1
|
Wang MT, Ni CH, Lu YQ, Zheng W, Zhang SL, Chen MH, Zheng B, Chen C. Next-generation sequencing in early-stage multiple primary lung cancer: The prognostic significance of genomic accumulation status and BCL2L11 del. Transl Oncol 2025; 55:102383. [PMID: 40186984 PMCID: PMC12002891 DOI: 10.1016/j.tranon.2025.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVE This study aimed to define the genomic features of tumors and to delineate the potential mutational pattern underlying the prognosis of patients using large-panel next-generation sequencing (NGS) assays. Additionally, the study sought to explore the biological functions and prognostic significance of PRMT8 in BCL2L11del lung cancer. METHODS A total of 53 patients were enrolled, with a total of 130 malignant tumors. Clinical variables were collected, and the NGS sequencing of a large panel of 116 tumor-associated genes was performed. According to the gene mutation series and the number of mutation sites, the patients were divided into a series of groups. We then utilized the TCGA-LUAD database to conduct differential gene expression analysis, KEGG enrichment analysis, GSEA, and prognostic evaluation. Cell experiments (transwell migration assays, wound healing assay, CCK8 assay, and apoptosis assay) were utilized to verify the roles of PRMT8 on A549 cell. Western blotting was used to investigate the effect of PRMT8 on the mTORC1 signaling pathway. RESULTS The patients exceeding the IA stage were associated with a significantly shorter DFS than those in the IA stage (mean time: 27.5 vs. 50.6 months, p = 0.044), and BCL2L11del subsets were associated with a significantly worse DFS (31.9 vs. 50.2 months, p = 0.047). In the subgroups, the patients with a single gene mutation series with multiple gene mutation sites had a shorter DFS than those with a single mutation site (37.6 vs. 53.9 months, p = 0.047); and those with four gene series with over four mutation sites displayed a longer DFS than those with four sites (25.7 vs. 58 months, p = 0.034). In a Cox Multivariate analysis, exceeding the IA stage and a BCL2L11del mutation were considered unfavorable independent prognostic factors (HR = 5.102, 95 %CI: 1.526 to 17.054; p = 0.008, and HR = 6.010, 95 %CI: 1.636 to 22.079; p = 0.007, respectively). A lower gene mutation series (≤2) was an independent factor for a longer DFS (HR = 0.276, 95 %CI: 0.086 to 0.882; p = 0.03). Our study found that PRMT8 was upregulated in the BCL2L11del group and associated with increased patient survival. Biological experiments showed that PRMT8 overexpression reduced cell viability, promoted apoptosis, inhibited migration and invasion, and suppressed mTORC1 pathway phosphorylation. CONCLUSIONS The prognosis of patients with early-stage MPLC may potentially be related to the accumulation status of gene mutation series and sites; their driving powers may offset each other. Taken together, the application of genomic profiling may prove to be useful for subdividing and precisely managing patients with MPLC. In addition, high expression of PRMT8 presented as an independent prognostic biomarker in lung cancer patients harboring the BCL2L11del mutation.
Collapse
Affiliation(s)
- Mu-Ting Wang
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
- The Department of Cardio-Thoracic Surgery, Shantou Central Hospital, Shantou, 515000, PR China
| | - Chen-Hui Ni
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Yan-Qi Lu
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Wei Zheng
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Shu-Liang Zhang
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Mao-Hui Chen
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Bin Zheng
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Chun Chen
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| |
Collapse
|
2
|
Liu N, Li X, Luo X, Liu B, Tang J, Xiao F, Wang W, Tang Y, Shu P, Zhang B, Chen Y, Qin D, Ma Q, Guo F, Tang X, Zhu D, Mei J, Chen W, Li D, Jiang L, Wang Y. Development and validation of machine learning models based on molecular features for estimating the probability of multiple primary lung carcinoma versus intrapulmonary metastasis in patients presenting multiple non-small cell lung cancers. Transl Lung Cancer Res 2025; 14:1118-1137. [PMID: 40386724 PMCID: PMC12082235 DOI: 10.21037/tlcr-24-875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/27/2025] [Indexed: 05/20/2025]
Abstract
Background Discrimination of multiple non-small cell lung cancers (NSCLCs) as multiple primary lung cancers (MPLCs) or intrapulmonary metastases (IPMs) is critical but remains challenging. The aim of this study is to develop and validate the machine learning (ML) models based on the molecular features for estimating the probability of MPLC or IPM for patients presenting multiple NSCLCs. Methods A total of 72 multiple NSCLCs patients with 157 surgical resection tumor lesions from January 2012 to January 2018 at two institutions were included for developing and testing models. Specifically, 46 patients with 103 tumors which were defined as definitive MPLC or IPM according to International Association for the Study of Lung Cancer (IASLC) criteria were used to develop models. They were spilt into training and validation sets using stratified random sampling and five-fold cross-validation. The developed models were tested in other 26 patients whose tumors were undetermined by traditional methods. Whole-exome sequencing (WES) was performed on all included tumor samples. Four molecular features were calculated to characterize tumors relatedness and served as model inputs, including genetic divergence, shared mutation number, Pearson correlation coefficient and early mutation number. Decision trees (DT), random forests (RF), and gradient boosting decision trees (GBDT) were employed, with performance assessed by areas under the curve (AUCs), accuracy, precision, recall, and F1 score in validation set. Disease-free survival (DFS) were used to evaluate model performance in test cohort. Clinical and genetic characteristics were then compared between MPLC and IPM populations. Results All of the four molecular features showed significant differences between MPLC and IPM patients in development cohort. That is, MPLC exhibited higher genetic divergence, lower shared mutation number, Pearson correlation and early mutation number than IPM (P<0.001). DT model, RF model and GBDT model were developed with these factors and achieved a mean AUC of 0.94 [standard deviation (SD) 0.09], 1.00 (SD 0.00) and 1.00 (SD 0.00) in validation set, respectively. DT model, RF model and GBDT model discriminated the undetermined multiple NSCLCs as MPLC (n=15) and IPM (n=11) consistently. MPLC identified by ML models had significantly prolonged DFS [hazard ratio =0.21; 95% confidence interval (CI): 0.04-1.0; P=0.04] than that of IPM. MPLC patients had a relative higher prevalence of family history of first-degree relatives with cancer, and more than half of these patients reported a family history of lung cancer. EGFR remains the most common mutated driver both in MPLC and IPM populations. Conclusions ML models based on the molecular features effectively distcriminate primary tumors from metastases in multiple NSCLCs, which improve the accuracy of multiple NSCLCs diagnosis and assist in clinical decision-making, particularly in challenging cases.
Collapse
Affiliation(s)
- Ning Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Luo
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, China
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liu
- Department of Pulmonary Tumor Ward, Sichuan Cancer Hospital, Chengdu, China
| | - Jie Tang
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xiao
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Tang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Pei Shu
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Benxia Zhang
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Chen
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Diyuan Qin
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qizhi Ma
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fuchun Guo
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojun Tang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Daxing Zhu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiandong Mei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weizhi Chen
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zhao L, Ge J, Zhang R, Wang H, Liu X, Xu K, Liu Y, Zhao W, Zhang W, Ye L, Chen Z, Zeng J, He Y, Gao M. Noninvasive Immunotyping and Immunotherapy Monitoring of Lung Cancers via Nuclear Imaging of LAG-3 and PD-L1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404231. [PMID: 39513410 PMCID: PMC11714153 DOI: 10.1002/advs.202404231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/13/2024] [Indexed: 11/15/2024]
Abstract
Immunotherapy has significantly improved cancer patient survival, while its efficacy remains limited due to the reliance on a single marker like PD-L1 as well as its spatiotemporal heterogeneity. To address this issue, combining lymphocyte activation gene-3 (LAG-3) with PD-L1 is proposed for identifying immunotypes and monitoring immunotherapy through nuclear imaging. In short, 99mTc-HYNIC-αLAG-3 and 99mTc-HYNIC-αPD-L1 probes are synthesized using anti-human LAG-3 and PD-L1 antibodies, respectively. With high radiochemical purity and in vitro stability, these probes are confirmed to specifically bind to LAG-3 or PD-L1 in LAG3+ A549, LAG3- A549, and H1975 cells. SPECT/CT imaging of both probes showed specific in vivo tumor uptake in multiple lung cancer models, with significant linear correlation with ex vivo tumor uptake and immunohistochemical expression levels of LAG-3/PD-L1. Based on this, dual-index imaging was performed to simultaneously quantify LAG-3 and PD-L1. SPECT/CT imaging of 99mTc-HYNIC-αLAG-3 and 125I-αPD-L1 successfully distinguished four immunotypes. In addition, SPECT/CT imaging revealed LAG-3 upregulation in LLC-bearing LAG-3 humanized mice resistant to immunotherapy. In conclusion, this study demonstrates the feasibility of nuclear imaging of LAG-3 and PD-L1 for both noninvasive immunotyping and immunotherapy monitoring, thus offering novel perspectives on forecasting immunotherapy response, uncovering resistance mechanism, and optimizing combination treatment regimens.
