1
|
Diez-Ahijado L, Cilleros-Portet A, Fernández-Jimenez N, Fernández MF, Guxens M, Julvez J, Llop S, Lopez-Espinosa MJ, Subiza-Pérez M, Lozano M, Ibarluzea J, Sunyer J, Bustamante M, Cosin-Tomas M. Evaluating the association between placenta DNA methylation and cognitive functions in the offspring. Transl Psychiatry 2024; 14:383. [PMID: 39304652 DOI: 10.1038/s41398-024-03094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The placenta plays a crucial role in protecting the fetus from environmental harm and supports the development of its brain. In fact, compromised placental function could predispose an individual to neurodevelopmental disorders. Placental epigenetic modifications, including DNA methylation, could be considered a proxy of placental function and thus plausible mediators of the association between intrauterine environmental exposures and genetics, and childhood and adult mental health. Although neurodevelopmental disorders such as autism spectrum disorder have been investigated in relation to placenta DNA methylation, no studies have addressed the association between placenta DNA methylation and child's cognitive functions. Thus, our goal here was to investigate whether the placental DNA methylation profile measured using the Illumina EPIC array is associated with three different cognitive domains (namely verbal score, perceptive performance score, and general cognitive score) assessed by the McCarthy Scales of Children's functions in childhood at age 4. To this end, we conducted epigenome-wide association analyses, including data from 255 mother-child pairs within the INMA project, and performed a follow-up functional analysis to help the interpretation of the findings. After multiple-testing correction, we found that methylation at 4 CpGs (cg1548200, cg02986379, cg00866476, and cg14113931) was significantly associated with the general cognitive score, and 2 distinct differentially methylated regions (DMRs) (including 27 CpGs) were significantly associated with each cognitive dimension. Interestingly, the genes annotated to these CpGs, such as DAB2, CEP76, PSMG2, or MECOM, are involved in placenta, fetal, and brain development. Moreover, functional enrichment analyses of suggestive CpGs (p < 1 × 10-4) revealed gene sets involved in placenta development, fetus formation, and brain growth. These findings suggest that placental DNA methylation could be a mechanism contributing to the alteration of important pathways in the placenta that have a consequence on the offspring's brain development and cognitive function.
Collapse
Affiliation(s)
- Laia Diez-Ahijado
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Nora Fernández-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- University of Granada, Biomedical Research Centre, Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
| | - Monica Guxens
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jordi Julvez
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Clinical and Epidemiological Neuroscience, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Sabrina Llop
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Mikel Subiza-Pérez
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Clinical and Health Psychology and Research Methods, University of the Basque Country UPV/EHU, Avenida Tolosa 70, 20018, Donostia-San Sebastián, Spain
- Bradford Institute for Health Research, Temple Bank House, Bradford Royal Infirmary, Duckworth Lane, BD9 6RJ, Bradford, UK
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Jesus Ibarluzea
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
| | - Jordi Sunyer
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Marta Cosin-Tomas
- ISGlobal, Institute for Global Health, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública, Madrid, Spain.
| |
Collapse
|
2
|
Teng Z, Zhu Y, Lin D, Hao Q, Yue Q, Yu X, Sun S, Jiang L, Lu S. Deciphering the chromatin spatial organization landscapes during BMMSC differentiation. J Genet Genomics 2023; 50:264-275. [PMID: 36720443 DOI: 10.1016/j.jgg.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
The differentiation imbalance in bone marrow mesenchymal stem cells (BMMSCs) is critical for the development of bone density diseases as the population ages. BMMSCs are precursor cells for osteoblasts and adipocytes; however, the chromatin organization landscapes during BMMSC differentiation remain elusive. In this study, we systematically delineate the four-dimensional (4D) genome and dynamic epigenetic atlas of BMMSCs by RNA sequencing (RNA-seq), assay for transposase-accessible chromatin sequencing (ATAC-seq), and high-throughput chromosome conformation capture (Hi-C). The structure analyses reveal 17.5% common and 28.5%-30% specific loops among BMMSCs, osteoblasts, and adipocytes. The subsequent correlation of genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) data with multi-omics analysis reveal 274 genes and 3634 single nucleotide polymorphisms (SNPs) associated with bone degeneration and osteoporosis (OP). We hypothesize that SNP mutations affect transcription factor (TF) binding sites, thereby affecting changes in gene expression. Furthermore, 26 motifs, 260 TFs, and 291 SNPs are identified to affect the eQTL. Among these genes, DAAM2, TIMP2, and TMEM241 were found to be essential for diseases such as bone degeneration and OP and may serve as potential drug targets.
Collapse
Affiliation(s)
- Zhaowei Teng
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China; Key Laboratory of Yunnan Provincial Innovative Application of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China; Clinical Medical Research Center, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Yun Zhu
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qinggang Hao
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650504, China
| | - Qiaoning Yue
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Xiaochao Yu
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Shuo Sun
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Lihong Jiang
- Key Laboratory of Yunnan Provincial Innovative Application of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Sheng Lu
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China.
