1
|
Rocha LGDN, Guimarães PAS, Carvalho MGR, Ruiz JC. Tumor Neoepitope-Based Vaccines: A Scoping Review on Current Predictive Computational Strategies. Vaccines (Basel) 2024; 12:836. [PMID: 39203962 PMCID: PMC11360805 DOI: 10.3390/vaccines12080836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024] Open
Abstract
Therapeutic cancer vaccines have been considered in recent decades as important immunotherapeutic strategies capable of leading to tumor regression. In the development of these vaccines, the identification of neoepitopes plays a critical role, and different computational methods have been proposed and employed to direct and accelerate this process. In this context, this review identified and systematically analyzed the most recent studies published in the literature on the computational prediction of epitopes for the development of therapeutic vaccines, outlining critical steps, along with the associated program's strengths and limitations. A scoping review was conducted following the PRISMA extension (PRISMA-ScR). Searches were performed in databases (Scopus, PubMed, Web of Science, Science Direct) using the keywords: neoepitope, epitope, vaccine, prediction, algorithm, cancer, and tumor. Forty-nine articles published from 2012 to 2024 were synthesized and analyzed. Most of the identified studies focus on the prediction of epitopes with an affinity for MHC I molecules in solid tumors, such as lung carcinoma. Predicting epitopes with class II MHC affinity has been relatively underexplored. Besides neoepitope prediction from high-throughput sequencing data, additional steps were identified, such as the prioritization of neoepitopes and validation. Mutect2 is the most used tool for variant calling, while NetMHCpan is favored for neoepitope prediction. Artificial/convolutional neural networks are the preferred methods for neoepitope prediction. For prioritizing immunogenic epitopes, the random forest algorithm is the most used for classification. The performance values related to the computational models for the prediction and prioritization of neoepitopes are high; however, a large part of the studies still use microbiome databases for training. The in vitro/in vivo validations of the predicted neoepitopes were verified in 55% of the analyzed studies. Clinical trials that led to successful tumor remission were identified, highlighting that this immunotherapeutic approach can benefit these patients. Integrating high-throughput sequencing, sophisticated bioinformatics tools, and rigorous validation methods through in vitro/in vivo assays as well as clinical trials, the tumor neoepitope-based vaccine approach holds promise for developing personalized therapeutic vaccines that target specific tumor cancers.
Collapse
Affiliation(s)
- Luiz Gustavo do Nascimento Rocha
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Paul Anderson Souza Guimarães
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Maria Gabriela Reis Carvalho
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Jeronimo Conceição Ruiz
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
2
|
Sotirov S, Dimitrov I. Tumor-Derived Antigenic Peptides as Potential Cancer Vaccines. Int J Mol Sci 2024; 25:4934. [PMID: 38732150 PMCID: PMC11084719 DOI: 10.3390/ijms25094934] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Peptide antigens derived from tumors have been observed to elicit protective immune responses, categorized as either tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs). Subunit cancer vaccines incorporating these antigens have shown promise in inducing protective immune responses, leading to cancer prevention or eradication. Over recent years, peptide-based cancer vaccines have gained popularity as a treatment modality and are often combined with other forms of cancer therapy. Several clinical trials have explored the safety and efficacy of peptide-based cancer vaccines, with promising outcomes. Advancements in techniques such as whole-exome sequencing, next-generation sequencing, and in silico methods have facilitated the identification of antigens, making it increasingly feasible. Furthermore, the development of novel delivery methods and a deeper understanding of tumor immune evasion mechanisms have heightened the interest in these vaccines among researchers. This article provides an overview of novel insights regarding advancements in the field of peptide-based vaccines as a promising therapeutic avenue for cancer treatment. It summarizes existing computational methods for tumor neoantigen prediction, ongoing clinical trials involving peptide-based cancer vaccines, and recent studies on human vaccination experiments.