Collapse
Affiliation(s)
- Lishu Zhao
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Ruru Zhang
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Hao Wang
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Xinyue Liu
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Kandi Xu
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Yujin Liu
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Wencheng Zhao
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Wengang Zhang
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Li Ye
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Zhimin Chen
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Yayi He
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| |
Collapse
|
4
|
Zhang Y, Cheng R, Ding T, Wu J. Discrepancies in PD-L1 expression, lymphocyte infiltration, and tumor mutational burden in non-small cell lung cancer and matched brain metastases. Transl Lung Cancer Res 2024; 13:3590-3602. [PMID: 39830744 PMCID: PMC11736585 DOI: 10.21037/tlcr-24-735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Background Differences in the immune microenvironment and responses to immunotherapy may exist between primary non-small cell lung cancer (NSCLC) and brain metastases (BMs). This study aimed to investigate discrepancies in programmed death-ligand 1 (PD-L1) expression, tumor-infiltrating lymphocytes (TILs), tertiary lymphoid structures (TLS), and tumor mutational burden (TMB) between matched BMs and primary tumors (PTs) in NSCLC. Methods Twenty-six pairs of surgically resected BMs and corresponding PTs from NSCLC patients were collected. PD-L1 expression and TILs, including CD8, CD3, CD4, CD20, CD68, and CD21, were analyzed using immunohistochemistry (IHC) and quantitatively assessed through digital image analysis. Whole-exome sequencing (WES) was performed to investigate genomic discrepancies and variations in TMB. Results The density of PD-L1+ cells did not differ significantly between matched PTs and BMs (P>0.99). However, BMs exhibited a higher tumor proportion score (TPS) compared to PTs (mean TPS: 31.92% vs. 25.96%, P=0.049), with moderate agreement in categorized TPS (κ=0.653). Analysis of TILs revealed a significant reduction in CD3+ T cells (P<0.001), CD8+ cytotoxic T cells (P<0.001), CD20+ B cells (P<0.001), and CD68+ macrophages (P=0.02) in BMs compared to PTs. BMs also exhibited a loss of TLS, with no presence of mature TLS marked by CD21 expression. The number of non-synonymous mutations was generally higher in BMs than in PTs, with only 34.69% of mutations shared between paired PTs and BMs. TMB was slightly increased in BMs (mean TMB: 34.2 mutations/Mb in BMs vs. 26.8 mutations/Mb in PTs; P=0.30). Additionally, the log-rank test indicated that a higher density of CD20+ B cells in BMs was significantly associated with better overall survival (P=0.007). Conclusions Compared to primary NSCLC tumors, matched BMs show an increase in TPS of PD-L1 expression and TMB, but a significant reduction in TILs and loss of mature TLS, suggesting an immune-suppressive microenvironment in BMs. The infiltration of CD20+ B cells may serve as a potential prognostic biomarker in NSCLC with BMs.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Runfen Cheng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tingting Ding
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jianghua Wu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Yi G, Cai F, Liu L, Liao R, Jiang X, Yang Z, Zhang X. Genomic characteristics of PD-L1-Induced resistance to EGFR-TKIs in lung adenocarcinoma. Future Oncol 2024; 20:3477-3490. [PMID: 39691079 PMCID: PMC11776857 DOI: 10.1080/14796694.2024.2435247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND The co-occurrence of PD-L1 positivity and EGFR mutations in advanced NSCLC often limits EGFR-TKIs effectiveness, with unclear mechanisms. METHODS We analyzed 103 treatment-naive EGFR-mutant LUAD patients from three centers, assessing PD-L1 expression and performing NGS analysis. RESULTS SMO mutations and MET amplification were significantly higher in the PD-L1 ≥ 1% group versus PD-L1 < 1% group (SMO: 8% vs. 0%, p = 0.048; MET: 18% vs. 7%, p = 0.023). The DNA Damage Response and Repair (DDR) pathogenic deficiency mutations, along with biological processes and signaling pathways related to DNA recombination, cell cycle transition and abnormal phosphorylation, were more prevalent in the PD-L1 ≥ 1% group. PIK3CA and RARA clonal alterations were more common in PD-L1 < 1% group, while TP53 clonal mutations predominated in PD-L1 ≥ 1% group. Retrospective analysis showed EGFR-TKIs plus chemotherapy extended median PFS by 9.8 months, potentially overcoming EGFR-TKI monotherapy resistance. CONCLUSION This study elucidates the genomic characteristics of PD-L1-induced resistance to EGFR-TKIs. For patients with concurrent mutations in EGFR and PD-L1 expression, a first-line treatment strategy combining EGFR-TKIs with chemotherapy may offer a more effective alternative.
Collapse
Affiliation(s)
- Guangming Yi
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Fanghao Cai
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Liangzhong Liu
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Rongxin Liao
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Xuan Jiang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Zhenzhou Yang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Xiaoyue Zhang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| |
Collapse
|
6
|
Li H, Meng L, Wang H, Cui L, Sheng H, Zhao P, Hong S, Du X, Yan S, Xing Y, Feng S, Zhang Y, Fang H, Bai J, Liu Y, Lan S, Liu T, Guan Y, Xia X, Yi X, Cheng Y. Precise identification of somatic and germline variants in the absence of matched normal samples. Brief Bioinform 2024; 26:bbae677. [PMID: 39737564 DOI: 10.1093/bib/bbae677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Somatic variants play a crucial role in the occurrence and progression of cancer. However, in the absence of matched normal controls, distinguishing between germline and somatic variants becomes challenging in tumor samples. The existing tumor-only genomic analysis methods either suffer from limited performance or insufficient interpretability due to an excess of features. Therefore, there is an urgent need for an alternative approach that can address these issues and have practical implications. Here, we presented OncoTOP, a computational method for genomic analysis without matched normal samples, which can accurately distinguish somatic mutations from germline variants. Reference sample analysis revealed a 0% false positive rate and 99.7% reproducibility for variant calling. Assessing 2864 tumor samples across 18 cancer types yielded a 99.8% overall positive percent agreement and a 99.9% positive predictive value. OncoTOP can also accurately detect clinically actionable variants and subclonal mutations associated with drug resistance. For the prediction of mutation origins, the positive percent agreement stood at 97.4% for predicting somatic mutations and 95.7% for germline mutations. High consistency of tumor mutational burden (TMB) was observed between the results generated by OncoTOP and tumor-normal paired analysis. In a cohort of 97 lung cancer patients treated with immunotherapy, TMB-high patients had prolonged PFS (P = .02), proving the reliability of our approach in estimating TMB to predict therapy response. Furthermore, microsatellite instability status showed a strong concordance (97%) with polymerase chain reaction results, and leukocyte antigens class I subtypes and homozygosity achieved an impressive concordance rate of 99.3% and 99.9% respectively, compared to its tumor-normal paired analysis. Thus, OncoTOP exhibited high reliability in variant calling, mutation origin prediction, and biomarker estimation. Its application will promise substantial advantages for clinical genomic testing.
Collapse
Affiliation(s)
- Hui Li
- The Medical Oncology Translational Research Laboratory, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| | - Lu Meng
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Hongke Wang
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Liang Cui
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Heyu Sheng
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Peiyan Zhao
- The Medical Oncology Translational Research Laboratory, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| | - Shuo Hong
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Xinhua Du
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Shi Yan
- The Medical Oncology Translational Research Laboratory, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| | - Yun Xing
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Shicheng Feng
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Yan Zhang
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Huan Fang
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Jing Bai
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
- College of Future Technology, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yan Liu
- The Medical Oncology Translational Research Laboratory, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| | - Shaowei Lan
- The Medical Oncology Translational Research Laboratory, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| | - Tao Liu
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Yanfang Guan
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Xin Yi
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Ying Cheng
- The Department of Medical Oncology, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| |
Collapse
|
7
|
Liu J, Yang T, Liu J, Hao X, Guo Y, Luo S, Zhou B. Developing hypoxia and lactate metabolism-related molecular subtypes and prognostic signature for clear cell renal cell carcinoma through integrating machine learning. Discov Oncol 2024; 15:653. [PMID: 39538070 PMCID: PMC11561225 DOI: 10.1007/s12672-024-01543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The microenvironment of clear cell renal cell carcinoma (ccRCC) is characterized by hypoxia and increased lactate production. However, the impact of hypoxia and lactate metabolism on ccRCC remains incompletely understood. In this study, a new molecular subtype is developed based on hypoxia-related genes (HRGs) and lactate metabolism-related genes (LMRGs), aiming to create a tool that can predict the survival rate, immune microenvironment status, and responsiveness to treatment of ccRCC patients. METHOD We obtained RNA-seq data and clinical information of patients with ccRCC from TCGA and GEO. HRGs and LMRGs are sourced from the Molecular Signatures Database. Integrating 10 machine learning algorithms and 101 frameworks, we constructed a prognostic model related to hypoxia and lactate metabolism. Its accuracy and reliability are evaluated through constructing prognostic nomograms, drawing ROC curves, and validating with clinical datasets. Additionally, risk subgroups are evaluated based on functional enrichment, tumor mutational burden (TMB), immune cell infiltration degree, and immune checkpoint expression level. Finally, we evaluate the responsiveness of risk subgroups to immunotherapy and determine personalized drugs for specific risk subgroups. RESULTS 85 valuable prognostic genes were screened out. Functional enrichment analysis shows that the group with high-risk hypoxia and lactate metabolism-related genes scores (HLMRGS) is mainly involved in the activation of immune-related activities, while the low risk HLMRGS group is more active in metabolic and tumor-related pathways. At the same time, differences in the cellular functional states in the tumor microenvironment between the high risk HLMRGS group and the low risk HLMRGS group were observed. Finally, potential drugs for specific risk subgroups were determined. CONCLUSION We have developed a novel prognostic signature that integrates hypoxia and lactate metabolism. It is expected to become an effective tool for prognosis prediction, immunotherapy and personalized medicine of ccRCC.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China
| | - Tianliu Yang
- Medical Record Statistics Department, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China
| | - Jiayuan Liu
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China
| | - Xianghui Hao
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China
| | - Yuhang Guo
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China
| | - Sheng Luo
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China.
| | - Benzheng Zhou
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China.
| |
Collapse
|
8
|
He X, Yang Z, Wu F, Liang Q, Liu W, Yu F, Chen C. Confronting synchronous multiple primary lung cancers: Navigating the intersection of challenges and opportunities. Lung Cancer 2024; 197:107994. [PMID: 39461279 DOI: 10.1016/j.lungcan.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The increased detection of synchronous multiple primary lung cancers (sMPLC) through advanced computed tomography underscores the necessity for innovative therapeutic approaches. sMPLC typically manifests as ground-glass opacities, mixed ground-glass opacities, and/or solid nodules, predominantly in early-stage, non-smoking female patients, with a majority being adenocarcinomas. The high prevalence of EGFR mutations and considerable heterogeneity among lesions pose distinct diagnostic and therapeutic challenges for sMPLC. This study provides a comprehensive review and analysis of recent clinical and radiological studies, genomic profiling, and the efficacy of the "Surgery + X" treatment model for sMPLC. Additionally, the article discusses several intricate and complex sMPLC cases, shedding light on the disease's complexities and identifying existing gaps and potential breakthroughs in clinical diagnosis, treatment, and research. It underscores the critical role of a multidisciplinary approach and advocates for targeted research on sMPLC, highlighting its potential to impact lung cancer research significantly.
Collapse
Affiliation(s)
- Xue He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Zhihui Yang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Qingchun Liang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Wenliang Liu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
9
|
Li H, Huang Z, Guo C, Wang Y, Li B, Wang S, Bai N, Chen H, Xue J, Wang D, Zheng Z, Bing Z, Song Y, Xu Y, Huang G, Yu X, Li R, Fung KL, Li J, Song L, Zhu Z, Liu S, Liang N, Li S. Super multiple primary lung cancers harbor high-frequency BRAF and low-frequency EGFR mutations in the MAPK pathway. NPJ Precis Oncol 2024; 8:229. [PMID: 39384982 PMCID: PMC11464572 DOI: 10.1038/s41698-024-00726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
The incidence of multiple primary lung cancer (MPLC) is increasing, with some of our surgical patients exhibiting numerous lesions. We defined lung cancer with five or more primary lesions as super MPLCs. Elucidating the genomic characteristics of this special MPLC subtype can help reduce disease burden and understand tumor evolution. In our cohort of synchronous super early-stage MPLCs (PUMCH-ssesMPLC), whole-exome sequencing on 130 resected malignant specimens from 18 patients provided comprehensive super-MPLC genomic landscapes. Mutations are enriched in PI3k-Akt and MAPK pathways. Their BRAF mutation frequency (31.5%) is significantly higher than MPLC with fewer lesions and early-stage single-lesion cancer, while EGFR mutations are significantly fewer (13.8%). As lesion counts increase, BRAF mutations gradually become dominant. Also, invasive lesions more tend to have classic super-MPLC mutation patterns. High-frequency BRAF mutations, especially Class II, and low-frequency EGFR mutations could be a reason for the limited effectiveness of targeted therapy in super-MPLC patients.