| |
Collapse
|
3
|
Zeng H, Ge J, Xu W, Ma H, Chen L, Xia M, Pan B, Lin H, Wang S, Gao X. Twelve Loci Associated With Bone Density in Middle-aged and Elderly Chinese: The Shanghai Changfeng Study. J Clin Endocrinol Metab 2023; 108:295-305. [PMID: 36228083 DOI: 10.1210/clinem/dgac597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/08/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Previous genome-wide association studies (GWASs) of bone mineral density (BMD) were mainly conducted in Europeans. OBJECTIVE To explore genetic variants that affect BMD and sex differences in a Chinese population. METHODS A total of 5428 middle-aged and elderly Chinese were included. Dual-energy X-ray absorptiometry was used to measure BMD at the lumbar spine, and total and specific sites of the hip. A mixed linear model was used to analyze the associations between BMD and autosomal genetic variants, adjusting for age, age squared, sex, and menopausal women (model 1); model 2 was further adjusted for height and weight. A GWAS of osteoporosis in the Biobank Japan (BBJ) project was used for replication. GWAMA software was used to detect the statistical significance of sex differences of estimated effects. Gene annotation and pathway enrichment analysis were performed. RESULTS Women lost BMD at earlier ages and faster than men. The 2 models identified a total of 12 loci that were associated with BMD at any site. Single nucleotide polymorphisms rs72354346, rs2024219, rs1463093, rs10037512, and rs5880932 were successfully replicated in the BBJ. Variations of rs79262027 G>A (VKORC1L1) and rs4795209 A>G (DDX52) were associated with BMD only in men, and rs1239055408 G>GA (KCNJ2) was associated with BMD only in women. Gene enrichment analysis showed that BMD in a Chinese elderly population was mainly related to ossification, bone resorption, sex hormones, and kidney physiology. CONCLUSION The present GWAS identified 12 loci that were significantly associated with BMD at any site in a Chinese population, and 3 of them showed sex differences in their effects.
Collapse
Affiliation(s)
- Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jieyu Ge
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjie Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Ma
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Chen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Ding J, Zhang C, Guo Y. The association of OPG polymorphisms with risk of osteoporotic fractures: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26716. [PMID: 34397809 PMCID: PMC8341286 DOI: 10.1097/md.0000000000026716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/02/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Subjects with low bone mineral density and osteoporosis are more likely to suffer osteoporotic fractures during their lifetime. Polymorphisms in osteoprotegerin (OPG) gene are found to be associated with low bone mineral density and osteoporosis risk but their association with fracture risk is inconclusive. Here, we performed a meta-analysis to investigate the relationship between OPG polymorphisms with susceptibility to osteoporotic fractures. METHODS Eligible studies investigating the association between common OPG polymorphisms (A164G, T245G, T950C, and G1181C) and risk of osteoporotic fracture were retrieved from PubMed, EMBASE, Web of Science, and the Cochrane Library. Odds ratio (OR) and the 95% confidence interval (CI) were calculated in the allelic, dominant, recessive, and homozygous model. Subgroup analyses of vertebral fractures, Caucasians, and postmenopausal women were also performed. RESULTS A total of 14 studies comprising 5459 fracture cases and 9860 non-fracture controls were included. A163G was associated with fracture risk in dominant (OR = 1.29, 95%CI 1.11-1.50), recessive (OR = 1.64, 95%CI 1.10-2.44), and homozygous model (OR = 1.73, 95%CI 1.16-2.59). T245G was significantly correlated with susceptibility to fractures in all genetic models. Subjects with CC genotype of T950C had a reduced risk of fracture compared to those with CT or TT genotypes (OR = 0.81, 95%CI 0.70-0.94, P = .004). Subgroup analysis showed that A163G and T245G but not T950C and G1181C were associated with vertebral fracture risk. CONCLUSION OPG A163G and T245G polymorphisms were risk factors of osteoporotic fractures while T950C had a protective role. These polymorphisms can be used as predictive markers of fractures.
Collapse
|
5
|
Lee JH, Park J, Kim JH, Choi JY, Choi HJ, Ku EJ, Hong AR, Shin CS, Cho NH. Integrative analysis of genetic and clinical risk factors for bone loss in a Korean population. Bone 2021; 147:115910. [PMID: 33722773 DOI: 10.1016/j.bone.2021.115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The relative contribution of genetic and clinical factors for bone loss is not well known. This study aimed to investigate the annualized percentage change in total hip bone mineral density (BMD) and the genetic and clinical risk factors for bone loss in a Korean prospective cohort study over a 6-year period. METHODS We included 645 men aged ≥50 years and 683 postmenopausal women who had repeated BMD testing between 2007 and 2014. The association between covariates and annualized percentage change in hip BMD was analyzed through the multivariate linear regression analysis. A total of 2614 single-nucleotide polymorphisms (SNPs) from 23 known BMD-related candidate genes and genome-wise association study were investigated. RESULTS Hip bone loss increased more rapidly in women than in men with advancing age. Hip bone loss in men increased with lean mass (LM) loss (%/year) (P < 0.001) and current smoking (P = 0.024) and decreased with increasing waist circumference (WC) (P < 0.001), alcohol consumption (P = 0.049), and increase in red blood cell counts (P = 0.031). Decreasing WC (P = 0.009), LM loss (%/year) (P < 0.001), and years since menopause ≤ 3 years (P = 0.003) significantly correlated with hip bone loss in women aged 45-59 years. Hip bone loss in women aged ≥60 years increased with advancing age (P = 0.012), alcohol consumption (P = 0.028), LM loss (%/year) (P = 0.031), and fat mass loss (%/year) (P < 0.001) and decreased with increasing WC (P = 0.025). LRP5 rs498830 (β = 0.127, P = 0.007) and TNFSF11 rs7325635 (β = 0.146, P = 0.001) were the top SNPs related to hip bone loss in men and postmenopausal women, respectively. However, none of the SNPs were associated with hip bone loss after Benjamini-Hochberg adjustment. CONCLUSION In this study, decreasing WC and LM were significant risk factors for hip bone loss in both men and women. Those factors were also identified that had sex-specific or age-specific effects on hip bone loss. None of the SNPs were associated with hip bone loss after multiple testing adjustments. The understanding of the modifiable factors contributing to bone loss has been broadened, and this may have implications such as in developing individualized preventive strategy. Further studies are needed to better predict the risk for bone loss in men and women.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, VHS Medical Center, Seoul, Republic of Korea
| | - JooYong Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyung Jin Choi
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eu Jeong Ku
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Chungbuk National University hospital, Cheongju Si, Republic of Korea
| | - A Ram Hong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Chonnam National University Medical School, Chonnam, Republic of Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam H Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
6
|
Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 2021; 9:23. [PMID: 33927194 PMCID: PMC8085014 DOI: 10.1038/s41413-021-00143-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Osteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.