Collapse
Affiliation(s)
| | - Ivan Dimitrov
- Drug Design and Bioinformatics Lab, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav Str., 1000 Sofia, Bulgaria;
| |
Collapse
|
3
|
Gao Y, Huang Q, Qin Y, Bao X, Pan Y, Mo J, Ning S. A prognostic model related to necrotizing apoptosis of breast cancer based on biorthogonal constrained depth semi-supervised nonnegative matrix decomposition and single-cell sequencing analysis. Am J Cancer Res 2023; 13:3875-3897. [PMID: 37818066 PMCID: PMC10560928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 10/12/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumours in women, and its prognosis is poor. The prognosis of BC patients can be improved by immunotherapy. However, due to the heterogeneity of BC, the identification of new biomarkers is urgently needed to improve the prognosis of BC patients. Necrotic apoptosis has been shown to play an essential role in many cancers. First, this study proposed a novel clustering algorithm called biorthogonal constrained depth semisupervised nonnegative matrix factorization (DO-DSNMF). The DO-DSNMF algorithm added multilayer nonlinear transformation to the coefficient matrix obtained after decomposition, which was used to mine the nonlinear relationship between samples. In addition, we also added orthogonal constraints on the basis matrix and coefficient matrix to reduce the influence of redundant features and samples on the results. We applied the DO-DSNMF algorithm and analysed the differences in survival and immunity between the subtypes. Then, we used prognosis analysis to construct the prognosis model. Finally, we analysed single cells using single-cell sequencing (scRNA-seq) data from the GSE75688 dataset in the GEO database. We identified two BC subtypes based on the BC transcriptome data in the TCGA database. Immune infiltration analysis showed that the necrotizing apoptosis-related genes of BC were related to various immune cells and immune functions. Necrotizing apoptosis was found to play a role in BC progression and immunity. The role of prognosis-related NRGs in BC was also verified by cell experiments. This study proposed a novel clustering algorithm to analyse BC subtypes and constructed an NRG prognostic model for BC. The prognosis and immune landscape of BC patients were evaluated by this model. The cell experiment supported its role in BC, which provides a potential therapeutic target for the treatment of BC.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Head and Neck Radiotherapy, Harbin Medical University Cancer Hospital Harbin 150000, Heilongjiang, China
| | - Qinghua Huang
- Department of Breast Surgery, Wuzhou Red Cross Hospital Wuzhou 543000, Guangxi, China
| | - Yuling Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital Nanning 530000, Guangxi, China
| | - Xianhui Bao
- Department of Neurology, Harbin The First Hospital Harbin 150000, Heilongjiang, China
| | - You Pan
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital Nanning 530000, Guangxi, China
| | - Jianlan Mo
- Department of Anesthesiology, The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region Nanning 530000, Guangxi, China
| | - Shipeng Ning
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital Nanning 530000, Guangxi, China
| |
Collapse
|
4
|
Reimann H, Moosmann C, Schober K, Lang V, Verhagen J, Zeun J, Mackensen A, Kremer AN, Völkl S, Aigner M. Identification and characterization of T-cell receptors with therapeutic potential showing conserved specificity against all SARS-CoV 2 strains. Immunobiology 2023; 228:152720. [PMID: 37541134 DOI: 10.1016/j.imbio.2023.152720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
INTRODUCTION Treatment of severe COVID-19 disease can be challenging in immunocompromized patients due to newly emerging virus variants of concern (VOC) escaping the humoral response. Thus, T cells recognizing to date unmutated epitopes are not only relevant for patients' immune responses against VOC, but might also serve as a therapeutic option for patients with severe COVID-19 disease in the future, e.g. following allogenic stem cell transplantation. METHODS To this purpose, the activation, cytokine profile and specificity of T-cell clones against unmutated and omicron Spike (S)-protein was analyzed, HLA restriction was determined and most promising T-cell receptor (TCR) was introduced into allogeneic T cells via CRISPR/Cas9-mediated orthotopic TCR replacement. Finally, T-cell responses of engineered T cells was determined and durability of the TCR replacement measured. PERSPECTIVE SARS-CoV-2 specific engineered T cells recognizing a genomically stable region of the S-protein of all SARS-CoV 2 variants were successfully generated. Such transgenic T cells exhibit favorable effector functions and provide a treatment option of immunocompromised COVID-19 patients.
Collapse
Affiliation(s)
- Hannah Reimann
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany.
| | - Carolin Moosmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Schober
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Vanessa Lang
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Johan Verhagen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Department of Internal Medicine 3, Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Zeun
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Anita N Kremer
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
5
|
Fehm TN, Welslau M, Müller V, Lüftner D, Schütz F, Fasching PA, Janni W, Thomssen C, Witzel I, Beierlein M, Belleville E, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Kolberg-Liedtke C, Hartkopf AD, Wöckel A, Kolberg HC, Harbeck N, Stickeler E. Update Breast Cancer 2022 Part 5 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2023; 83:289-298. [PMID: 36908285 PMCID: PMC9998178 DOI: 10.1055/a-2018-9053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/27/2022] [Indexed: 03/14/2023] Open
Abstract
The treatment of patients with early stage breast cancer has changed in recent years due to the introduction of pembrolizumab, olaparib, and abemaciclib. These and other drugs with the same class of active ingredient are currently in trial for various indications. This review article summarizes the latest results that have either been presented at major conferences such as the ESMO 2022 or published recently in international journals. This includes reports on newly discovered breast cancer genes, atezolizumab in neoadjuvant therapy in HER2-positive patients, long-term data from the APHINITY study, and on how preoperative peritumoral application of local anesthetics can influence the prognosis. We also present solid data on dynamic Ki-67 from the ADAPT studies.