Collapse
Affiliation(s)
- Haochen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Sha Wang
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Na Bai
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Hanlin Chen
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Daoyun Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhibo Zheng
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yang Song
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guanghua Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoqing Yu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruirui Li
- Department of Thoracic Surgery, Aviation General Hospital, Beijing, 100025, China
| | | | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwei Zhu
- Zhenyuan (Tianjin) Medical Technology Co. Ltd., Tianjin, 300385, China
| | - Songtao Liu
- Zhenyuan (Tianjin) Medical Technology Co. Ltd., Tianjin, 300385, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Dong H, Tian Y, Xin S, Jiang S, Guo Y, Wan Z, Han Y. Diagnosis and management of multiple primary lung cancer. Front Oncol 2024; 14:1392969. [PMID: 39411141 PMCID: PMC11473257 DOI: 10.3389/fonc.2024.1392969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple primary lung cancer (MPLC), can be categorized as synchronous multiple primary lung cancer (sMPLC) and metachronous multiple primary lung cancer (mMPLC), which are becoming increasingly common in clinical practice. A precise differential diagnosis between MPLC and intrapulmonary metastases (IPM) is essential for determining the appropriate management strategy. MPLC is primarily diagnosed through histology, imaging, and molecular methods. Imaging serves as an essential foundation for preoperative diagnosis, while histology is a critical tool for establishing a definitive diagnosis. As molecular biology advances, the diagnosis of MPLC has stepped into the era of molecular precision. Surgery is the preferred treatment approach, with stereotactic radiotherapy and ablation being viable options for unresectable lesions. Targeted therapy and immunotherapy can be considered for specific patients. A multidisciplinary team approach to evaluation and the application of combination therapy can benefit more patients. Looking ahead, the development of more authoritative guidelines will be instrumental in streamlining the diagnosis and management of MPLC.
Collapse
Affiliation(s)
- Honghong Dong
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Yahui Tian
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Shaowei Xin
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
- Department of Thoracic Surgery, 962 Hospital of the joint Logistics Support Force, Harbin, China
| | - Suxin Jiang
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
- Graduate School of China Medical University, Shenyang, China
| | - Yujie Guo
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
- Graduate School of China Medical University, Shenyang, China
| | - Zitong Wan
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
- College of Life Sciences, Northwestern University, Xi’an, China
| | - Yong Han
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
| |
Collapse
|
11
|
Xin S, Wen S, He P, Zhao Y, Zhao H. Density of tertiary lymphoid structures and their correlation with prognosis in non-small cell lung cancer. Front Immunol 2024; 15:1423775. [PMID: 39192984 PMCID: PMC11347756 DOI: 10.3389/fimmu.2024.1423775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Background Tertiary lymphoid structures (TLS), ordered structure of tumor-infiltrating immune cells in tumor immune microenvironment (TIME), play an important role in the development and anti-tumor immunity of various cancers, including liver, colon, and gastric cancers. Previous studies have demonstrated that the presence of TLS in intra-tumoral (IT), invasive margin (IM), and peri-tumoral (PT) regions of the tumors at various maturity statuses. However, the density of TLS in different regions of non-small cell lung cancer (NSCLC) has not been extensively studied. Methods TLS and tumor-infiltrating immune cells were assessed using immunohistochemistry (IHC) staining in 82 NSCLC patients. Tumor samples were divided into three subregions as IT, IM and PT regions, and TLS were identified as early/primary TLS (E-TLS) or secondary/follicular TLS (F-TLS). The distribution of TLS in different maturity statuses, along with their correlation with clinicopathological characteristics and prognostic value, was assessed. Nomograms were used to predict the probability of 1-, 3-, and 5-year overall survival (OS) in patients with NSCLC. Results The density of TLS and proportion of F-TLS in the IT region (90.2%, 0.45/mm2, and 61.0%, respectively) were significantly higher than those in the IM region (72.0%, 0.18/mm2, and 39.0%, respectively) and PT region (67.1%, 0.16/mm2, and 40.2%, respectively). A lower density of TLS, especially E-TLS in the IM region, was correlated with better prognosis in NSCLC patients. CD20+ B cells, CD3+ T cells, CD8+ cytotoxic T cells, and CD68+ macrophages were significantly overexpressed in the IM region. CD20+ B cells and CD3+ T cells in the IM region were significantly correlated with the density of E-TLS, while no statistically significant correlation was found with F-TLS. The E-TLS density in the IM region and TNM stage were independent prognostic factors for NSCLC patients. The nomogram showed good prognostic ability. Conclusions A higher density of E-TLS in the IM region was associated with a worse prognosis in NSCLC patients, potentially due to the inhibition of TLS maturation caused by the increased density of suppressive immune cells at the tumor invasion front.
Collapse
Affiliation(s)
- Shuyue Xin
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Wen
- Department of Pathology, The Friendship Hospital of Dalian, Dalian, China
| | - Peipei He
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yulong Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Zhang J, Zhou W, Li N, Li H, Luo H, Jiang B. Multi-omics analysis unveils immunosuppressive microenvironment in the occurrence and development of multiple pulmonary lung cancers. NPJ Precis Oncol 2024; 8:155. [PMID: 39043808 PMCID: PMC11266694 DOI: 10.1038/s41698-024-00651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Multiple pulmonary lung cancers (MPLCs) are frequently encountered on computed tomography (CT) scanning of chest, yet their intrinsic characteristics associated with genomic features and radiological or pathological textures that may lead to distinct clinical outcomes remain largely unexplored. A total of 27 pulmonary nodules covering different radiological or pathological textures as well as matched adjacent normal tissues and blood samples were collected from patients diagnosed with MPLCs. Whole-exome sequencing (WES) and whole-transcriptome sequencing were performed. The molecular and immune features of MPLCs associated with distinct radiological or pathological textures were comprehensively investigated. Genomics analysis unveiled the distinct branches of pulmonary nodules originating independently within the same individual. EGFR and KRAS mutations were found to be prevalent in MPLCs, exhibiting mutual exclusivity. The group with KRAS mutations exhibited stronger immune signatures compared to the group with EGFR mutations. Additionally, MPLCs exhibited a pronounced immunosuppressive microenvironment, which was particularly distinct when compared with normal tissues. The expression of the FDSCP gene was specifically observed in MPLCs. When categorizing MPLCs based on radiological or pathological characteristics, a progressive increase in mutation accumulation was observed, accompanied by heightened chromatin-level instability as ground-glass opacity component declined or invasive progression occurred. A close association with the immunosuppressive microenvironment was also observed during the progression of pulmonary nodules. Notably, the upregulation of B cell and regulatory T cell marker genes occurred progressively. Immune cell abundance analysis further demonstrated a marked increase in exhausted cells and regulatory T cells during the progression of pulmonary nodules. These results were further validated by independent datasets including nCounter RNA profiling, single-cell RNA sequencing, and spatial transcriptomic datasets. Our study provided a comprehensive representation of the diverse landscape of MPLCs originating within the same individual and emphasized the significant influence of the immunosuppressive microenvironment in the occurrence and development of pulmonary nodules. These findings hold great potential for enhancing the clinical diagnosis and treatment strategies for MPLCs.
Collapse
Affiliation(s)
- Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Wenhao Zhou
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Huaming Li
- Department of Thoracic surgery, The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China.
| | - Benyuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Yao M, Chen H, Chen Z, Wang Y, Shi D, Wu D, Li W, Huang J, Chen G, Zheng Q, Ye Z, Zheng C, Yang Y. Genomic and transcriptomic significance of multiple primary lung cancers detected by next-generation sequencing in clinical settings. Carcinogenesis 2024; 45:387-398. [PMID: 38693810 DOI: 10.1093/carcin/bgae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
Effective diagnosis and understanding of the mechanism of intrapulmonary metastasis (IM) from multiple primary lung cancers (MPLC) aid clinical management. However, the actual detection panels used in the clinic are variable. Current research on tumor microenvironment (TME) of MPLC and IM is insufficient. Therefore, additional investigation into the differential diagnosis and discrepancies in TME between two conditions is crucial. Two hundred and fourteen non-small cell lung cancer patients with multiple tumors were enrolled and 507 samples were subjected to DNA sequencing (NGS 10). Then, DNA and RNA sequencing (master panel) were performed on the specimens from 32 patients, the TME profiles between tumors within each patient and across patients and the differentially expressed genes were compared. Four patients were regrouped with NGS 10 results. Master panel resolved the classifications of six undetermined patients. The TME in MPLC exhibited a high degree of infiltration by natural killer (NK) cells, CD56dim NK cells, endothelial cells, etc., P < 0.05. Conversely, B cells, activated B cells, regulatory cells, immature dendritic cells, etc., P < 0.001, were heavily infiltrated in the IM. NECTIN4 and LILRB4 mRNA were downregulated in the MPLC (P < 0.0001). Additionally, NECTIN4 (P < 0.05) and LILRB4 were linked to improved disease-free survival in the MPLC. In conclusion, IM is screened from MPLC by pathology joint NGS 10 detections, followed by a large NGS panel for indistinguishable patients. A superior prognosis of MPLC may be associated with an immune-activating TME and the downregulation of NECTIN4 and LILRB4 considered as potential drug therapeutic targets.
Collapse
Affiliation(s)
- Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Hu Chen
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Zui Chen
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Yingying Wang
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Dongliang Shi
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Dan Wu
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Wen Li
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Jianping Huang
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Guizhen Chen
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Qiaoling Zheng
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Zhengtao Ye
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Chenxin Zheng
- School of Economics, Xiamen University, No.422 Siming South Road, Siming District, Xiamen 361005, Fujian Province, China
| | - Yinghong Yang
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
14
|
Lu Z, Fan P, Huo W, Feng Y, Wang R. Genomic profiles and their relationships with clinical characteristics and immune features in cervical cancer. Transl Oncol 2024; 44:101923. [PMID: 38432114 PMCID: PMC10920960 DOI: 10.1016/j.tranon.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the genomic alteration profiles of cervical cancer patients, examine the correlation between mutation patterns and clinical and immune attributes, and discover novel targets for treatment of individuals with cervical cancer. METHODS We performed targeted next-generation sequencing of tumor tissues and blood samples obtained from 45 cervical cancer patients to analyze somatic alterations, mutation patterns, and HLA alleles comprehensively. Additionally, we used flow cytometry to assess expression levels of immune checkpoint genes. RESULTS Notably, genes such as AR (78%), KMT2D (76%), and NOTCH1 (62%) exhibited higher mutation frequencies. Moreover, the tumor mutation burden (TMB) was significantly greater in HPV-positive cervical cancer patients than in HPV-negative patients (P=0.029). BMI (P=0.047) and mutations in BARD1 (P=0.034), CEP290 (P=4E-04), and SLX4 (P=0.0128) were identified as predictors of shorter overall survival in cervical cancer patients. Furthermore, the present study revealed significant upregulation of PD-1 (P=0.027) and Tim-3 (P=0.048) in the high mutant-allele tumor heterogeneity (MATH) cohort. In the elderly cervical cancer patient population, HLA-A03:01 emerged as a high-risk allele (OR=3.2, P<0.0001); HLA-C07:02 (OR=0.073, P=0.02) and HLA-B*07:02 (OR=0.257, P=0.037) were associated with a reduced risk among patients with low TMB. CONCLUSIONS This study offers insights into the mutation characteristics of cervical cancer patients and identifies potential therapeutic.
