1
|
Maguire C, Wang C, Ramasamy A, Fonken C, Morse B, Lopez N, Wylie D, Melamed E. Molecular mimicry as a mechanism of viral immune evasion and autoimmunity. Nat Commun 2024; 15:9403. [PMID: 39477943 PMCID: PMC11526117 DOI: 10.1038/s41467-024-53658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Mimicry of host protein structures, or 'molecular mimicry', is a common mechanism employed by viruses to evade the host's immune system. Short linear amino acid (AA) molecular mimics can elicit cross-reactive antibodies and T cells from the host, but the prevalence of such mimics throughout the human virome has not been fully explored. Here we evaluate 134 human-infecting viruses and find significant usage of linear mimicry across the virome, particularly those in the Herpesviridae and Poxviridae families. Furthermore, host proteins related to cellular replication and inflammation, autosomes, the X chromosome, and thymic cells are enriched as viral mimicry targets. Finally, we find that short linear mimicry from Epstein-Barr virus (EBV) is higher in auto-antibodies found in patients with multiple sclerosis than previously appreciated. Our results thus hint that human-infecting viruses leverage mimicry in the course of their infection, and that such mimicry may contribute to autoimmunity, thereby prompting potential targets for therapies.
Collapse
Affiliation(s)
- Cole Maguire
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Chumeng Wang
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Akshara Ramasamy
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Cara Fonken
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Brinkley Morse
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Nathan Lopez
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Dennis Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Esther Melamed
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Skadborg SK, Maarup S, Draghi A, Borch A, Hendriksen S, Mundt F, Pedersen V, Mann M, Christensen IJ, Skjøth-Ramussen J, Yde CW, Kristensen BW, Poulsen HS, Hasselbalch B, Svane IM, Lassen U, Hadrup SR. Nivolumab Reaches Brain Lesions in Patients with Recurrent Glioblastoma and Induces T-cell Activity and Upregulation of Checkpoint Pathways. Cancer Immunol Res 2024; 12:1202-1220. [PMID: 38885356 PMCID: PMC11369628 DOI: 10.1158/2326-6066.cir-23-0959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with poor prognosis. Although immunotherapy is being explored as a potential treatment option for patients with GBM, it is unclear whether systemic immunotherapy can reach and modify the tumor microenvironment in the brain. We evaluated immune characteristics in patients receiving the anti-PD-1 immune checkpoint inhibitor nivolumab 1 week prior to surgery, compared with control patients receiving salvage resection without prior nivolumab treatment. We observed saturating levels of nivolumab bound to intratumorally and tissue-resident T cells in the brain, implicating saturating levels of nivolumab reaching brain tumors. Following nivolumab treatment, significant changes in T-cell activation and proliferation were observed in the tumor-resident T-cell population, and peripheral T cells upregulated chemokine receptors related to brain homing. A strong nivolumab-driven upregulation in compensatory checkpoint inhibition molecules, i.e., TIGIT, LAG-3, TIM-3, and CTLA-4, was observed, potentially counteracting the treatment effect. Finally, tumor-reactive tumor-infiltrating lymphocytes (TIL) were found in a subset of nivolumab-treated patients with prolonged survival, and neoantigen-reactive T cells were identified in both TILs and blood. This indicates a systemic response toward GBM in a subset of patients, which was further boosted by nivolumab, with T-cell responses toward tumor-derived neoantigens. Our study demonstrates that nivolumab does reach the GBM tumor lesion and enhances antitumor T-cell responses both intratumorally and systemically. However, various anti-inflammatory mechanisms mitigate the clinical efficacy of the anti-PD-1 treatment.
Collapse
Affiliation(s)
- Signe K. Skadborg
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Simone Maarup
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Arianna Draghi
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Annie Borch
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Sille Hendriksen
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Filip Mundt
- Novo Nordisk Foundation Center for Protein Research, CPR, University of Copenhagen, Copenhagen, Denmark.
| | - Vilde Pedersen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, CPR, University of Copenhagen, Copenhagen, Denmark.
