal NE cells exist in the breast, and if breast NETs have distinct morphology and clinical behaviour. When NETs are encountered in the breast, metastatic origin has to be excluded. The more frequent situation in which NE differentiation is observed in breast cancers is in the context of recognisable, morphologically well described special type neoplasms like the hypercellular mucinous carcinoma and solid papillary carcinoma. In this review, arguments for and against maintaining the category of NENs in the breast are articulated in relation to existing literature on this group of unusual tumours.
Collapse
Affiliation(s)
- Emad Rakha
- University of Nottingham and Nottingham University Hospital NHS Trust, Department of Histopathology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Academia, 20 College Road, Singapore, 169856
| |
Collapse
|
14
|
Metovic J, Cascardi E, Uccella S, Maragliano R, Querzoli G, Osella-Abate S, Pittaro A, La Rosa S, Bogina G, Cassoni P, Marchiò C, Sapino A, Castellano I, Papotti M. Neuroendocrine neoplasms of the breast: diagnostic agreement and impact on outcome. Virchows Arch 2022; 481:839-846. [PMID: 36243799 PMCID: PMC9734208 DOI: 10.1007/s00428-022-03426-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 01/25/2023]
Abstract
The classification of breast neuroendocrine neoplasms (Br-NENs) was modified many times over the years and is still a matter of discussion. In the present study, we aimed to evaluate the diagnostic reproducibility and impact on patient outcomes of the most recent WHO 2019 edition of breast tumor classification, namely, for neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs). This multicentric observational study included 287 breast neoplasms with NE differentiation. The cases were blindly classified by three independent groups of dedicated breast and/or endocrine pathologists following the 2019 guidelines. Diagnostic concordance and clinical impact were assessed. We observed only a moderate overall diagnostic agreement across the three centers (Cohen's kappa 0.4532) in distinguishing NET from solid papillary carcinomas (SPCs) and no special type carcinomas (NST) with NE differentiation. Br-NENs were diagnosed in 122/287 (42.5%) cases, subclassified as 11 NET G1 (3.8%), 84 NET G2 (29.3%), and 27 NEC (9.4%), the latter group consisting of 26 large-cell and 1 small-cell NECs. The remaining 165/287 (57.5%) cases were labeled as non-NEN, including SPC, mucinous, NST, and mixed NE carcinomas. While NET and non-NEN cases had a comparable outcome, the diagnosis of NECs showed negative impact on disease-free interval compared to NETs and non-NENs (p = 0.0109). In conclusion, the current diagnostic classification of Br-NENs needs further adjustments regarding morphological and immunohistochemical criteria to increase the diagnostic reproducibility among pathologists. Our data suggest that, apart from high-grade small- and large-cell NECs, Br-NENs behave like non-NEN breast carcinomas and should be managed similarly.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, Pathology Unit, University of Turin, Turin, Italy
| | - Eliano Cascardi
- Candiolo Cancer Institute, Pathology Division, FPO-IRCCS, Candiolo, Italy
| | - Silvia Uccella
- Department of Medicine and Surgery, Unit of Pathology, University of Insubria, Varese, Italy
| | - Roberta Maragliano
- Department of Medicine and Surgery, Unit of Pathology, University of Insubria, Varese, Italy
| | - Giulia Querzoli
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar Di Valpolicella, Verona, Italy
| | - Simona Osella-Abate
- Department of Medical Sciences, Pathology Unit, Città Della Salute E Della Scienza Hospital, Turin, Italy
| | - Alessandra Pittaro
- Department of Medical Sciences, Pathology Unit, Città Della Salute E Della Scienza Hospital, Turin, Italy
| | - Stefano La Rosa
- Department of Medicine and Surgery, Unit of Pathology, University of Insubria, Varese, Italy
| | - Giuseppe Bogina
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar Di Valpolicella, Verona, Italy
| | - Paola Cassoni
- Department of Medical Sciences, Pathology Unit, University of Turin, Turin, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, Pathology Division, FPO-IRCCS, Candiolo, Italy ,Department of Medical Sciences, Pathology Unit, University of Turin, Turin, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, Pathology Division, FPO-IRCCS, Candiolo, Italy ,Department of Medical Sciences, Pathology Unit, University of Turin, Turin, Italy
| | - Isabella Castellano
- Department of Medical Sciences, Pathology Unit, University of Turin, Turin, Italy.