Collapse
Affiliation(s)
- Zinan Lu
- Xinjiang Medical University Affiliated Tumor Hospital, Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang 830011, China; Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830011, China
| | - Peiwen Fan
- Xinjiang Medical University Affiliated Tumor Hospital, Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang 830011, China; Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830011, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Wen Huo
- Xinjiang Medical University Affiliated Tumor Hospital, Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang 830011, China; Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830011, China
| | - Yaning Feng
- Xinjiang Medical University Affiliated Tumor Hospital, Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang 830011, China; Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830011, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Ruozheng Wang
- Xinjiang Medical University Affiliated Tumor Hospital, Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang 830011, China; Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830011, China; Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China.
| |
Collapse
|
15
|
Zhang P, Yang Z, Liu Z, Zhang G, Zhang L, Zhang Z, Fan J. Deciphering lung adenocarcinoma evolution: Integrative single-cell genomics identifies the prognostic lung progression associated signature. J Cell Mol Med 2024; 28:e18408. [PMID: 38837585 DOI: 10.1111/jcmm.18408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 06/07/2024] Open
Abstract
We employed single-cell analysis techniques, specifically the inferCNV method, to dissect the complex progression of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) through minimally invasive adenocarcinoma (MIA) to invasive adenocarcinoma (IAC). This approach enabled the identification of Cluster 6, which was significantly associated with LUAD progression. Our comprehensive analysis included intercellular interaction, transcription factor regulatory networks, trajectory analysis, and gene set variation analysis (GSVA), leading to the development of the lung progression associated signature (LPAS). Interestingly, we discovered that the LPAS not only accurately predicts the prognosis of LUAD patients but also forecasts genomic alterations, distinguishes between 'cold' and 'hot' tumours, and identifies potential candidates suitable for immunotherapy. PSMB1, identified within Cluster 6, was experimentally shown to significantly enhance cancer cell invasion and migration, highlighting the clinical relevance of LPAS in predicting LUAD progression and providing a potential target for therapeutic intervention. Our findings suggest that LPAS offers a novel biomarker for LUAD patient stratification, with significant implications for improving prognostic accuracy and guiding treatment decisions.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zijun Yang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zuo Liu
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lianmin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Fan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Wang Y, Huang Z, Li B, Xue J, Guo C, Bing Z, Zheng Z, Song Y, Xu Y, Huang G, Li H, Yu X, Xia Y, Li R, Si X, Zhang L, Li J, Song L, Xiong Y, Gu D, Song M, Zhou Z, Chen R, Feng Z, Bie Z, Li X, Yang H, Li S, Liang N. Clonal expansion of shared T cell receptors reveals the existence of immune commonality among different lesions of synchronous multiple primary lung cancer. Cancer Immunol Immunother 2024; 73:111. [PMID: 38668781 PMCID: PMC11052747 DOI: 10.1007/s00262-024-03703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/14/2024] [Indexed: 04/29/2024]
Abstract
The increase in the detection rate of synchronous multiple primary lung cancer (MPLC) has posed remarkable clinical challenges due to the limited understanding of its pathogenesis and molecular features. Here, comprehensive comparisons of genomic and immunologic features between MPLC and solitary lung cancer nodule (SN), as well as different lesions of the same patient, were performed. Compared with SN, MPLC displayed a lower rate of EGFR mutation but higher rates of BRAF, MAP2K1, and MTOR mutation, which function exactly in the upstream and downstream of the same signaling pathway. Considerable heterogeneity in T cell receptor (TCR) repertoire exists among not only different patients but also among different lesions of the same patient. Invasive lesions of MPLC exhibited significantly higher TCR diversity and lower TCR expansion than those of SN. Intriguingly, different lesions of the same patient always shared a certain proportion of TCR clonotypes. Significant clonal expansion could be observed in shared TCR clonotypes, particularly in those existing in all lesions of the same patient. In conclusion, this study provided evidences of the distinctive mutational landscape, activation of oncogenic signaling pathways, and TCR repertoire in MPLC as compared with SN. The significant clonal expansion of shared TCR clonotypes demonstrated the existence of immune commonality among different lesions of the same patient and shed new light on the individually tailored precision therapy for MPLC.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhibo Zheng
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Song
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanghua Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haochen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqing Yu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yankai Xia
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruirui Li
- Department of Cardiothoracic Surgery, Civil Aviation General Hospital, Beijing, China
| | - Xiaoyan Si
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | - Zhe Feng
- Department of Cardiothoracic Surgery, The Sixth Hospital of Beijing, Beijing, China
| | - Zhixin Bie
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoguang Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huaxia Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China.
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Sang C, Yan L, Lin J, Lin Y, Gao Q, Shen X. Identification and validation of a lactate metabolism-related six-gene prognostic signature in intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol 2024; 150:199. [PMID: 38627278 PMCID: PMC11021257 DOI: 10.1007/s00432-024-05723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant and fatal liver tumor with increasing incidence worldwide. Lactate metabolism has been recently reported as a crucial contributor to tumor progression and immune regulation in the tumor microenvironment. However, it remains poorly identified about the biological functions of lactate metabolism in iCCA, which hinders the development of prognostic tools and therapeutic interventions. METHODS The univariate Cox regression analysis and Boruta algorithm were utilized to identify key lactate metabolism-related genes (LMRGs), and a prognostic signature was constructed based on LMRG scores. Genomic variations and immune cell infiltration were evaluated in the high and low LMRG score groups. Finally, the biological functions of key LMRGs were verified with in vitro and in vivo experiments. RESULTS Patients in the high LMRG score group exhibit a poor prognosis compared to those in the low LMRG score group, with a high frequency of TP53 and KRAS mutations. Moreover, the infiltration and function of NK cells were compromised in the high LMRG score group, consistent with the results from two independent single-cell RNA sequencing datasets and immunohistochemistry of tissue microarrays. Experimental data revealed that lactate dehydrogenase A (LDHA) knockdown inhibited proliferation and migration in iCCA cell lines and tumor growth in immunocompetent mice. CONCLUSION Our study revealed the biological roles of LDHA in iCCA and developed a reliable lactate metabolism-related prognostic signature for iCCA, offering promising therapeutic targets for iCCA in the clinic.
Collapse
Affiliation(s)
- Chen Sang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Li Yan
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lin
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.
| | - Xia Shen
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Wang Y, Fang L, Hu X, Wu H, Zhou L, Xue Q, Gao S, He J. The characteristics and prognosis of different disease patterns of multiple primary lung cancers categorized according to the 8th edition lung cancer staging system. J Cardiothorac Surg 2024; 19:200. [PMID: 38600565 PMCID: PMC11008024 DOI: 10.1186/s13019-024-02652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION The 8th edition lung cancer staging system was the first to describe the detailed diagnosis and staging of multiple primary lung cancers (MPLC). However, the characteristics and prognosis of MPLC categorized according to the new system have not been evaluated. METHOD We retrospectively analyzed data from surgically treated MPLC patients in a single center from 2011 to 2013 and explored the characteristics and outcomes of different MPLC disease patterns. RESULTS In total, 202 surgically treated MPLC patients were identified and classified into different groups according to disease categories and diagnostic time (multifocal ground glass/lepidic (GG/L) nodules: n = 139, second primary lung cancer (SPLC): n = 63, simultaneous MPLC (sMPLC): n = 171, and metachronous MPLC (mMPLC): n = 31). There were significant differences in clinical characteristics between SPLC and GG/L nodule patients and simultaneous and metachronous MPLC patients. The overall 1-, 3-, and 5-year lung cancer-specific survival rates of MPLC were 97.98%, 90.18%, and 82.81%, respectively. Five-year survival was better in patients with multiple GG/L nodules than in those with SPLC (87.94% vs. 71.29%, P < 0.05). Sex was an independent prognostic factor for sMPLC (5-year survival, female vs. male, 88.0% vs. 69.5%, P < 0.05), and in multiple tumors, the highest tumor stage was an independent prognostic factor for all categories of MPLC. CONCLUSIONS The different disease patterns of MPLC have significantly different characteristics and prognoses. Clinicians should place treatment emphasis on the tumor with the highest stage as it is the main contributor to the prognosis of all categories of MPLC patients.