Collapse
|
7
|
Rocha-Braz MGM, França MM, Fernandes AM, Lerario AM, Zanardo EA, de Santana LS, Kulikowski LD, Martin RM, Mendonca BB, Ferraz-de-Souza B. Comprehensive Genetic Analysis of 128 Candidate Genes in a Cohort With Idiopathic, Severe, or Familial Osteoporosis. J Endocr Soc 2020; 4:bvaa148. [PMID: 33195954 PMCID: PMC7645613 DOI: 10.1210/jendso/bvaa148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
CONTEXT The genetic bases of osteoporosis (OP), a disorder with high heritability, are poorly understood at an individual level. Cases of idiopathic or familial OP have long puzzled clinicians as to whether an actionable genetic cause could be identified. OBJECTIVE We performed a genetic analysis of 28 cases of idiopathic, severe, or familial osteoporosis using targeted massively parallel sequencing. DESIGN Targeted sequencing of 128 candidate genes was performed using Illumina NextSeq. Variants of interest were confirmed by Sanger sequencing or SNP array. PATIENTS AND SETTING Thirty-seven patients in an academic tertiary hospital participated (54% male; median age, 44 years; 86% with fractures), corresponding to 28 sporadic or familial cases. MAIN OUTCOME MEASURE The identification of rare stop-gain, indel, splice site, copy-number, or nonsynonymous variants altering protein function. RESULTS Altogether, we identified 28 variants of interest, but only 3 were classified as pathogenic or likely pathogenic variants: COL1A2 p.(Arg708Gln), WNT1 p.(Gly169Asp), and IDUA p.(His82Gln). An association of variants in different genes was found in 21% of cases, including a young woman with severe OP bearing WNT1, PLS3, and NOTCH2 variants. Among genes of uncertain significance analyzed, a potential additional line of evidence has arisen for GWAS candidates GPR68 and NBR1, warranting further studies. CONCLUSIONS While we hope that continuing efforts to identify genetic predisposition to OP will lead to improved and personalized care in the future, the likelihood of identifying actionable pathogenic variants in intriguing cases of idiopathic or familial osteoporosis is seemingly low.
Collapse
Affiliation(s)
- Manuela G M Rocha-Braz
- Laboratorio de Endocrinologia Celular e Molecular LIM-25, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Monica M França
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- The University of Chicago, Department of Medicine, Section of Endocrinology, Chicago, Illinois USA
| | - Adriana M Fernandes
- Laboratorio de Endocrinologia Celular e Molecular LIM-25, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio M Lerario
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Evelin A Zanardo
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas S de Santana
- Laboratorio de Endocrinologia Celular e Molecular LIM-25, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Leslie D Kulikowski
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Regina M Martin
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Berenice B Mendonca
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Ferraz-de-Souza
- Laboratorio de Endocrinologia Celular e Molecular LIM-25, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Liu X, Zhang Y, Tian J, Gao F. Analyzing Genome-Wide Association Study Dataset Highlights Immune Pathways in Lip Bone Mineral Density. Front Genet 2020; 11:4. [PMID: 32211016 PMCID: PMC7077504 DOI: 10.3389/fgene.2020.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a common complex human disease. Until now, large-scale genome-wide association studies (GWAS) using single genetic variant have reported some novel osteoporosis susceptibility variants. However, these risk variants only explain a small proportion of osteoporosis genetic risk, and most genetic risk is largely unknown. Interestingly, the pathway analysis method has been used in investigation of osteoporosis mechanisms and reported some novel pathways. Until now, it remains unclear whether there are other risk pathways involved in BMD. Here, we selected a lip BMD GWAS with 301,019 SNPs in 5,858 Europeans, and conducted a gene-based analysis (SET SCREEN TEST) and a pathway-based analysis (WebGestalt). On the gene level, BMD susceptibility genes reported by previous GWAS were identified to be the top 10 significant signals. On the pathway level, we identified 27 significant KEGG pathways. Three immune pathways including T cell receptor signaling pathway (hsa04660), complement and coagulation cascades (hsa04610), and intestinal immune network for IgA production (hsa04672) are ranked the top three significant signals. Evidence from the PubMed and Google Scholar databases further supports our findings. In summary, our findings provide complementary information to these nine risk pathways.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Trauma and Emergency Surgeon, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yiwei Zhang
- Department of Trauma and Emergency Surgeon, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jun Tian
- Department of Trauma and Emergency Surgeon, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Gao
- Department of Trauma and Emergency Surgeon, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Koromani F, Trajanoska K, Rivadeneira F, Oei L. Recent Advances in the Genetics of Fractures in Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:337. [PMID: 31231309 PMCID: PMC6559287 DOI: 10.3389/fendo.2019.00337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic susceptibility, together with old age, female sex, and low bone mineral density (BMD) are amongst the strongest determinants of fracture risk. Tmost recent large-scale genome-wide association study (GWAS) meta-analysis has yielded fifteen loci. This review focuses on the advances in the research of genetic determinants of fracture risk. We first discuss the genetic architecture of fracture risk, touching upon different methods and overall findings. We then discuss in a second paragraph the most recent advances in the field and focus on the genetics of fracture risk and also of other endophenotypes closely related to fracture risk such as bone mineral density (BMD). Application of state-of-the-art methodology such as Mendelian randzation in fracture GWAS are reviewed. The final part of this review touches upon potential future directions in genetic research of osteoporotic fractures.