- Research Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Ib J. Christensen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Jane Skjøth-Ramussen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Christina W. Yde
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Bjarne W. Kristensen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Hans S. Poulsen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Benedikte Hasselbalch
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Inge M. Svane
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Ulrik Lassen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Sine R. Hadrup
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Shafer P, Leung WK, Woods M, Choi JM, Rodriguez-Plata CM, Maknojia A, Mosquera A, Somes LK, Joubert J, Manliguez A, Ranjan R, Burt B, Lee HS, Zhang B, Fuqua S, Rooney C, Leen AM, Hoyos V. Incongruity between T cell receptor recognition of breast cancer hotspot mutations ESR1 Y537S and D538G following exogenous peptide loading versus endogenous antigen processing. Cytotherapy 2024; 26:266-275. [PMID: 38231165 PMCID: PMC10922969 DOI: 10.1016/j.jcyt.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
T cell receptor engineered T cell (TCR T) therapies have shown recent efficacy against certain types of solid metastatic cancers. However, to extend TCR T therapies to treat more patients across additional cancer types, new TCRs recognizing cancer-specific antigen targets are needed. Driver mutations in AKT1, ESR1, PIK3CA, and TP53 are common in patients with metastatic breast cancer (MBC) and if immunogenic could serve as ideal tumor-specific targets for TCR T therapy to treat this disease. Through IFN-γ ELISpot screening of in vitro expanded neopeptide-stimulated T cell lines from healthy donors and MBC patients, we identified reactivity towards 11 of 13 of the mutations. To identify neopeptide-specific TCRs, we then performed single-cell RNA sequencing of one of the T cell lines following neopeptide stimulation. Here, we identified an ESR1 Y537S specific T cell clone, clonotype 16, and an ESR1 Y537S/D538G dual-specific T cell clone, clonotype 21, which were HLA-B*40:02 and HLA-C*01:02 restricted, respectively. TCR Ts expressing these TCRs recognized and killed target cells pulsed with ESR1 neopeptides with minimal activity against ESR1 WT peptide. However, these TCRs failed to recognize target cells expressing endogenous mutant ESR1. To investigate the basis of this lack of recognition we performed immunopeptidomics analysis of a mutant-overexpressing lymphoblastoid cell line and found that the ESR1 Y537S neopeptide was not endogenously processed, despite binding to HLA-B*40:02 when exogenously pulsed onto the target cell. These results indicate that stimulation of T cells that likely derive from the naïve repertoire with pulsed minimal peptides may lead to the expansion of clones that recognize non-processed peptides, and highlights the importance of using methods that selectively expand T cells with specificity for antigens that are efficiently processed and presented.
Collapse
Affiliation(s)
- Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Wingchi K Leung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Mae Woods
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Jong Min Choi
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Carlos M Rodriguez-Plata
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Arushana Maknojia
- Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Andres Mosquera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Lauren K Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Jarrett Joubert
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Anthony Manliguez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Rashi Ranjan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Bryan Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Suzanne Fuqua
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Cliona Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA.
| |
Collapse
|
4
|
Srivastava PK. Cancer neoepitopes viewed through negative selection and peripheral tolerance: a new path to cancer vaccines. J Clin Invest 2024; 134:e176740. [PMID: 38426497 PMCID: PMC10904052 DOI: 10.1172/jci176740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
A proportion of somatic mutations in tumors create neoepitopes that can prime T cell responses that target the MHC I-neoepitope complexes on tumor cells, mediating tumor control or rejection. Despite the compelling centrality of neoepitopes to cancer immunity, we know remarkably little about what constitutes a neoepitope that can mediate tumor control in vivo and what distinguishes such a neoepitope from the vast majority of similar candidate neoepitopes that are inefficacious in vivo. Studies in mice as well as clinical trials have begun to reveal the unexpected paradoxes in this area. Because cancer neoepitopes straddle that ambiguous ground between self and non-self, some rules that are fundamental to immunology of frankly non-self antigens, such as viral or model antigens, do not appear to apply to neoepitopes. Because neoepitopes are so similar to self-epitopes, with only small changes that render them non-self, immune response to them is regulated at least partially the way immune response to self is regulated. Therefore, neoepitopes are viewed and understood here through the clarifying lens of negative thymic selection. Here, the emergent questions in the biology and clinical applications of neoepitopes are discussed critically and a mechanistic and testable framework that explains the complexity and translational potential of these wonderful antigens is proposed.