Collapse
Affiliation(s)
- Yalong Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingling Fang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongliang Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Lina Zhou
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
He L, Nie X, Gao J, Yuan Y, Wang X, Li X, Guo F, Tang M, Zhang P, Li L. Metastasis ability, genomic profile, subtype characteristic and curative efficacy of multiple pulmonary hematogenous metastases in lung cancer. Clin Transl Med 2024; 14:e1639. [PMID: 38530159 PMCID: PMC10964915 DOI: 10.1002/ctm2.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Affiliation(s)
- Liuer He
- Department of OncologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
- Graduate School of Peking Union Medical CollegeBeijingChina
| | - Xin Nie
- Department of OncologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Jiayi Gao
- Department of OncologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Yue Yuan
- Department of OncologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Xue Wang
- Department of OncologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Xu Li
- Department of OncologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Fengzhu Guo
- Department of OncologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Min Tang
- Department of OncologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Ping Zhang
- Department of OncologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Lin Li
- Department of OncologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
- Graduate School of Peking Union Medical CollegeBeijingChina
| |
Collapse
|
20
|
Wang P, Ning J, Chen W, Zou F, Yu W, Rao T, Cheng F. Comprehensive analysis indicated that NDE1 is a potential biomarker for pan-cancer and promotes bladder cancer progression. Cancer Med 2024; 13:e6931. [PMID: 38466053 PMCID: PMC10926885 DOI: 10.1002/cam4.6931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/08/2023] [Accepted: 12/31/2023] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND The nuclear distribution E homologue 1 (NDE1) is a crucial dynein binding partner. The NDE1 protein has the potential to disrupt the normal functioning of centrosomes, leading to a compromised ability to generate spindles and ensure precise separation of chromosomes during cell division. The potential consequences of this phenomenon include genomic instability, malignant transformation and the proliferation of neoplastic growths. However, studies examining the connection between NDE1 and cancer is still very rare. METHODS The expression level, prognostic impact, gene change, DNA methylation, protein interaction, mRNA m6A modification, ceRNA network, associated gene and function enrichment, and immune-related effects of NDE1 in pan-cancer were examined using a range of online analytic tools and the R software package. The CCK-8 test, transwell assay, scratch assay and colony formation assay were used to confirm the effects of NDE1 on the proliferation, invasion and metastasis of bladder cancer cells. RESULTS Numerous tumour types have elevated NDE1, which is linked to a bad prognosis. NDE1 is an excellent diagnostic tool for many different types of cancer. Numerous malignancies have been linked to genetic changes in NDE1. NDE1 was connected to TMB, MSI, several immunological checkpoint genes and immune cell infiltration. NDE1 is linked to a number of immunological subtypes. NDE1 could affect how well immunotherapy works to treat different types of cancer. NDE1 was mostly associated with cell cycle, chromosomal segregation, DNA replication and mitotic segregation, according to GO and KEGG analyses. NDE1 physically binds to PAFAH1B1 and DCTN1, respectively. The proliferation, invasion and metastasis of bladder cancer cells may be prevented by NDE1 knockdown. Furthermore, knockdown of NDE1 promoted the apoptosis of bladder cancer cells. CONCLUSION High expression of NDE1 is present in a variety of tumours, which is linked to a bad prognosis for cancer. Knockdown of NDE1 inhibited the proliferation, invasion and metastasis of bladder cancer cells, and promoted the apoptosis. For a number of malignancies, NDE1 may be a biomarker for immunotherapy and prognosis.
Collapse
Affiliation(s)
- Peihan Wang
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of ImmunotherapyRenmin Hospital of Wuhan UniversityWuhanP.R. China
| | - Jinzhuo Ning
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of ImmunotherapyRenmin Hospital of Wuhan UniversityWuhanP.R. China
| | - Wu Chen
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of ImmunotherapyRenmin Hospital of Wuhan UniversityWuhanP.R. China
| | - Fan Zou
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of ImmunotherapyRenmin Hospital of Wuhan UniversityWuhanP.R. China
| | - Weimin Yu
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of ImmunotherapyRenmin Hospital of Wuhan UniversityWuhanP.R. China
| | - Ting Rao
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of ImmunotherapyRenmin Hospital of Wuhan UniversityWuhanP.R. China
| | - Fan Cheng
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of ImmunotherapyRenmin Hospital of Wuhan UniversityWuhanP.R. China
| |
Collapse
|
21
|
Tabrizi NS, Harris ES, Gallant BP, Fabian T. Clinical and pathologic staging accuracy in patients with synchronous multiple primary lung cancers. J Thorac Dis 2024; 16:491-497. [PMID: 38410583 PMCID: PMC10894432 DOI: 10.21037/jtd-23-1383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/01/2023] [Indexed: 02/28/2024]
Abstract
Background The incidence of synchronous multiple primary lung cancer (SMPLC) is increasing, occurring in up to 20% of lung cancer patients. Accurately identifying SMPLC can be challenging, and failure to recognize SMPLC results in poor outcomes. We sought to assess the staging accuracy of patients with SMPLC at our tertiary institution. Methods We retrospectively reviewed all patients who were evaluated for lung cancer resection between January 2018 to September 2019. Patients with SMPLC were identified using the modified Martini-Melamed criteria. Preoperative imaging, clinical assessment, and pathologic interpretation were reviewed and compared to the final staging assigned by a multidisciplinary lung cancer tumor board to determine accuracy. Results Out of 227 patients presenting for lung cancer resection, 47 patients with 119 SMPLC were identified, of which 38 (80.9%) were incorrectly staged by at least one report. Incorrect staging was most common by computed tomography (CT) reports (n=33/47, 70.2%), followed by positron emission tomography-CT (PET-CT) reports (n=28/45, 62.2%), surgeons' clinical assessment (n=10/47, 21.3%), and histopathology reports (n=8/47, 17.0%). CT reports, when incorrect, under-staged 97.0% (n=32) of patients. PET-CT reports, when incorrect, over-staged 25.0% (n=7) of patients by reporting the second primary nodule to be "consistent with metastasis". Histopathology reports, when incorrect, over-staged 87.5% (n=7) of patients despite lack of lymph node involvement. Conclusions Patients with SMPLC are at risk of receiving incorrect treatment based on radiographic and histopathologic staging reports alone. The observed staging inaccuracies are concerning, necessitating increased awareness among physicians caring for lung cancer patients.
Collapse
Affiliation(s)
| | - Erin S. Harris
- Department of Thoracic Surgery, Albany Medical Center, Albany, NY, USA
| | | | - Thomas Fabian
- Department of Thoracic Surgery, Albany Medical Center, Albany, NY, USA
| |
Collapse
|
22
|
Yang Y, Pei G, Li M, Ma X, Wang S, Min X, Meng S, Qin J, Wang H, Liu J, Huang Y. Case report: Targeted sequencing facilitates the diagnosis and management of rare multifocal pure ground-glass opacities with intrapulmonary metastasis. Front Oncol 2024; 13:1276095. [PMID: 38322291 PMCID: PMC10846301 DOI: 10.3389/fonc.2023.1276095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
Introduction Treatments for multiple ground-glass opacities (GGOs) for which the detection rate is increasing are still controversial. Next-generation sequencing (NGS) may provide additional key evidence for differential diagnosis or optimal therapeutic schedules. Case presentation We first reported a rare case in which more than 100 bilateral pulmonary GGOs (91.7% of the GGOs were pure GGOs) were diagnosed as both multiple primary lung cancer and intrapulmonary metastasis. We performed NGS with an 808-gene panel to assess both somatic and germline alterations in tissues and plasma. The patient (male) underwent three successive surgeries and received osimertinib adjuvant therapy due to signs of metastasis and multiple EGFR-mutated tumors. The patient had multiple pure GGOs, and eight tumors of four pathological subtypes were evaluated for the clonal relationship. Metastasis, including pure GGOs and atypical adenomatous hyperplasia, was found between two pairs of tumors. Circulating tumor DNA (ctDNA) monitoring of disease status may impact clinical decision-making. Conclusions Surgery combined with targeted therapies remains a reasonable alternative strategy for treating patients with multifocal GGOs, and NGS is valuable for facilitating diagnostic workup and adjuvant therapy with targeted drugs through tissue and disease monitoring via ctDNA.
Collapse
Affiliation(s)
- Yingshun Yang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Guotian Pei
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Mingwei Li
- Department of Medicine, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Xiaoxue Ma
- Department of Medicine, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Shuai Wang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Xianjun Min
- Department of Thoracic Surgery, Aerospace 731 Hospital, Beijing, China
| | - Shushi Meng
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Jiayue Qin
- Department of Medicine, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Huina Wang
- Department of Medicine, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Jun Liu
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Yuqing Huang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| |
Collapse
|
23
|
Lu M, Zhang X, Chu Q, Chen Y, Zhang P. Susceptibility Genes Associated with Multiple Primary Cancers. Cancers (Basel) 2023; 15:5788. [PMID: 38136334 PMCID: PMC10741435 DOI: 10.3390/cancers15245788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
With advancements in treatment and screening techniques, we have been witnessing an era where more cancer survivors harbor multiple primary cancers (MPCs), affecting approximately one in six patients. Identifying MPCs is crucial for tumor staging and subsequent treatment choices. However, the current clinicopathological criteria for clinical application are limited and insufficient, making it challenging to differentiate them from recurrences or metastases. The emergence of next-generation sequencing (NGS) technology has provided a genetic perspective for defining multiple primary cancers. Researchers have found that, when considering multiple tumor pairs, it is crucial not only to examine well-known essential mutations like MLH1/MSH2, EGFR, PTEN, BRCA1/2, CHEK2, and TP53 mutations but also to explore certain pleiotropic loci. Moreover, specific deleterious mutations may serve as regulatory factors in second cancer development following treatment. This review aims to discuss these susceptibility genes and provide an explanation of their functions based on the signaling pathway background. Additionally, the association network between genetic signatures and different tumor pairs will be summarized.
Collapse
Affiliation(s)
| | | | | | | | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.)
| |
Collapse
|
24
|
LI B, YANG Z, ZHAO Y, CHEN Y, HUANG Y. [Recent Advances in Diagnosis and Treatment Strategies for Multiple Primary Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:863-873. [PMID: 38061888 PMCID: PMC10714049 DOI: 10.3779/j.issn.1009-3419.2023.102.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 12/18/2023]
Abstract
As the utilization of computed tomography in lung cancer screening becomes more prevalent in the post-pandemic era, the incidence of multiple primary lung cancer (MPLC) has surged in various countries and regions. Despite the continued application of advanced histologic and sequencing technologies in this research field, the differentiation between MPLC and intrapulmonary metastasis (IM) remains challenging. In recent years, the specific mechanisms of genetic and environmental factors in MPLC have gradually come to light. Lobectomy still predominates in the treatment of MPLC, but the observation that tumor-specific sublobar resection has not detrimentally impacted survival appears to be a viable option. With the evolution of paradigms, the amalgamated treatment, primarily surgical, is an emerging trend. Among these, stereotactic ablative radiotherapy (SABR) and lung ablation techniques have emerged as efficacious treatments for early unresectable tumors and control of residual lesions. Furthermore, targeted therapies for driver-positive mutations and immunotherapy have demonstrated promising outcomes in the postoperative adjuvant phase. In this manuscript, we intend to provide an overview of the management of MPLC based on the latest discoveries.
.