Collapse
Affiliation(s)
- Fjorda Koromani
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ling Oei
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- *Correspondence: Ling Oei
| |
Collapse
|
10
|
Naito T, Yokoyama N, Kakuta Y, Ueno K, Kawai Y, Onodera M, Moroi R, Kuroha M, Kanazawa Y, Kimura T, Shiga H, Endo K, Nagasaki M, Masamune A, Kinouchi Y, Shimosegawa T. Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. J Gastroenterol Hepatol 2018; 33:1873-1881. [PMID: 29603369 DOI: 10.1111/jgh.14149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Patients with inflammatory bowel disease (IBD) are at a high risk of low bone mineral density (BMD). Reportedly, clinical and genetic factors cause low BMD in Caucasians; however, studies in non-Caucasian populations remain scarce. METHODS Clinical risk factors for low BMD were investigated in 266 Japanese patients with IBD, and a genome-wide association analysis (GWAS) was performed using linear regression with associated clinical factors as covariates. Genotyping was performed using a population-optimized genotyping array (Japonica array® ). After quality control, the genotype data of 4 384 682 single-nucleotide polymorphisms (SNPs) from 254 patients with IBD were used for GWAS. RESULTS Body mass index, age, and disease duration were independently associated with the BMD of the femoral neck (P = 1.41E - 13, 1.04E - 5, and 1.58E - 3, respectively), and body mass index and sex were associated with the BMD of the lumbar spine (P = 6.90E - 10 and 6.84E - 3, respectively). In GWAS, 118 and 42 candidate SNPs of the femoral neck and lumbar spine, respectively, were identified. Among 118, 111 candidate SNPs of the femoral neck were located within the SLC22A23 gene, which is a known IBD susceptibility gene (minimum P = 1.42E - 07). Among 42, 18 candidate SNPs of the lumbar spine were located within the MECOM gene, which is associated with osteopenia (minimum P = 5.86E - 07). Interestingly, none of the known loci showed a significant association with BMD. CONCLUSIONS Although clinical risk factors for low BMD in IBD were similar to those in the general population, genetic risk factors were rather different.
Collapse
Affiliation(s)
- Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naonobu Yokoyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuko Ueno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yosuke Kawai
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Motoyuki Onodera
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatake Kuroha
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitake Kanazawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoya Kimura
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuya Endo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Kinouchi
- Health Administration Center, Center for the Advancement of Higher Education, Tohoku University, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Chen XF, Zhu DL, Yang M, Hu WX, Duan YY, Lu BJ, Rong Y, Dong SS, Hao RH, Chen JB, Chen YX, Yao S, Thynn HN, Guo Y, Yang TL. An Osteoporosis Risk SNP at 1p36.12 Acts as an Allele-Specific Enhancer to Modulate LINC00339 Expression via Long-Range Loop Formation. Am J Hum Genet 2018; 102:776-793. [PMID: 29706346 PMCID: PMC5986728 DOI: 10.1016/j.ajhg.2018.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/28/2018] [Indexed: 01/10/2023] Open
Abstract
Genome-wide association studies (GWASs) have reproducibly associated variants within intergenic regions of 1p36.12 locus with osteoporosis, but the functional roles underlying these noncoding variants are unknown. Through an integrative functional genomic and epigenomic analyses, we prioritized rs6426749 as a potential causal SNP for osteoporosis at 1p36.12. Dual-luciferase assay and CRISPR/Cas9 experiments demonstrate that rs6426749 acts as a distal allele-specific enhancer regulating expression of a lncRNA (LINC00339) (∼360 kb) via long-range chromatin loop formation and that this loop is mediated by CTCF occupied near rs6426749 and LINC00339 promoter region. Specifically, rs6426749-G allele can bind transcription factor TFAP2A, which efficiently elevates the enhancer activity and increases LINC00339 expression. Downregulation of LINC00339 significantly increases the expression of CDC42 in osteoblast cells, which is a pivotal regulator involved in bone metabolism. Our study provides mechanistic insight into how a noncoding SNP affects osteoporosis by long-range interaction, a finding that could indicate promising therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Man Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wei-Xin Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bing-Jie Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ruo-Han Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jia-Bin Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yi-Xiao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shi Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hlaing Nwe Thynn
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
12
|
Rocha-Braz MGM, Ferraz-de-Souza B. Genetics of osteoporosis: searching for candidate genes for bone fragility. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 60:391-401. [PMID: 27533615 PMCID: PMC10118722 DOI: 10.1590/2359-3997000000178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/22/2022]
Abstract
The pathogenesis of osteoporosis, a common disease with great morbidity and mortality, comprises environmental and genetic factors. As with other complex disorders, the genetic basis of osteoporosis has been difficult to identify. Nevertheless, several approaches have been undertaken in the past decades in order to identify candidate genes for bone fragility, including the study of rare monogenic syndromes with striking bone phenotypes (e.g. osteogenesis imperfecta and osteopetroses), the analysis of individuals or families with extreme osteoporotic phenotypes (e.g. idiopathic juvenile and pregnancy-related osteoporosis), and, chiefly, genome-wide association studies (GWAS) in large populations. Altogether, these efforts have greatly increased the understanding of molecular mechanisms behind bone remodelling, which has rapidly translated into the development of novel therapeutic strategies, exemplified by the tales of cathepsin K (CTSK) and sclerostin (SOST). Additional biological evidence of involvement in bone physiology still lacks for several candidate genes arisen from GWAS, opening an opportunity for the discovery of new mechanisms regulating bone strength, particularly with the advent of high-throughput genomic technologies. In this review, candidate genes for bone fragility will be presented in comprehensive tables and discussed with regard to how their association with osteoporosis emerged, highlighting key players such as LRP5, WNT1 and PLS3. Current limitations in our understanding of the genetic contribution to osteoporosis, such as yet unidentified genetic modifiers, may be overcome in the near future with better genotypic and phenotypic characterisation of large populations and the detailed study of candidate genes in informative individuals with marked phenotype.