Collapse
|
5
|
Chen E, Ling AL, Reardon DA, Chiocca EA. Lessons learned from phase 3 trials of immunotherapy for glioblastoma: Time for longitudinal sampling? Neuro Oncol 2024; 26:211-225. [PMID: 37995317 PMCID: PMC10836778 DOI: 10.1093/neuonc/noad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
Glioblastoma (GBM)'s median overall survival is almost 21 months. Six phase 3 immunotherapy clinical trials have recently been published, yet 5/6 did not meet approval by regulatory bodies. For the sixth, approval is uncertain. Trial failures result from multiple factors, ranging from intrinsic tumor biology to clinical trial design. Understanding the clinical and basic science of these 6 trials is compelled by other immunotherapies reaching the point of advanced phase 3 clinical trial testing. We need to understand more of the science in human GBMs in early trials: the "window of opportunity" design may not be best to understand complex changes brought about by immunotherapeutic perturbations of the GBM microenvironment. The convergence of increased safety of image-guided biopsies with "multi-omics" of small cell numbers now permits longitudinal sampling of tumor and biofluids to dissect the complex temporal changes in the GBM microenvironment as a function of the immunotherapy.
Collapse
Affiliation(s)
- Ethan Chen
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Alexander L Ling
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Pierrard J, Seront E, Galot R, Gunes Tatar I, Baurain JF, Di Perri D. Regression of a melanoma brain metastasis that had appeared after immune checkpoint inhibitor discontinuation: a hypothesis-generating case. Acta Clin Belg 2023; 78:516-520. [PMID: 37466163 DOI: 10.1080/17843286.2023.2238374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
We present the case of a 50-year-old woman previously treated with nivolumab-ipilimumab combination therapy for a metastatic melanoma. Despite premature discontinuation of these immune checkpoint inhibitors (ICIs) after 2 cycles due to severe immune-related hepatitis, the patient achieved a complete response. Nine months later, brain magnetic resonance imaging (MRI) showed progression of a single cerebral lesion, and the patient was referred for stereotactic radiosurgery. Unexpectedly, the brain MRI acquired one month later as part of radiosurgery planning showed a spontaneous regression of this lesion, allowing for radiosurgery cancellation. Follow-up imaging showed a sustained response, although the patient did not receive any other oncological treatment. We discuss here the potential immune mechanisms involved in this unusual course and the importance of better understanding the behaviour of tumours in the era of ICIs.
Collapse
Affiliation(s)
- Julien Pierrard
- UCLouvain, Institut de Recherche Experimentale Et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Emmanuel Seront
- Medical Oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Medical Oncology Department, Hopital de Jolimont, Haine Saint Paul, Belgium
| | - Rachel Galot
- UCLouvain, Institut de Recherche Experimentale Et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Medical Oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Idil Gunes Tatar
- Radiology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-François Baurain
- UCLouvain, Institut de Recherche Experimentale Et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Medical Oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Dario Di Perri
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
7
|
Xu R, Wang Q, Zhu J, Bei Y, Chu Y, Sun Z, Du S, Zhou S, Ding N, Meng F, Liu B. Membrane fusogenic nanoparticle-based HLA-peptide-addressing universal T cell receptor-engineered T (HAUL TCR-T) cell therapy in solid tumor. Bioeng Transl Med 2023; 8:e10585. [PMID: 38023696 PMCID: PMC10658479 DOI: 10.1002/btm2.10585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 12/01/2023] Open
Abstract
T cell receptor-engineered T (TCR-T) cell therapy has demonstrated therapeutic effects in basic research and clinical trials for treating solid tumors. Due to the peptide-dependent recognition and the human leukocyte antigen (HLA)-restriction, TCR-T cell therapy is generally custom designed to target individual antigens. The lack of suitable universal targets for tumor cells significantly limits its clinical applications. Establishing a universal TCR-T treatment strategy is of great significance. This study designed and evaluated the HLA-peptide-addressing universal (HAUL) TCR-T cell therapy based on HLA-peptide (pHLA) loaded membrance fusogenic deliver system. The pHLA-NP-based tumor cell membrane modification technology can transfer the pHLA onto the surface of tumor cells through membrane fusogenic nanoparticles. Then tumor cells are recognized and killed by TCR-T cells specifically. The HAUL TCR-T cell therapy technology is a universal technology that enables tumor cells to be identified and killed by specific TCR-T cells, regardless of the HLA typing of tumor cells.