Collapse
|
25
|
Wu S, Wu S, Liao X, Zhou C, Qiu F, Wang C, Zhong W. Pembrolizumab combined with anlotinib improves therapeutic efficacy in pulmonary sarcomatoid carcinoma with TMB-H and PD-L1 expression: a case report and literature review. Front Immunol 2023; 14:1274937. [PMID: 37936698 PMCID: PMC10626500 DOI: 10.3389/fimmu.2023.1274937] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Background Pulmonary sarcomatoid carcinoma (PSC) is a unique subtype of non-small cell lung cancer (NSCLC) with a high degree of malignancy and poor therapeutic effects. With the widespread use of immune checkpoint inhibitors (ICIs) in recent years, few studies have reported that immunotherapy is effective against PSC. As a multi-target anti-vascular targeting agent, anlotinib showed a better anti-tumor effect in various cancer species. The paper reported the therapeutic and side effects of pembrolizumab combined with anlotinib in a patient with advanced PSC. Case presentation This is a 73 year old female patient who underwent thoracoscopy right upper lobectomy and was diagnosed as locally advanced PSC. However, the patient experienced tumor recurrence and metastasis 7 weeks after surgery and was unable to tolerate chemoradiotherapy. Moreover, she detected TP53 mutation and found that tumor mutation burden (TMB) and PD-L1 were high expression. Therefore, the patient received pembrolizumab combined with anlotinib treatment. After 15 cycles of treatment, the tumor significantly shrank with no tumor activity. The evaluation of tumor efficacy is partial response (PR). During the treatment period, she experienced one-degree thyroid-stimulating hormone elevation and two-degree hand-foot syndrome. Pembrolizumab and anlotinib was continued for two years as a maintenance treatment. The patient had a good quality of life and no disease progression was observed. Currently, the patient is still alive without tumor progression and has overall survival exceeding 45 months and toxic side effects were tolerable. Conclusions Combining ICIs and anti-angiogenic targeted therapy has brought new hope in treating advanced PSC. Additionally, TMB and PD-L1 expression could be potential predictive biomarkers of the efficacy in advanced PSC with immunotherapy.
Collapse
Affiliation(s)
- Shugui Wu
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
- Department of Oncology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| | - Shanlian Wu
- Department of Pathology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| | - Xiaohong Liao
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
- Department of Oncology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| | - Chaoming Zhou
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
- Department of Oncology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| | - Feng Qiu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Wang
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
- Department of Oncology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| | - Wenjuan Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
26
|
Yan Y, Ren Y, Bao Y, Wang Y. RNA splicing alterations in lung cancer pathogenesis and therapy. CANCER PATHOGENESIS AND THERAPY 2023; 1:272-283. [PMID: 38327600 PMCID: PMC10846331 DOI: 10.1016/j.cpt.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 02/09/2024]
Abstract
RNA splicing alterations are widespread and play critical roles in cancer pathogenesis and therapy. Lung cancer is highly heterogeneous and causes the most cancer-related deaths worldwide. Large-scale multi-omics studies have not only characterized the mutational landscapes but also discovered a plethora of transcriptional and post-transcriptional changes in lung cancer. Such resources have greatly facilitated the development of new diagnostic markers and therapeutic options over the past two decades. Intriguingly, altered RNA splicing has emerged as an important molecular feature and therapeutic target of lung cancer. In this review, we provide a brief overview of splicing dysregulation in lung cancer and summarize the recent progress on key splicing events and splicing factors that contribute to lung cancer pathogenesis. Moreover, we describe the general strategies targeting splicing alterations in lung cancer and highlight the potential of combining splicing modulation with currently approved therapies to combat this deadly disease. This review provides new mechanistic and therapeutic insights into splicing dysregulation in cancer.
Collapse
Affiliation(s)
- Yueren Yan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Peng J, Fang S, Li M, Liu Y, Liang X, Li Z, Chen G, Peng L, Chen N, Liu L, Xu X, Dai W. Genetic alterations of KRAS and TP53 in intrahepatic cholangiocarcinoma associated with poor prognosis. Open Life Sci 2023; 18:20220652. [PMID: 37483430 PMCID: PMC10358752 DOI: 10.1515/biol-2022-0652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
The aim of this study is to investigate certain genetic features of intrahepatic cholangiocarcinoma (ICCA). A total of 12 eligible ICCA patients were enrolled, and tumor tissues from the patients were subjected to next-generation sequencing of a multi-genes panel. Tumor mutation burden (TMB), mutated genes, copy number variants (CNVs), and pathway enrichment analysis were performed. The median TMB was 2.76 Mutation/Mb (range, 0-36.62 Mutation/Mb) in ICCA patients. The top two most commonly mutated genes in ICCA were KRAS (33%) and TP53 (25%). The co-mutations of KRAS and TP53 were 16.7% (2/12) in ICCA patients. Notably, patient P6 with the highest TMB did not have KRAS and TP53 mutations. Additionally, TP53 and/or KRAS alterations were significantly associated with poor progression-free survival than those with wild type (1.4 months vs 18 months). DNA damage repair and homologs recombinant repair deficiencies were significantly associated with high TMB in ICCA cases. In conclusion, we found that certain genetic mutations of TP53 and KRAS could predict poor prognosis in ICCA patients.
Collapse
Affiliation(s)
- Jianbo Peng
- Foshan Traditional Chinese Medicine Hospital, Guangdong, 518000, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, China
| | - Meisheng Li
- Foshan First People’s Hospital, Guangdong, 518000, China
| | - Yuxin Liu
- Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Xiaolu Liang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Zuobiao Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Gaohui Chen
- Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Lijiao Peng
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Nianping Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Lei Liu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Xiaohong Xu
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Wei Dai
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| |
Collapse
|
28
|
Zhou D, Yao T, Huang X, Wu F, Jiang Y, Peng M, Qian B, Liu W, Yu F, Chen C. Real-world comprehensive diagnosis and "Surgery + X" treatment strategy of early-stage synchronous multiple primary lung cancer. Cancer Med 2023. [PMID: 37081738 DOI: 10.1002/cam4.5972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Diagnosing and treating synchronous multiple primary lung cancers (sMPLC) are complex and challenging. This study aimed to report real-world data on the comprehensive diagnosis and treatment of patients with early-stage sMPLC. MATERIALS AND METHODS A single-center cohort study was carried out and a large number of patients with early-stage sMPLC were included. A single- or two-stage surgery was performed to remove the primary and co-existing lesions. The "X" strategies, including ablation, SBRT, and EGFR-TKIs treatment, were applied to treat the high-risk residual lesions. Wide panel-genomic sequencing was performed to assess the genetic heterogeneity of the co-existing lesions. RESULTS A total of 465 early-stage sMPLC patients with 1198 resected lesions were included. Despite most patients being histologically different or harboring different genetic alternations, about 7.5% of the patients had the same histological type and driver gene mutation changes, comprehensive re-evaluation is thus needed. The "Surgery + X" strategy showed remarkable efficacy and safety in treating multiple lesions. Follow-up data revealed that the T2 stage (p = 0.014) and the solid presence of a primary lesion (p < 0.001) were significantly related to tumor recurrence. And a T2-stage primary tumor had a significantly higher rate of developing new lesions after the initial surgery (p < 0.001). CONCLUSIONS In real-world practice, histopathological and radiological evaluation combined with genetic analyses could be a robust diagnostic approach for sMPLC. The "Surgery + X" treatment strategy showed remarkable efficacy, superiority, and safety in the clinical treatment of early-stage sMPLC.
Collapse
Affiliation(s)
- Danting Zhou
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Tianyu Yao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Xiaojie Huang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Yi Jiang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Banglun Qian
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Wenliang Liu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| |
Collapse
|
29
|
Liu Z, Wang L, Gao S, Xue Q, Tan F, Li Z, Gao Y. Plasma metabolomics study in screening and differential diagnosis of multiple primary lung cancer. Int J Surg 2023; 109:297-312. [PMID: 36928390 PMCID: PMC10389222 DOI: 10.1097/js9.0000000000000006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 03/18/2023]
Abstract
BACKGROUND Multiple primary lung cancer (MPLC) is becoming increasingly common in clinical practice. Imaging examination is sometimes difficult to differentiate from intrapulmonary metastasis (IM) or single primary lung cancer (SPLC) before surgery. There is a lack of effective blood biomarkers as an auxiliary diagnostic method. PARTICIPANTS AND METHODS A total of 179 patients who were hospitalized and operated in our department from January to June 2019 were collected, and they were divided into SPLC with 136 patients, MPLC with 24 patients, and IM with 19 patients. In total, 96 healthy people without lung cancer were enrolled. Medical history, imaging, and pathology data were assembled from all participants. Plasma metabolomics analysis was performed by quadrupole time-of-flight tandem mass spectrometry, and data were analyzed using SPSS19.0/Simca 14.1/MetaboAnalyst5.0 software. Significant metabolites were selected by variable importance in projection, P value, and fold change. The area under the receiver operating characteristic curve was used to evaluate their diagnostic ability. RESULTS There were significant differences in plasma metabolite profiles between IM and MPLC. Seven metabolites were screened out. Two metabolites had higher levels in IM, and five metabolites had higher levels in MPLC. All had favorable discriminating capacity. Phosphatidyl ethanolamine (38:5) showed the highest sensitivity (0.95) and specificity (0.92). It was followed by l -histidine with sensitivity 0.92 and specificity 0.84. l -tyrosine can be used to identify SPLC and MPLC. The panel composed of related metabolites exhibited higher diagnostic ability. Eight principal metabolites caused remarkable differences between healthy people and MPLC, and five of them had area under the curves greater than 0.85, showing good discriminating power. CONCLUSION Through the study of plasma metabolomics, it was found that there were obvious differences in the metabolite profiles of MPLC, IM, SPLC, and the healthy population. Some discovered metabolites possessed excellent diagnostic competence with high sensitivity and specificity. They had the potential to act as biomarkers for the screening and differential diagnosis of MPLCs.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Langfang, People’s Republic of China
| | - Ling Wang
- Department of Hematology, Beijing Chuiyangliu Hospital, Beijing
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Langfang, People’s Republic of China
| |
Collapse
|
30
|
Liu Y, Lu T, Yuan M, Chen R, Lu J, Wang H, Wu Z, Wang Y. Genomic and transcriptomic insights into the precision treatment of pulmonary enteric adenocarcinoma. Lung Cancer 2023; 179:107169. [PMID: 37003209 DOI: 10.1016/j.lungcan.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Pulmonary enteric adenocarcinoma (PEAC) is a rare subtype of lung adenocarcinoma. More investigations about precision therapy in PEAC were required to improve the prognosis. METHODS Twenty-four patients with PEAC were enrolled in this study. Tumor tissue samples were available from 17 patients for both DNA and RNA based next-generation sequencing, PD-L1 IHC staining and PCR-based microsatellite instability (MSI) analysis. RESULTS TP53 (70.6%) and KRAS (47.1%) were the most frequently mutated genes in PEAC. For KRAS mutations, the prevalence of G12D (37.5%) and G12V (37.5%) was higher than G12A (12.5%) and G12C (12.5%). Actionable mutations in receptor tyrosine kinase (including one EGFR and two ALK mutations), PI3K/mTOR, RAS/RAF/MEK, homologous recombination repair (HRR) and cell cycle signaling pathways were identified in 94.1% of patients with PEAC. While PD-L1 expression was observed in 17.6% (3/17) patients, no MSI-H patients were identified. Transcriptomic data showed that two patients with positive PD-L1 expression had relatively high immune infiltration. In addition, prolonged survival was obtained with the treatment of osimertinib, ensartinib, and immunotherapy combined with chemotherapy in two EGFR-mutated, one ALK-rearranged, and one PD-L1 expressed patients, respectively. CONCLUSION PEAC is a disease of genetic heterogeneity. The administration of EGFR and ALK inhibitors was effective in patients with PEAC. PD-L1 expression and KRAS mutation type may be used as predictive biomarkers for immunotherapy in PEAC. This study provided both theoretical basis and clinical evidence for PEAC.