Collapse
Affiliation(s)
- Manuela G M Rocha-Braz
- Divisão de Endocrinologia e Laboratório de Investigação Médica 18 (LIM-18), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil.,Endocrinologia, Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), São Paulo, SP, Brasil
| | - Bruno Ferraz-de-Souza
- Divisão de Endocrinologia e Laboratório de Investigação Médica 18 (LIM-18), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| |
Collapse
|
13
|
Sabik OL, Farber CR. Using GWAS to identify novel therapeutic targets for osteoporosis. Transl Res 2017; 181:15-26. [PMID: 27837649 PMCID: PMC5357198 DOI: 10.1016/j.trsl.2016.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a common, increasingly prevalent, global health burden characterized by low bone mineral density (BMD) and increased risk of fracture. Despite its significant impact on human health, there is currently a lack of highly effective treatments free of side effects for osteoporosis. Therefore, a major goal in the field is to identify new drug targets. Genetic discovery has been shown to be effective in the unbiased identification of novel drug targets and genome-wide association studies (GWASs) have begun to provide insight into genetic basis of osteoporosis. Over the last decade, GWASs have led to the identification of ∼100 loci associated with BMD and other bone traits related to risk of fracture. However, there have been limited efforts to identify the causal genes underlying the GWAS loci or the mechanisms by which GWAS loci alter bone physiology. In this review, we summarize the current state of the field and discuss strategies for causal gene discovery and the evidence that the novel genes underlying GWAS loci are likely to be a new source of drug targets.
Collapse
Affiliation(s)
- Olivia L Sabik
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Va; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Va
| | - Charles R Farber
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Va; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Va; Department of Public Health Science, School of Medicine, University of Virginia, Charlottesville, Va.
| |
Collapse
|
14
|
Artigas MS, Wain LV, Shrine N, McKeever TM, UK BiLEVE, Sayers I, Hall IP, Tobin MD. Targeted Sequencing of Lung Function Loci in Chronic Obstructive Pulmonary Disease Cases and Controls. PLoS One 2017; 12:e0170222. [PMID: 28114305 PMCID: PMC5256917 DOI: 10.1371/journal.pone.0170222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 01/01/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide; smoking is the main risk factor for COPD, but genetic factors are also relevant contributors. Genome-wide association studies (GWAS) of the lung function measures used in the diagnosis of COPD have identified a number of loci, however association signals are often broad and collectively these loci only explain a small proportion of the heritability. In order to examine the association with COPD risk of genetic variants down to low allele frequencies, to aid fine-mapping of association signals and to explain more of the missing heritability, we undertook a targeted sequencing study in 300 COPD cases and 300 smoking controls for 26 loci previously reported to be associated with lung function. We used a pooled sequencing approach, with 12 pools of 25 individuals each, enabling high depth (30x) coverage per sample to be achieved. This pooled design maximised sample size and therefore power, but led to challenges during variant-calling since sequencing error rates and minor allele frequencies for rare variants can be very similar. For this reason we employed a rigorous quality control pipeline for variant detection which included the use of 3 independent calling algorithms. In order to avoid false positive associations we also developed tests to detect variants with potential batch effects and removed them before undertaking association testing. We tested for the effects of single variants and the combined effect of rare variants within a locus. We followed up the top signals with data available (only 67% of collapsing methods signals) in 4,249 COPD cases and 11,916 smoking controls from UK Biobank. We provide suggestive evidence for the combined effect of rare variants on COPD risk in TNXB and in sliding windows within MECOM and upstream of HHIP. These findings can lead to an improved understanding of the molecular pathways involved in the development of COPD.
Collapse
Affiliation(s)
- María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Louise V. Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research (NIHR), Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Tricia M. McKeever
- Division of Respiratory Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | - Ian Sayers
- Division of Respiratory Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ian P. Hall
- Division of Respiratory Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Martin D. Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research (NIHR), Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
15
|
Choi HJ, Park H, Zhang L, Kim JH, Kim YA, Yang JY, Pei YF, Tian Q, Shen H, Hwang JY, Deng HW, Cho NH, Shin CS. Genome-wide association study in East Asians suggests UHMK1 as a novel bone mineral density susceptibility gene. Bone 2016; 91:113-21. [PMID: 27424934 DOI: 10.1016/j.bone.2016.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022]
Abstract
To identify genetic variants that influence bone mineral density (BMD) in East Asians, we performed a quantitative trait analysis of lumbar spine, total hip and femoral neck BMD in a Korean population-based cohort (N=2729) and follow-up replication analysis in a Chinese Han population and two Caucasian populations (N=1547, 2250 and 987, respectively). From the meta-analysis of the stage 1 discovery analysis and stage 2 replication analysis, we identified four BMD loci that reached near-genome-wide significance level (P<5×10(-7)). One locus on 1q23 (UHMK1, rs16863247, P=4.1×10(-7) for femoral neck BMD and P=3.2×10(-6) for total hip BMD) was a novel BMD signal. Interestingly, rs16863247 was very rare in Caucasians (minor allele frequency<0.01), indicating that this association could be specific to East Asians. In gender specific analysis, rs1160574 on 1q32 (KCNH1) was associated with femoral neck BMD (P=2.1×10(-7)) in female subjects. rs9371538 in the known BMD region on 6q25 ESR1 was associated with lumbar spine BMD (P=5.6×10(-9)). rs7776725 in the known BMD region on 7q31 WTN16 was associated with total hip BMD (P=8.6×10(-9)). In osteoblasts, endogenous UHMK1 expression was increased during differentiation and UHMK1 knockdown decreased its differentiation, while UHMK1 overexpression increased its differentiation. In osteoclasts, endogenous UHMK1 expression was decreased during differentiation and UHMK1 knockdown increased its differentiation, while UHMK1 overexpression decreased its differentiation. In conclusion, our genome-wide association study identified the UHMK1 gene as a novel BMD locus specific to East Asians. Functional studies suggest a role of UHMK1 on regulation of osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Hyung Jin Choi