Collapse
Affiliation(s)
- Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Diana Lüftner
- Immanuel Hospital Märkische Schweiz, Buckow; Medical University of Brandenburg Theodor-Fontane, Brandenburg, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Isabell Witzel
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Milena Beierlein
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Agaplesion Markus Krankenhaus, Department of Gynecology and Gynecological Oncology, Frankfurt, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Paderborn, Germany
| | - Bahriye Aktas
- Department of Gynecology, University of Leipzig Medical Center, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Düsseldorf), University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
6
|
Aparicio B, Repáraz D, Ruiz M, Llopiz D, Silva L, Vercher E, Theunissen P, Tamayo I, Smerdou C, Igea A, Santisteban M, Gónzalez-Deza C, Lasarte JJ, Hervás-Stubbs S, Sarobe P. Identification of HLA class I-restricted immunogenic neoantigens in triple negative breast cancer. Front Immunol 2022; 13:985886. [PMID: 36405725 PMCID: PMC9666480 DOI: 10.3389/fimmu.2022.985886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/14/2022] [Indexed: 07/20/2023] Open
Abstract
Immune checkpoint inhibitor (ICI)-based immunotherapy in triple negative breast cancer (TNBC) is achieving limited therapeutic results, requiring the development of more potent strategies. Combination of ICI with vaccination strategies would enhance antitumor immunity and response rates to ICI in patients having poorly infiltrated tumors. In heavily mutated tumors, neoantigens (neoAgs) resulting from tumor mutations have induced potent responses when used as vaccines. Thus, our aim was the identification of immunogenic neoAgs suitable as vaccines in TNBC patients. By using whole exome sequencing, RNAseq and HLA binding algorithms of tumor samples from a cohort of eight TNBC patients, we identified a median of 60 mutations/patient, which originated a putative median number of 98 HLA class I-restricted neoAgs. Considering a group of 27 predicted neoAgs presented by HLA-A*02:01 allele in two patients, peptide binding to HLA was experimentally confirmed in 63% of them, whereas 55% were immunogenic in vivo in HLA-A*02:01+ transgenic mice, inducing T-cells against the mutated but not the wild-type peptide sequence. Vaccination with peptide pools or DNA plasmids expressing these neoAgs induced polyepitopic T-cell responses, which recognized neoAg-expressing tumor cells. These results suggest that TNBC tumors harbor neoAgs potentially useful in therapeutic vaccines, opening the way for new combined immunotherapies.
Collapse
Affiliation(s)
- Belén Aparicio
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - David Repáraz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Marta Ruiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Diana Llopiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Leyre Silva
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Enric Vercher
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Patrick Theunissen
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Ibon Tamayo
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Cristian Smerdou
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Ana Igea
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Marta Santisteban
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Oncología Médica, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Juan J. Lasarte
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Pablo Sarobe
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
7
|
Welslau M, Müller V, Lüftner D, Schütz F, Stickeler E, Fasching PA, Janni W, Thomssen C, Witzel I, Fehm TN, Belleville E, Bader S, Seitz K, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Schneeweiss A, Harbeck N, Würstlein R, Hartkopf AD, Wöckel A, Seliger B, Massa C, Kolberg HC. Update Breast Cancer 2022 Part 1 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2022; 82:580-589. [PMID: 35903719 PMCID: PMC9315400 DOI: 10.1055/a-1811-6106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 10/26/2022] Open
Abstract
Evidence relating to the treatment of breast cancer patients with early-stage disease has increased significantly in the past year. Abemaciclib, olaparib, and pembrolizumab are new drugs with good efficacy in the relevant patient groups. However, some questions remain unanswered. In particular, it remains unclear which premenopausal patients with hormone receptor-positive breast cancer should be spared unnecessary treatment. The question of the degree to which chemotherapy exerts a direct cytotoxic effect on the tumor or reduces ovarian function through chemotherapy could be of key importance. This group of patients could potentially be spared chemotherapy. New, previously experimental biomarker analysis methods, such as spatial analysis of gene expression (spatial transcriptomics) are gradually finding their way into large randomized phase III trials, such as the NeoTRIP trial. This in turn leads to a better understanding of the predictive factors of new therapies, for example immunotherapy. This review summarizes the scientific innovations from recent congresses such as the San Antonio Breast Cancer Symposium 2021 but also from recent publications.
Collapse
Affiliation(s)
| | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Diana Lüftner
- Charité University Hospital, Department of Hematology, Oncology and Tumour Immunology, University Medicine Berlin, Berlin, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Elmar Stickeler
- Department of Gynecology and Obstetrics, RWTH University Hospital Aachen, Aachen, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Isabell Witzel
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Simon Bader
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Katharina Seitz
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Genecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Agaplesion Markus Krankenhaus, Department of Gynecology and Gynecological Oncology, Frankfurt am Main
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Germany
| | - Bahriye Aktas
- Klinik und Poliklinik für Gynäkologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Rachel Würstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Barbara Seliger
- Martin-Luther-Universitat Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany
| | - Chiara Massa
- Martin-Luther-Universitat Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany
| | | |
Collapse
|