Collapse
|
31
|
CD47-targeted immunotherapy unleashes antitumour immunity in Epstein-Barr virus-associated gastric cancer. Clin Immunol 2023; 247:109238. [PMID: 36690192 DOI: 10.1016/j.clim.2023.109238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
The aims of this study were to enhance the antitumour immunity in Epstein-Barr virus-associated gastric cancer (EBVaGC). We performed RNA-seq analysis to compare the differential expression genes between EBVaGC and EBV-negative gastric cancer (EBVnGC) patients. The expression levels of CD68, CD163 and CD47 were analyzed by immunohistochemistry. Different subsets of macrophages were investigated by a coincubation model. The effects of CD47 blockade were also detected. The expression levels of CD68, CD163 and CD47 were significantly higher in EBVaGC, and were associated with poor prognoses. Macrophages coincubated with EBV+ AGS cells tended to be immunosuppressed, which could be reversed by CD47 deficiency or blocking CD47. EBV resulted in cGAS-STING pathway activation, which stimulated CD47 expression and inhibited macrophage phagocytosis. Anti-CD47 therapy activated cGAS-STING signaling, which was responsible for production of IFN-β, resulting in activation of antitumour immunity. Our results provide a promising new strategy for CD47-targeted immunotherapy in EBVaGC.
Collapse
|
32
|
Wang Y, Wang G, Zheng H, Liu J, Ma G, Huang G, Song Q, Du J. Distinct gene mutation profiles among multiple and single primary lung adenocarcinoma. Front Oncol 2022; 12. [PMID: 36531058 PMCID: PMC9755731 DOI: 10.3389/fonc.2022.1014997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
With the development of technologies, multiple primary lung cancer (MPLC) has been detected more frequently. Although large-scale genomics studies have made significant progress, the aberrant gene mutation in MPLC is largely unclear. In this study, 141 and 44 lesions from single and multiple primary lung adenocarcinoma (SP- and MP-LUAD) were analyzed. DNA and RNA were extracted from formalin-fixed, paraffin-embedded tumor tissue and sequenced by using the next-generation sequencing-based YuanSu450TM gene panel. We systematically analyzed the clinical features and gene mutations of these lesions, and found that there were six genes differently mutated in MP-LUAD and SP-LUAD lesions, including RBM10, CDK4, ATRX, NTRK1, PREX2, SS18. Data from the cBioPortal database indicated that mutation of these genes was related to some clinical characteristics, such as TMB, tumor type, et al. Besides, heterogeneity analysis suggested that different lesions could be tracked back to monophyletic relationships. We compared the mutation landscape of MP-LUAD and SP-LUAD and identified six differentially mutated genes (RBM10, CDK4, ATRX, NTRK1, PREX2, SS18), and certain SNV loci in TP53 and EGFR which might play key roles in lineage decomposition in multifocal samples. These findings may provide insight into personalized prognosis prediction and new therapies for MP-LUAD patients.
Collapse
|
33
|
Zhang X, Yu Z, Xu Y, Chao Y, Hu Q, Li C, Ye M, Zhu X, Cui L, Bai J, Gong Y, Guan Y, Zhou M, Huang J, Zhang H, Ren T, Shen Q, Wang K, Hou Y, Xia X, Pu X, Carbone DP, Zhang X. Utility of cell-free DNA from bronchial washing fluid in diagnosis and genomic determination for radiology-suspected pulmonary nodules. Br J Cancer 2022; 127:2154-2165. [PMID: 36253524 PMCID: PMC9727069 DOI: 10.1038/s41416-022-01969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Bronchial washing fluid (BWF) is a less-invasive specimen. Due to the limited sensitivity of BWF cellular component diagnosis, the aim of this study was to explore the potential role of BWF supernatant as a source of liquid biopsy of lung cancer. METHODS This prospective study enrolled 76 suspected and 5 progressed lung cancer patients. Transbronchial biopsy tissues, BWF supernatant (BWF_Sup) and BWF precipitant (BWF_Pre) were tested by a targeted panel of 1021 genes. RESULTS BWF_Sup cell-free DNA (cfDNA) was superior to tissue biopsy and BWF_Pre in determining mutational allele frequency, tumour mutational burden, and chromosomal instability. Moreover, BWF_Sup and BWF_Pre achieved comparable efficacy to tissue samples in differentiating malignant and benign patients, but only BWF_Sup persisted differentiated performance after excluding 55 malignancies pathologically diagnosed by bronchoscopic biopsy. Among 67 malignant patients, 82.1% and 71.6% of tumour-derived mutations (TDMs) were detected in BWF_Sup and BWF_Pre, respectively, and the detectability of TDMs in BWF_Sup was independent of the cytological examination of BWF. BWF_Sup outperformed BWF_Pre in providing more subclonal information and thus might yield advantage in tracking drug-resistant markers. CONCLUSIONS BWF_Sup cfDNA is a reliable medium for lung cancer diagnosis and genomic profiles and may provide important information for subsequent therapeutic regimens.
Collapse
Affiliation(s)
- Xinyu Zhang
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Zhuo Yu
- Beijing Tsinghua Changgung Hospital, 168 Litang Road, Changping District, 102218, Beijing, China
| | - Yaping Xu
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yencheng Chao
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Qin Hu
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Chun Li
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Maosong Ye
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Xiuli Zhu
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Liang Cui
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Jing Bai
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yuhua Gong
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yanfang Guan
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Min Zhou
- Ruijin Hospital, Shanghai Jiao Tong University, No. 197 Ruijin Second Road, Huangpu District, 200025, Shanghai, China
| | - Jian'an Huang
- First People's Hospital, Suzhou University, No. 899 Pinghai Road, Gusu District, 215008, Suzhou, China
| | - Hua Zhang
- Zhengzhou Central Hospital, Zhengzhou University, No. 195 Tongbai Road, Zhongyuan District, 450000, Zhengzhou, China
| | - Tao Ren
- Shanghai Sixth People's Hospital, No 600 Yishan Road, Xuhui District, 200233, Shanghai, China
| | - Qian Shen
- First Affiliated Hospital of Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310002, Hangzhou, China
| | - Kai Wang
- Fourth Affiliated Hospital of Zhejiang University, No 88 Jiefang Road, Shangcheng District, 310002, Hangzhou, China
| | - Yingyong Hou
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Xingxiang Pu
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital/the affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, 410013, Changsha, Hunan, China.
| | - David P Carbone
- Comprehensive Cancer Center, The Ohio State University, 460W 12th Ave., Columbus, OH, 43210, USA.
| | - Xin Zhang
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China.
| |
Collapse
|
34
|
Ding W, Li B, Zhang Y, He L, Su J. A neutrophil extracellular traps-associated lncRNA signature predicts the clinical outcomes in patients with lung adenocarcinoma. Front Genet 2022; 13:1047231. [PMID: 36419832 PMCID: PMC9676361 DOI: 10.3389/fgene.2022.1047231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/25/2022] [Indexed: 10/24/2023] Open
Abstract
Backgrounds: Neutrophil extracellular traps (NETs) play an important role in the occurrence, metastasis, and immune escape of cancers. We aim to investigate Long non-coding RNAs (lncRNAs) that are correlated to NETs to find some potentially useful biomarkers for lung adenocarcinoma (LUAD), and to explore their correlations with immunotherapy and chemotherapy, as well as the tumor microenvironment. Methods: Based on the The Cancer Genome Atlas (TCGA) database, we identified the prognosis-related lncRNAs which are associated with NETs using cox regression. The patients were then separated into two clusters based on the expression of NETs-associated lncRNAs to perform tumor microenvironment analysis and immune-checkpoint analysis. Least absolute shrinkage and selection operator (LASSO) regression was then performed to establish a prognostic signature. Furthermore, nomogram analysis, tumor mutation burden analysis, immune infiltration analysis, as well as drug sensitivity analysis were performed to test the signature. Results: Using univariate cox regression, we found 10 NETs-associated lncRNAs that are associated with the outcomes of LUAD patients. Also, further analysis which separated the patients into 2 clusters showed that the 10 lncRNAs had significant correlations with the tumor microenvironment. Using LASSO regression, we finally constructed a signature to predict the outcomes of the patients based on 4 NETs-associated lncRNAs. The 4 NETs-associated lncRNAs were namely SIRLNT, AL365181.3, FAM83A-AS1, and AJ003147.2. Using Kaplan-Meier (K-M) analysis, we found that the risk model was strongly associated with the survival outcomes of the patients both in the training group and in the validation group 1 and 2 (p < 0.001, p = 0.026, and p < 0.01). Using receiver operating characteristic (ROC) curve, we tested the sensitivity combined with the specificity of the model and found that the risk model had a satisfactory level of 1-year, 3-year, and 5-year concordance index (C-index) (C = 0.661 in the training group, C = 0.679 in validation group 1, C = 0.692 in validation group 2). We also explored the immune microenvironment and immune checkpoint correlation of the risk model and found some significant results. Conclusion: We constructed a NETs-associated lncRNA signature to predict the outcome of patients with LUAD, which is associated with immunephenoscores and immune checkpoint-gene expression.