- Department of Anatomy, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyojung Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ye An Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Yeon Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu-Fang Pei
- Department of Epidemiology, School of Public Health, Soochow University, Jiangsu, PR China
| | - Qing Tian
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, USA
| | - Hui Shen
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, USA
| | - Joo-Yeon Hwang
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, USA
| | - Nam H Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Taylor KC, Evans DS, Edwards DRV, Edwards TL, Sofer T, Li G, Liu Y, Franceschini N, Jackson RD, Giri A, Donneyong M, Psaty B, Rotter JI, LaCroix AZ, Jordan JM, Robbins JA, Lewis B, Stefanick ML, Liu Y, Garcia M, Harris T, Cauley JA, North KE. A genome-wide association study meta-analysis of clinical fracture in 10,012 African American women. Bone Rep 2016; 5:233-242. [PMID: 28580392 PMCID: PMC5440953 DOI: 10.1016/j.bonr.2016.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
Background Osteoporosis is a major public health problem associated with excess disability and mortality. It is estimated that 50–70% of the variation in osteoporotic fracture risk is attributable to genetic factors. The purpose of this hypothesis-generating study was to identify possible genetic determinants of fracture among African American (AA) women in a GWAS meta-analysis. Methods Data on clinical fractures (all fractures except fingers, toes, face, skull or sternum) were analyzed among AA female participants in the Women's Health Initiative (WHI) (N = 8155), Cardiovascular Health Study (CHS) (N = 504), BioVU (N = 704), Health ABC (N = 651), and the Johnston County Osteoarthritis Project (JoCoOA) (N = 291). Affymetrix (WHI) and Illumina (Health ABC, JoCoOA, BioVU, CHS) GWAS panels were used for genotyping, and a 1:1 ratio of YRI:CEU HapMap haplotypes was used as an imputation reference panel. We used Cox proportional hazard models or logistic regression to evaluate the association of ~ 2.5 million SNPs with fracture risk, adjusting for ancestry, age, and geographic region where applicable. We conducted a fixed-effects, inverse variance-weighted meta-analysis. Genome-wide significance was set at P < 5 × 10− 8. Results One SNP, rs12775980 in an intron of SVIL on chromosome 10p11.2, reached genome-wide significance (P = 4.0 × 10− 8). Although this SNP has a low minor allele frequency (0.03), there was no evidence for heterogeneity of effects across the studies (I2 = 0). This locus was not reported in any previous osteoporosis-related GWA studies. We also interrogated previously reported GWA-significant loci associated with fracture or bone mineral density in our data. One locus (SMOC1) generalized, but overall there was not substantial evidence of generalization. Possible reasons for the lack of generalization are discussed. Conclusion This GWAS meta-analysis of fractures in African American women identified a potentially novel locus in the supervillin gene, which encodes a platelet-associated factor and was previously associated with platelet thrombus formation in African Americans. If validated in other populations of African descent, these findings suggest potential new mechanisms involved in fracture that may be particularly important among African Americans. This was a hypothesis-generating GWAS for fracture in African Americans. One potentially novel locus (SVIL) was identified at GWA-significant levels. SVIL has been associated with platelet thrombus formation in African-Americans.
Collapse
Key Words
- AA, African American
- ASW, African ancestry individuals from Southwest USA
- African American
- BMD, bone mineral density
- BMI, body mass index
- BMP, bone morphogenetic protein
- CES-D, Center for Epidemiological Studies-Depression scale
- CEU, CEPH-Utah (Utah residents with ancestors from central and western Europe)
- CHS, Cardiovascular Health Study
- DNA, deoxyribonucleic acid
- EAF, effect allele frequency
- Fracture
- GEFOS, Genetic Factors of Osteoporosis
- GPGE, genetically predicted gene expression
- GTEx Project, Genotype-Tissue Expression project
- GWAS, genome-wide association study
- Genetic association study
- Genome-wide association study (GWAS)
- JoCoOA, Johnston County Osteoarthritis Project
- MAC, minor allele count
- MAF, minor allele frequency
- Meta-analysis
- OF, osteoporotic fracture
- Osteoporosis
- RNA, ribonucleic acid
- SD, standard deviation
- SHARe, SNP Health Association Resource
- SNP, single nucleotide polymorphism
- WHI, Women's Health Initiative
- YRI, Yoruban (Nigeria)
Collapse
Affiliation(s)
- Kira C Taylor
- School of Public Health and Information Sciences, University of Louisville, 485 E Gray St., Louisville, KY 40202, USA.,Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 137 E. Franklin St., Chapel Hill, NC 27514, USA
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, 550 16th Street, Box 0560, San Francisco, CA 94158-2549, USA
| | - Digna R Velez Edwards
- Vanderbilt Epidemiology Center, Department of Obstetrics and Gynecology, Vanderbilt Genetics Institute, Vanderbilt University, 2525 West End Avenue, Nashville, TN 37203, USA
| | - Todd L Edwards
- Vanderbilt Genetics Institute, Division of Epidemiology, Department of Medicine, Vanderbilt University, 2525 West End Avenue, Nashville, TN 37203, USA
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, UW Tower 15th floor, 4333 Brooklyn Ave NE, Seattle 98105, USA
| | - Guo Li
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Metropolitan Park East Tower, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Youfang Liu
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, 3300 Thurston Bldg., CB# 7280, Chapel Hill NC 27599-7280, NC, USA