Collapse
Affiliation(s)
- Ruihan Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Qin Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Junmeng Zhu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yuncheng Bei
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yanhong Chu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zhichen Sun
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Shiyao Du
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Shujuan Zhou
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Naiqing Ding
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
8
|
Bolivar AM, Duzagac F, Sinha KM, Vilar E. Advances in vaccine development for cancer prevention and treatment in Lynch Syndrome. Mol Aspects Med 2023; 93:101204. [PMID: 37478804 PMCID: PMC10528439 DOI: 10.1016/j.mam.2023.101204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Lynch Syndrome (LS) is one of the most common hereditary cancer syndromes, and is caused by mutations in one of the four DNA mismatch repair (MMR) genes, namely MLH1, MSH2, MSH6 and PMS2. Tumors developed by LS carriers display high levels of microsatellite instability, which leads to the accumulation of large numbers of mutations, among which frameshift insertion/deletions (indels) within microsatellite (MS) loci are the most common. As a result, MMR-deficient (MMRd) cells generate increased rates of tumor-specific neoantigens (neoAgs) that can be recognized by the immune system to activate cancer cell killing. In this context, LS is an ideal disease to leverage immune-interception strategies. Therefore, the identification of these neoAgs is an ongoing effort for the development of LS cancer preventive vaccines. In this review, we summarize the computational methods used for in silico neoAg prediction, including their challenges, and the experimental techniques used for in vitro validation of their immunogenicity. In addition, we outline results from past and on-going vaccine clinical trials and highlight avenues for improvement and future directions.
Collapse
Affiliation(s)
- Ana M Bolivar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fahriye Duzagac
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna M Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Wang Z, Ahmed S, Labib M, Wang H, Wu L, Bavaghar-Zaeimi F, Shokri N, Blanco S, Karim S, Czarnecka-Kujawa K, Sargent EH, McGray AJR, de Perrot M, Kelley SO. Isolation of tumour-reactive lymphocytes from peripheral blood via microfluidic immunomagnetic cell sorting. Nat Biomed Eng 2023; 7:1188-1203. [PMID: 37037966 DOI: 10.1038/s41551-023-01023-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/11/2023] [Indexed: 04/12/2023]
Abstract
The clinical use of tumour-infiltrating lymphocytes for the treatment of solid tumours is hindered by the need to obtain large and fresh tumour fractions, which is often not feasible in patients with unresectable tumours or recurrent metastases. Here we show that circulating tumour-reactive lymphocytes (cTRLs) can be isolated from peripheral blood at high yield and purity via microfluidic immunomagnetic cell sorting, allowing for comprehensive downstream analyses of these rare cells. We observed that CD103 is strongly expressed by the isolated cTRLs, and that in mice with subcutaneous tumours, tumour-infiltrating lymphocytes isolated from the tumours and rapidly expanded CD8+CD103+ cTRLs isolated from blood are comparably potent and respond similarly to immune checkpoint blockade. We also show that CD8+CD103+ cTRLs isolated from the peripheral blood of patients and co-cultured with tumour cells dissociated from their resected tumours resulted in the enrichment of interferon-γ-secreting cell populations with T-cell-receptor clonotypes substantially overlapping those of the patients' tumour-infiltrating lymphocytes. Therapeutically potent cTRLs isolated from peripheral blood may advance the clinical development of adoptive cell therapies.
Collapse
Affiliation(s)
- Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Mahmoud Labib
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Fatemeh Bavaghar-Zaeimi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nastaran Shokri
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Soraly Blanco
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Saraf Karim
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kasia Czarnecka-Kujawa
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - A J Robert McGray
- Department of Immunology, Division of Translational Immuno-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA.
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Magré L, Verstegen MMA, Buschow S, van der Laan LJW, Peppelenbosch M, Desai J. Emerging organoid-immune co-culture models for cancer research: from oncoimmunology to personalized immunotherapies. J Immunother Cancer 2023; 11:jitc-2022-006290. [PMID: 37220953 DOI: 10.1136/jitc-2022-006290] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
In the past decade, treatments targeting the immune system have revolutionized the cancer treatment field. Therapies such as immune checkpoint inhibitors have been approved as first-line treatment in a variety of solid tumors such as melanoma and non-small cell lung cancer while other therapies, for instance, chimeric antigen receptor (CAR) lymphocyte transfer therapies, are still in development. Although promising results are obtained in a small subset of patients, overall clinical efficacy of most immunotherapeutics is limited due to intertumoral heterogeneity and therapy resistance. Therefore, prediction of patient-specific responses would be of great value for efficient use of costly immunotherapeutic drugs as well as better outcomes. Because many immunotherapeutics operate by enhancing the interaction and/or recognition of malignant target cells by T cells, in vitro cultures using the combination of these cells derived from the same patient hold great promise to predict drug efficacy in a personalized fashion. The use of two-dimensional cancer cell lines for such cultures is unreliable due to altered phenotypical behavior of cells when compared with the in vivo situation. Three-dimensional tumor-derived organoids, better mimic in vivo tissue and are deemed a more realistic approach to study the complex tumor-immune interactions. In this review, we present an overview of the development of patient-specific tumor organoid-immune co-culture models to study the tumor-specific immune interactions and their possible therapeutic infringement. We also discuss applications of these models which advance personalized therapy efficacy and understanding the tumor microenvironment such as: (1) Screening for efficacy of immune checkpoint inhibition and CAR therapy screening in a personalized manner. (2) Generation of tumor reactive lymphocytes for adoptive cell transfer therapies. (3) Studying tumor-immune interactions to detect cell-specific roles in tumor progression and remission. Overall, these onco-immune co-cultures might hold a promising future toward developing patient-specific therapeutic approaches as well as increase our understanding of tumor-immune interactions.