Collapse
Affiliation(s)
- Wencong Ding
- Department of Rheumatology, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Biyi Li
- Department of Emergency Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Yuan Zhang
- Department of Emergency, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Liu He
- Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Junwei Su
- Department of Emergency, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
35
|
Zeng Z, Qian X, Liu F, Wang Y, Yuan Y, Fang C, Zhang X, Yuan S, Chen R, Yu B, Wang T, Yin Y, Li Y, Liu A. The efficacy and safety analysis of first-line immune checkpoint inhibitors in pulmonary sarcomatoid carcinoma. Front Immunol 2022; 13:956982. [PMID: 36389780 PMCID: PMC9659892 DOI: 10.3389/fimmu.2022.956982] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/04/2022] [Indexed: 09/26/2023] Open
Abstract
Background Pulmonary sarcomatoid carcinoma (PSC) is a rare and aggressive disease without standardized treatment strategies. The efficacy of second-line or beyond immune checkpoint inhibitors (ICIs) has been proven in recent studies, whereas the evidence for first-line immunotherapy for PSC is still limited to case reports and remains poorly understood. Materials and methods This was a multicenter, retrospective analysis of 21 patients with a histological diagnosis of PSC who received ICI as first-line therapy from January 2019 to March 2022. The expression of PD-L1 was evaluated by immunohistochemistry (IHC) using the monoclonal antibody 22C3. Low and high PD-L1 expressions were defined using the tumor proportion score (TPS), with cutoffs of 1 and 50%, respectively. Results All eight patients had PD-L1 positivity who underwent PD-L1 expression assessment, and six patients (6/8, 75.0%) had high PD-L1 expression. Among the 21 PSC patients, seven received tislelizumab, six received camrelizumab, four received sintilimab, three received pembrolizumab, and one received durvalumab. Among them, 18 PSCs received combination therapy, whereas another three PSCs received immunotherapy alone. Out of the 21 PSC patients, 12 (57.1%) achieved a partial response (PR), and five patients had stable disease (SD) as the best response, whereas four PSCs experienced dramatic progressive disease (PD). The median progression-free survival (PFS) was 9.2 (95% CI [4.3, 14.1]) months, and the median OS was 22.8 (95% CI [4.0, 41.5]) months. Among the three treatment groups (immunotherapy alone, immunotherapy combined with anlotinib, and chemoimmunotherapy), the median PFS was 8.0, 9.4, and 9.6 months, and the median OS was 19.0, 22.8, and 30.6 months, respectively. There was no difference in PFS and OS between the three treatment regimen groups (P = 0.86 and P = 0.34, respectively) and different immunotherapies (P = 0.10 and P = 0.23, respectively). No serious adverse events (grade ≥ 3) were noted. Conclusion First-line immunotherapy has promising therapeutic potential in the treatment of PSC. More studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Zhimin Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi, China
- Radiation Induced Heart Damage Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoying Qian
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fanrong Liu
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Yuan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Fang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinwei Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shangkun Yuan
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfang Chen
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Yu
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Yin
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi, China
- Radiation Induced Heart Damage Institute of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
36
|
Zhao X, Bao Y, Meng B, Xu Z, Li S, Wang X, Hou R, Ma W, Liu D, Zheng J, Shi M. From rough to precise: PD-L1 evaluation for predicting the efficacy of PD-1/PD-L1 blockades. Front Immunol 2022; 13:920021. [PMID: 35990664 PMCID: PMC9382880 DOI: 10.3389/fimmu.2022.920021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Developing biomarkers for accurately predicting the efficacy of immune checkpoint inhibitor (ICI) therapies is conducive to avoiding unwanted side effects and economic burden. At the moment, the quantification of programmed cell death ligand 1 (PD-L1) in tumor tissues is clinically used as one of the combined diagnostic assays of response to anti-PD-1/PD-L1 therapy. However, the current assays for evaluating PD-L1 remain imperfect. Recent studies are promoting the methodologies of PD-L1 evaluation from rough to precise. Standardization of PD-L1 immunohistochemistry tests is being promoted by using optimized reagents, platforms, and cutoff values. Combining novel in vivo probes with PET or SPECT will probably be of benefit to map the spatio-temporal heterogeneity of PD-L1 expression. The dynamic change of PD-L1 in the circulatory system can also be realized by liquid biopsy. Consider PD-L1 expressed on non-tumor (immune and non-immune) cells, and optimized combination detection indexes are further improving the accuracy of PD-L1 in predicting the efficacy of ICIs. The combinations of artificial intelligence with novel technologies are conducive to the intelligence of PD-L1 as a predictive biomarker. In this review, we will provide an overview of the recent progress in this rapidly growing area and discuss the clinical and technical challenges.
Collapse
Affiliation(s)
- Xuan Zhao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yulin Bao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Bi Meng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Zijian Xu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sijin Li
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xu Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wen Ma
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dan Liu, ; Junnian Zheng, ; Ming Shi,
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dan Liu, ; Junnian Zheng, ; Ming Shi,
| | - Ming Shi
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dan Liu, ; Junnian Zheng, ; Ming Shi,
| |
Collapse
|
37
|
Zhang W, Tang Y, Guo Y, Kong Y, Shi F, Sheng C, Wang S, Wang Q. Favorable immune checkpoint inhibitor outcome of patients with melanoma and NSCLC harboring FAT1 mutations. NPJ Precis Oncol 2022; 6:46. [PMID: 35739249 PMCID: PMC9226130 DOI: 10.1038/s41698-022-00292-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are most commonly used for melanoma and non-small cell lung cancer (NSCLC) patients. FAT atypical cadherin 1 (FAT1), which frequently mutates in melanoma and NSCLC. In this study, we aim to investigate the association of FAT1 mutations with ICI response and outcome. We collected somatic mutation profiles and clinical information from ICI-treated 631 melanoma and 109 NSCLC samples, respectively. For validation, a pan-cancer cohort with 1661 patients in an immunotherapy setting was also used. Melanoma and NSCLC samples from the Cancer Genome Atlas were used to evaluate the potential immunologic mechanisms of FAT1 mutations. In melanoma, patients with FAT1 mutations had a significantly improved survival outcome than those wild-type patients (HR: 0.67, 95% CI: 0.46–0.97, P = 0.033). An elevated ICI response rate also appeared in FAT1-mutated patients (43.2% vs. 29.2%, P = 0.032). Associations of FAT1 mutations with improved prognosis and ICI response were confirmed in NSCLC patients. In the pan-cancer cohort, the association between FAT1 mutations and favorable ICI outcome was further validated (HR: 0.74, 95% CI: 0.58–0.96, P = 0.022). Genomic and immunologic analysis showed that a high mutational burden, increased infiltration of immune-response cells, decreased infiltration of immune-suppressive cells, interferon and cell cycle-related pathways were enriched in patients with FAT1 mutations. Our study revealed that FAT1 mutations were associated with better immunogenicity and ICI efficacy, which may be considered as a biomarker for selecting patients to receive immunotherapy.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Yunfeng Tang
- School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Yuxian Guo
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Yujia Kong
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Fuyan Shi
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Chao Sheng
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Suzhen Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Qinghua Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China.
| |
Collapse
|
38
|
Zhang Q, Yu X, Zhang S, Guo W, He Y. Molecular characteristics of novel immune subtypes of HCC based on lncRNAs related to immune disorders. Sci Rep 2022; 12:8905. [PMID: 35618810 PMCID: PMC9135727 DOI: 10.1038/s41598-022-13013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
As one of the most malignant cancers and despite various treatment breakthroughs, the prognosis of hepatocellular carcinoma (HCC) remains unsatisfactory. The immune status of the tumor microenvironment (TME) relates closely to HCC progression; however, the mechanism of immune cell infiltration in the TME remains unclear. In this study, we performed a new combination algorithm on lncRNA expression profile data from the TCGA-LIHC cohort to identify lncRNAs related to immune disorders. We identified 20 immune disorder-related lncRNAs and clustered HCC samples based on these lncRNAs. We identified four clusters with differences in immune cell infiltration and immune checkpoint gene expression. We further analyzed differences between groups 1 and 3 and found that the poor prognosis of group 3 may be due to specific and non-specific immunosuppression of the TME, upregulation of immune checkpoint pathways, and activation of tumor proliferation and migration pathways in group 3. We also developed a prognostic model and verified that it has good stability, effectiveness, and prognostic power. This study provides a basis for further exploration of the immune cell infiltration mechanism in HCC, differential HCC prognosis, and improvement of the efficacy of ICIs for the treatment of HCC.
Collapse
Affiliation(s)
- Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
39
|
Liu J, Zhao Z, Wei S, Li B, Zhao Z. Genomic features of Chinese small cell lung cancer. BMC Med Genomics 2022; 15:117. [PMID: 35596192 PMCID: PMC9123817 DOI: 10.1186/s12920-022-01255-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/22/2022] [Indexed: 11/12/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is an aggressive disease with poor survival. Although molecular and clinical characteristics have been established for SCLC in western patients, limited investigation has been performed for Chinese SCLC patients. Objective In this study, we investigated the genomic features of Chinese SCLC patients. Methods A total of 75 SCLC patients were enrolled. Genomic alterations in 618 selected genes were analyzed by targeted next-generation sequencing. Results Here, we showed that TP53 (77.30%) and RB1 (30.70%) were the most prevalent genes alterations, followed by KMT2D, ALK, LRP1B, EGFR, NOTCH3, AR, CREBBP, ROS1, and BRCA2. And the most common genetic alterations were enriched in the cell cycle signaling pathway (84.00%) of Chinese SCLC patients. DNA damage repair (DDR) pathway analysis showed that the most frequently enriched DDR pathways were fanconi anaemia (FA, 29.41%) and homology recombination (HR, 21.57%). Notably, 9.33% SCLC patients in our cohort had pathogenic or likely pathogenic germline gene variants. Compared with the U Cologne cohort, a higher prevalence in EGFR, AR, BRCA2, TSC1, ATXN3, MET, MSH2, ERBB3 and FOXA1 were found in our cohort; while compared to the data from the Johns Hopkins cohort, a higher mutated frequency in TP53, KMT2D, ALK, and EGFR were found in our cohort. Moreover, a significant association was found between high tumor mutation burden (TMB) and mutations involved in TP53, CREBBP, EPHA3, KMT2D, ALK and RB1. Approximately 33.33% of patients with SCLC harbored at least one actionable alteration annotated by OncoKB, of which one patient had alterations of level 1; seventeen patients had level 3; fifteen patients possessed level 4. Conclusion Our data might provide an insightful meaning in targeted therapy for Chinese SCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01255-3.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Zhuxiang Zhao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Binkai Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Ziwen Zhao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China.
| |
Collapse
|
40
|
Liang N, Bing Z, Wang Y, Liu X, Guo C, Cao L, Xu Y, Song Y, Gao C, Tian Z, Wu P, Xue J, Li B, Jia Z, Yang X, Wu Y, Yu R, Liu R, Chen X, Ou Q, Bao H, Wu X, Cao Z, Li J, Li S. Clinical implications of EGFR-associated MAPK/ERK pathway in multiple primary lung cancer. Clin Transl Med 2022; 12:e847. [PMID: 35538869 PMCID: PMC9091990 DOI: 10.1002/ctm2.847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Song
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenhuan Tian
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Pancheng Wu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziqi Jia
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College, Eight-Year MD Program, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoying Yang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College, Eight-Year MD Program, Chinese Academy of Medical Sciences, Beijing, China
| | - Yijun Wu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College, Eight-Year MD Program, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruoying Yu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Rui Liu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xiaoxi Chen
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Qiuxiang Ou
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hua Bao
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xue Wu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Zhili Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
41
|
The clinical and prognostic significance of CMTM6/PD-L1 in oncology. Clin Transl Oncol 2022; 24:1478-1491. [PMID: 35278198 DOI: 10.1007/s12094-022-02811-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
The recent discovery of CMTM6 and to a lesser extent CMTM4, two members of the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family, as master positive regulators of PD-L1 expression, the primary ligand of programmed cell death 1 (PD-1), on tumor and immune cells has opened new horizons for investigating the role of CMTM6/CMTM4 in different aspects of oncology including their clinical and prognostic values in different cancer types. The absence of a specific review article addressing the available results about the clinical and prognostic roles of CMTM6 alone and/or in combination with PD-L1 in cancer has encouraged us to write this paper.
Collapse
|