| | - Nora Franceschini
- University of North Carolina at Chapel Hill, 137 E. Franklin St., Chapel Hill, NC 27514, USA
| | - Rebecca D Jackson
- The Ohio State University, 376 W 10th Avenue, Suite 260, Columbus, OH 43210, USA
| | - Ayush Giri
- Vanderbilt Genetics Institute, Division of Epidemiology, Department of Medicine, Vanderbilt University, 2525 West End Avenue, Nashville, TN 37203, USA
| | - Macarius Donneyong
- School of Public Health and Information Sciences, University of Louisville, 485 E Gray St., Louisville, KY 40202, USA.,Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, 1620 Tremont St, St 3030, Boston, MA 02120, USA
| | - Bruce Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington; Group Health Research Institute, Group Health Cooperative, Metropolitan Park East Tower, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Jerome I Rotter
- Institute of Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, 1124 W. Carson Street, Bldg., E-5, Torrance, CA 90502, USA
| | - Andrea Z LaCroix
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Joanne M Jordan
- Department of Medicine, University of California at Davis Medical Center, PSSB Building, 4150 V St., Sacramento, CA 95817, USA
| | - John A Robbins
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, 3300 Thurston Bldg., CB# 7280, Chapel Hill NC 27599-7280, NC, USA
| | - Beth Lewis
- University of Alabama, Medical Towers 614, 1717 11th Avenue South, Birmingham, AL 35205, USA
| | - Marcia L Stefanick
- Stanford Prevention Research Center, Stanford University School of Medicine, Medical School Office Building, 1265 Welch Road, Mail Code 5411, Stanford, CA 94305, USA
| | - Yongmei Liu
- Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Melissa Garcia
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave, Suite 3C309, Bethesda, MD 20892, USA
| | - Tamara Harris
- Laboratory of Epidemiology and Population Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA
| | - Jane A Cauley
- University of Pittsburgh Graduate School of Public Health, Department of Epidemiology, A510 Crabtree Hall, Pittsburgh, PA 15261, USA
| | - Kari E North
- Carolina Center for Genome Sciences, 250 Bell Tower Dr., Chapel Hill, NC 27514, USA.,Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 137 E. Franklin St., Chapel Hill, NC 27514, USA
| |
Collapse
|
17
|
Hwang JY, Kim YJ, Choi BY, Kim BJ, Han BG. Meta analysis identifies a novel susceptibility locus associated with heel bone strength in the Korean population. Bone 2016; 84:47-51. [PMID: 26686025 DOI: 10.1016/j.bone.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Calcaneal quantitative ultrasound has been recognized as a non-invasive method for evaluation of bone strength and prediction of osteoporotic fracture. METHODS To extend a thorough genetic catalog for osteoporotic bone properties, we performed a genome-wide association study (rural cohort I, n=1895) of speed of sound (SOS) using the 1000 genome-based imputation in the discovery stage and then carried out in silico lookups (rural cohort II and III, n=2,967) and de novo genotyping (rural cohort IV, n=4,296) in the replication stage. RESULTS In the combined meta-analysis (n=9,158), we identified a novel variant associated with SOS (rs2445771 in the GLDN gene, P=2.27×10(-9)) reaching genome-wide significance in the Korean population. We further demonstrated that allele-specific regulatory modifications found to be associated with functional enrichments by ENCODE annotations. CONCLUSION Our findings could provide additional insights into understanding of genetic and epigenetic regulations on bone metabolism.
Collapse
Affiliation(s)
- Joo-Yeon Hwang
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Young Jin Kim
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Bong-Jo Kim
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea.
| | - Bok-Ghee Han
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
18
|
Costantini A, Mäkitie O. Value of rare low bone mass diseases for osteoporosis genetics. BONEKEY REPORTS 2016; 5:773. [PMID: 26793304 PMCID: PMC4704609 DOI: 10.1038/bonekey.2015.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Osteoporosis presents as increased susceptibility to fractures due to bone loss and compromised bone microstructure. Osteoporosis mainly affects the elderly population, but it is increasingly recognized that compromised bone health with low bone mass and increased fractures may have its onset already in childhood. In such cases, genetic component is likely to contribute more than lifestyle factors to disease onset. During the last decade, our understanding of the genetic determinants of osteoporosis has significantly increased through family studies, candidate gene studies and genome-wide association studies (GWASs). GWASs have led to identification of several genetic loci associated with osteoporosis. A valuable contribution to the research field has been made through studies involving families with childhood-onset rare bone diseases such as osteogenesis imperfecta, osteoporosis-pseudoglioma syndrome and various other skeletal dysplasias with reduced bone mass. Some genes involved in rare low bone mass diseases, such as LRP5 and WNT1, participate in the Wnt/β-catenin pathway, and their discovery has underscored the importance of this pathway for normal skeletal health. The still continuing discovery of gene defects underlying various low bone mass phenotypes contributes to our understanding of normal bone metabolism and enables development of new therapies for osteoporosis.
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
19
|
Mohanty AF, Farin FM, Bammler TK, MacDonald JW, Afsharinejad Z, Burbacher TM, Siscovick DS, Williams MA, Enquobahrie DA. Infant sex-specific placental cadmium and DNA methylation associations. ENVIRONMENTAL RESEARCH 2015; 138:74-81. [PMID: 25701811 PMCID: PMC4385453 DOI: 10.1016/j.envres.2015.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. OBJECTIVES Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. METHODS We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). RESULTS Medians of placental Cd among females and males were 5 and 2 ng/g, respectively. Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. CONCLUSIONS Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these findings. Such investigations may further our understanding of epigenetic mechanisms underlying maternal Cd burden with suboptimal fetal growth associations.