Collapse
Affiliation(s)
- Luc Magré
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Sonja Buschow
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Maikel Peppelenbosch
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jyaysi Desai
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Fenton GA, Mitchell DA. Cellular Cancer Immunotherapy Development and Manufacturing in the Clinic. Clin Cancer Res 2023; 29:843-857. [PMID: 36383184 PMCID: PMC9975672 DOI: 10.1158/1078-0432.ccr-22-2257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
The transfusion of naturally derived or modified cellular therapies, referred to as adoptive cell therapy (ACT), has demonstrated clinical efficacy in the treatment of hematologic malignancies and metastatic melanoma. In addition, cellular vaccination, such as dendritic cell-based cancer vaccines, continues to be actively explored. The manufacturing of these therapies presents a considerable challenge to expanding the use of ACT as a viable treatment modality, particularly at academic production facilities. Furthermore, the expanding commercial interest in ACT presents new opportunities as well as strategic challenges for the future vision of cellular manufacturing in academic centers. Current trends in the production of ACT at tertiary care centers and prospects for improved manufacturing practices that will foster further clinical benefit are reviewed herein.
Collapse
Affiliation(s)
- Graeme A Fenton
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida.,Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida.,Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
12
|
Swan SL, Mehta N, Ilich E, Shen SH, Wilkinson DS, Anderson AR, Segura T, Sanchez-Perez L, Sampson JH, Bellamkonda RV. IL7 and IL7 Flt3L co-expressing CAR T cells improve therapeutic efficacy in mouse EGFRvIII heterogeneous glioblastoma. Front Immunol 2023; 14:1085547. [PMID: 36817432 PMCID: PMC9936235 DOI: 10.3389/fimmu.2023.1085547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy in glioblastoma faces many challenges including insufficient CAR T cell abundance and antigen-negative tumor cells evading targeting. Unfortunately, preclinical studies evaluating CAR T cells in glioblastoma focus on tumor models that express a single antigen, use immunocompromised animals, and/or pre-treat with lymphodepleting agents. While lymphodepletion enhances CAR T cell efficacy, it diminishes the endogenous immune system that has the potential for tumor eradication. Here, we engineered CAR T cells to express IL7 and/or Flt3L in 50% EGFRvIII-positive and -negative orthotopic tumors pre-conditioned with non-lymphodepleting irradiation. IL7 and IL7 Flt3L CAR T cells increased intratumoral CAR T cell abundance seven days after treatment. IL7 co-expression with Flt3L modestly increased conventional dendritic cells as well as the CD103+XCR1+ population known to have migratory and antigen cross-presenting capabilities. Treatment with IL7 or IL7 Flt3L CAR T cells improved overall survival to 67% and 50%, respectively, compared to 9% survival with conventional or Flt3L CAR T cells. We concluded that CAR T cells modified to express IL7 enhanced CAR T cell abundance and improved overall survival in EGFRvIII heterogeneous tumors pre-conditioned with non-lymphodepleting irradiation. Potentially IL7 or IL7 Flt3L CAR T cells can provide new opportunities to combine CAR T cells with other immunotherapies for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Sheridan L Swan
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Nalini Mehta
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Ekaterina Ilich
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Steven H Shen
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Alexa R Anderson
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States.,Clinical Science Departments of Neurology and Dermatology, Duke University, Durham, NC, United States
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Ravi V Bellamkonda
- Department of Biology, Emory University, Atlanta, GA, United States.,Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| |
Collapse
|
13
|