| | - Mauro Papotti
- Department of Oncology, Pathology Unit, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Bean GR, Najjar S, Shin SJ, Hosfield EM, Caswell-Jin JL, Urisman A, Jones KD, Chen YY, Krings G. Genetic and immunohistochemical profiling of small cell and large cell neuroendocrine carcinomas of the breast. Mod Pathol 2022; 35:1349-1361. [PMID: 35590107 PMCID: PMC9514991 DOI: 10.1038/s41379-022-01090-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
Neuroendocrine carcinomas (NEC) of the breast are exceedingly rare tumors, which are classified in the WHO system as small cell (SCNEC) and large cell (LCNEC) carcinoma based on indistinguishable features from their lung counterparts. In contrast to lung and enteropancreatic NEC, the genomics of breast NEC have not been well-characterized. In this study, we examined the clinicopathologic, immunohistochemical, and genetic features of 13 breast NEC (7 SCNEC, 4 LCNEC, 2 NEC with ambiguous small versus large cell morphology [ANEC]). Co-alterations of TP53 and RB1 were identified in 86% (6/7) SCNEC, 100% (2/2) ANEC, and 50% (2/4) LCNEC. The one SCNEC without TP53/RB1 alteration had other p53 pathway aberrations (MDM2 and MDM4 amplification) and was immunohistochemically RB negative. PIK3CA/PTEN pathway alterations and ZNF703 amplifications were each identified in 46% (6/13) NEC. Two tumors (1 SCNEC, 1 LCNEC) were CDH1 mutated. By immunohistochemistry, 100% SCNEC (6/6) and ANEC (2/2) and 50% (2/4) LCNEC (83% NEC) showed RB loss, compared to 0% (0/8) grade 3 neuroendocrine tumors (NET) (p < 0.001) and 38% (36/95) grade 3 invasive ductal carcinomas of no special type (IDC-NST) (p = 0.004). NEC were also more often p53 aberrant (60% vs 0%, p = 0.013), ER negative (69% vs 0%, p = 0.005), and GATA3 negative (67% vs 0%, p = 0.013) than grade 3 NET. Two mixed NEC had IDC-NST components, and 69% (9/13) of tumors were associated with carcinoma in situ (6 neuroendocrine DCIS, 2 non-neuroendocrine DCIS, 1 non-neuroendocrine LCIS). NEC and IDC-NST components of mixed tumors were clonally related and immunophenotypically distinct, lacking ER and GATA3 expression in NEC relative to IDC-NST, with RB loss only in NEC of one ANEC. The findings provide insight into the pathogenesis of breast NEC, underscore their classification as a distinct tumor type, and highlight genetic similarities to extramammary NEC, including highly prevalent p53/RB pathway aberrations in SCNEC.
Collapse
Affiliation(s)
- Gregory R. Bean
- grid.168010.e0000000419368956Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Saleh Najjar
- grid.168010.e0000000419368956Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Sandra J. Shin
- grid.413558.e0000 0001 0427 8745Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY USA
| | - Elizabeth M. Hosfield
- grid.414890.00000 0004 0461 9476Department of Pathology, Kaiser Permanente San Francisco Medical Center, San Francisco, CA USA
| | - Jennifer L. Caswell-Jin
- grid.168010.e0000000419368956Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA USA
| | - Anatoly Urisman
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California San Francisco, San Francisco, CA USA
| | - Kirk D. Jones
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California San Francisco, San Francisco, CA USA
| | - Yunn-Yi Chen
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California San Francisco, San Francisco, CA USA
| | - Gregor Krings
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|