Collapse
Affiliation(s)
- April F Mohanty
- Cardiovascular Health Research Unit, University of Washington, 1730 Minor Ave, Seattle, WA 98101, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Fred M Farin
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105, USA.
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105, USA.
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105, USA.
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105, USA.
| | - Thomas M Burbacher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Box: 357234, 1705 N.E. Pacific Street, Seattle, WA 98195, USA.
| | - David S Siscovick
- Cardiovascular Health Research Unit, University of Washington, 1730 Minor Ave, Seattle, WA 98101, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Michelle A Williams
- Department of Epidemiology, Harvard School of Public Health, Kresge Building, 9th Floor, 677 Huntington Ave., Boston, MA 02115, USA.
| | - Daniel A Enquobahrie
- Cardiovascular Health Research Unit, University of Washington, 1730 Minor Ave, Seattle, WA 98101, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Center for Perinatal Studies, Swedish Medical Center, 1124 Columbia Street, Suite 750, Seattle, WA 98104, USA.
| |
Collapse
|
20
|
Ikegawa S. Genetics of ossification of the posterior longitudinal ligament of the spine: a mini review. J Bone Metab 2014; 21:127-32. [PMID: 25006569 PMCID: PMC4075266 DOI: 10.11005/jbm.2014.21.2.127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 11/11/2022] Open
Abstract
Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common disease in aging populations and sometimes results in serious neurological problems due to compression of the spinal cord and nerve roots. OPLL is a multi-factorial (polygenic) disease controlled by genetic and environmental factors. Studies searching for the genetic component of OPLL, using linkage and association analyses, are in progress and several susceptibility genes have been reported. This paper reviews the recent progress in the genetic study of OPLL and comments on its future task.
Collapse
Affiliation(s)
- Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Genomic Medicine, RIKEN, Tokyo, Japan
| |
Collapse
|
21
|
Liu YJ, Zhang L, Papasian CJ, Deng HW. Genome-wide Association Studies for Osteoporosis: A 2013 Update. J Bone Metab 2014; 21:99-116. [PMID: 25006567 PMCID: PMC4075273 DOI: 10.11005/jbm.2014.21.2.99] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 12/16/2022] Open
Abstract
In the past few years, the bone field has witnessed great advances in genome-wide association studies (GWASs) of osteoporosis, with a number of promising genes identified. In particular, meta-analysis of GWASs, aimed at increasing the power of studies by combining the results from different study populations, have led to the identification of novel associations that would not otherwise have been identified in individual GWASs. Recently, the first whole genome sequencing study for osteoporosis and fractures was published, reporting a novel rare nonsense mutation. This review summarizes the important and representative findings published by December 2013. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis. Potential limitations of GWASs and their meta-analyses are evaluated, with an emphasis on understanding the reasons for inconsistent results between different studies and clarification of misinterpretation of GWAS meta-analysis results. Implications and challenges of GWAS are also discussed, including the need for multi- and inter-disciplinary studies.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Lei Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR, China
| | | | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR, China
| |
Collapse
|
22
|
Juneja SC, Vonica A, Zeiss C, Lezon-Geyda K, Yatsula B, Sell DR, Monnier VM, Lin S, Ardito T, Eyre D, Reynolds D, Yao Z, Awad HA, Yu H, Wilson M, Honnons S, Boyce BF, Xing L, Zhang Y, Perkins AS. Deletion of Mecom in mouse results in early-onset spinal deformity and osteopenia. Bone 2014; 60:148-61. [PMID: 24316420 PMCID: PMC4440591 DOI: 10.1016/j.bone.2013.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 02/04/2023]
Abstract
Recent studies have indicated a role for a MECOM allele in susceptibility to osteoporotic fractures in humans. We have generated a mutation in Mecom in mouse (termed ME(m1)) via lacZ knock-in into the upstream transcription start site for the gene, resulting in disruption of Mds1 and Mds1-Evi1 transcripts, but not of Evi1 transcripts. We demonstrate that ME(m1/m1) mice have severe kyphoscoliosis that is reminiscent of human congenital or primary kyphoscoliosis. ME(m1/m1) mice appear normal at birth, but by 2weeks, they exhibit a slight lumbar lordosis and narrowed intervertebral space. This progresses to severe lordosis with disc collapse and synostosis, together with kyphoscoliosis. Bone formation and strength testing show that ME(m1/m1) mice have normal bone formation and composition but are osteopenic. While endochondral bone development is normal, it is markedly dysplastic in its organization. Electron micrographs of the 1week postnatal intervertebral discs reveals marked disarray of collagen fibers, consistent with an inherent weakness in the non-osseous connective tissue associated with the spine. These findings indicate that lack of ME leads to a complex defect in both osseous and non-osseous musculoskeletal tissues, including a marked vertebral osteopenia, degeneration of the IVD, and disarray of connective tissues, which is likely due to an inherent inability to establish and/or maintain components of these tissues.
Collapse
Affiliation(s)
- Subhash C Juneja
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, USA; Department of Orthopedics, University of Rochester Medical Center, USA; Department of Biomedical Engineering, University of Rochester Medical Center, USA.
| | - Alin Vonica
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, USA.
| | | | | | | | | | | | - Sharon Lin
- Department of Pathology, Yale University, USA.
| | | | | | - David Reynolds
- Department of Orthopedics, University of Rochester Medical Center, USA.
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, USA.
| | - Hani A Awad
- Department of Orthopedics, University of Rochester Medical Center, USA; Department of Biomedical Engineering, University of Rochester Medical Center, USA.
| | - Hongbo Yu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, USA.
| | - Michael Wilson
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, USA.
| | - Sylvie Honnons
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, USA.
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, USA.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, USA.
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, USA.
| | - Archibald S Perkins
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, USA.
| |
Collapse
|