Ma R, Rei M, Woodhouse I, Ferris K, Kirschner S, Chandran A, Gileadi U, Chen JL, Pereira Pinho M, Ariosa-Morejon Y, Kriaucionis S, Ternette N, Koohy H, Ansorge O, Ogg G, Plaha P, Cerundolo V. Decitabine increases neoantigen and cancer testis antigen expression to enhance T-cell-mediated toxicity against glioblastoma. Neuro Oncol 2022; 24:2093-2106. [PMID: 35468205 PMCID: PMC9713507 DOI: 10.1093/neuonc/noac107] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Despite maximal treatment, median survival remains dismal at 14-24 months. Immunotherapies, such as checkpoint inhibition, have revolutionized management of some cancers but have little benefit for GBM patients. This is, in part, due to the low mutational and neoantigen burden in this immunogenically "cold" tumor. METHODS U87MG and patient-derived cell lines were treated with 5-aza-2'-deoxycytidine (DAC) and underwent whole-exome and transcriptome sequencing. Cell lines were then subjected to cellular assays with neoantigen and cancer testis antigen (CTA) specific T cells. RESULTS We demonstrate that DAC increases neoantigen and CTA mRNA expression through DNA hypomethylation. This results in increased neoantigen presentation by MHC class I in tumor cells, leading to increased neoantigen- and CTA-specific T-cell activation and killing of DAC-treated cancer cells. In addition, we show that patients have endogenous cancer-specific T cells in both tumor and blood, which show increased tumor-specific activation in the presence of DAC-treated cells. CONCLUSIONS Our work shows that DAC increases GBM immunogenicity and consequent susceptibility to T-cell responses in vitro. Our results support a potential use of DAC as a sensitizing agent for immunotherapy.
Collapse
Affiliation(s)
- Ruichong Ma
- Corresponding Authors: Ruichong Ma, DPhil, Department of neurosurgery, Level 3 West wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK ()
| | - Margarida Rei
- Margarida Rei, PhD, Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK ()
| | - Isaac Woodhouse
- MRC Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Centre for Cellular and Medical Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katherine Ferris
- MRC Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie Kirschner
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anandhakumar Chandran
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ji-Li Chen
- MRC Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mariana Pereira Pinho
- MRC Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yoanna Ariosa-Morejon
- Centre for Cellular and Medical Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicola Ternette
- Centre for Cellular and Medical Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK (Y.A-M., N.T.)
| | - Hashem Koohy
- MRC Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University ofOxford, UK
| | - Graham Ogg
- MRC Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University ofOxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Xu R, Du S, Zhu J, Meng F, Liu B. Neoantigen-targeted TCR-T cell therapy for solid tumors: How far from clinical application. Cancer Lett 2022; 546:215840. [DOI: 10.1016/j.canlet.2022.215840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
|
15
|
Mitchell D, Shireman J, Sierra Potchanant EA, Lara-Velazquez M, Dey M. Neuroinflammation in Autoimmune Disease and Primary Brain Tumors: The Quest for Striking the Right Balance. Front Cell Neurosci 2021; 15:716947. [PMID: 34483843 PMCID: PMC8414998 DOI: 10.3389/fncel.2021.716947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
According to classical dogma, the central nervous system (CNS) is defined as an immune privileged space. The basis of this theory was rooted in an incomplete understanding of the CNS microenvironment, however, recent advances such as the identification of resident dendritic cells (DC) in the brain and the presence of CNS lymphatics have deepened our understanding of the neuro-immune axis and revolutionized the field of neuroimmunology. It is now understood that many pathological conditions induce an immune response in the CNS, and that in many ways, the CNS is an immunologically distinct organ. Hyperactivity of neuro-immune axis can lead to primary neuroinflammatory diseases such as multiple sclerosis and antibody-mediated encephalitis, whereas immunosuppressive mechanisms promote the development and survival of primary brain tumors. On the therapeutic front, attempts are being made to target CNS pathologies using various forms of immunotherapy. One of the most actively investigated areas of CNS immunotherapy is for the treatment of glioblastoma (GBM), the most common primary brain tumor in adults. In this review, we provide an up to date overview of the neuro-immune axis in steady state and discuss the mechanisms underlying neuroinflammation in autoimmune neuroinflammatory disease as well as in the development and progression of brain tumors. In addition, we detail the current understanding of the interactions that characterize the primary brain tumor microenvironment and the implications of the neuro-immune axis on the development of successful therapeutic strategies for the treatment of CNS malignancies.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jack Shireman
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | - Montserrat Lara-Velazquez
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mahua Dey
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|