1
|
Shen J, Wang Y, Liu Y, Lan J, Long S, Li Y, Chen D, Yu P, Zhao J, Wang Y, Wang S, Yang F. Behavioral Abnormalities, Cognitive Impairments, Synaptic Deficits, and Gene Replacement Therapy in a CRISPR Engineered Rat Model of 5p15.2 Deletion Associated With Cri du Chat Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415224. [PMID: 39965128 PMCID: PMC11984882 DOI: 10.1002/advs.202415224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/29/2025] [Indexed: 02/20/2025]
Abstract
The Cri du Chat Syndrome (CdCS), a devastating genetic disorder caused by a deletion on chromosome 5p, faces challenges in finding effective treatments and accurate animal models. Using CRISPR-Cas9, a novel CdCS rat model with a 2q22 deletion is developed, mirroring a common genetic alteration in CdCS patients. This model exhibits pronounced deficits in social behavior, cognition, and anxiety, accompanied by neuronal abnormalities and immune dysregulation in key brain regions such as the hippocampus and medial prefrontal cortex (mPFC). The immunostaining and RNA-seq analyses provide new insights into CdCS pathogenesis, revealing inflammatory and immune processes. Importantly, it is demonstrated that early gene replacement therapy with AAV-Ctnnd2 alleviates cognitive impairments in CdCS rats, highlighting the potential for early intervention. However, the effectiveness of this therapy is confined to the early developmental stages and does not fully restore all CdCS symptoms. The findings deepen the understanding of CdCS pathogenesis and suggest promising therapeutic directions.
Collapse
Affiliation(s)
- Jingjing Shen
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yan Wang
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yang Liu
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Junying Lan
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100070China
- Laboratory of Cognitive and Behavioral DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijing100069China
| | - Shuang Long
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yingbo Li
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Di Chen
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Peng Yu
- Chinese Institutes for Medical ResearchCapital Medical UniversityBeijing100069China
| | - Jing Zhao
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Clinical Center for Precision Medicine in StrokeCapital Medical UniversityBeijing100070China
- Center of Excellence for Omics Research (CORe)Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Shali Wang
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Feng Yang
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100070China
- Laboratory of Cognitive and Behavioral DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijing100069China
| |
Collapse
|
2
|
Pauly M, Krumbiegel M, Trumpp S, Braig S, Rupprecht T, Kraus C, Uebe S, Reis A, Vasileiou G. Severe manifestation of Rauch-Azzarello syndrome associated with biallelic deletion of CTNND2. Clin Genet 2024; 106:180-186. [PMID: 38604781 DOI: 10.1111/cge.14532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
CTNND2 encodes δ-catenin, a component of an adherens junction complex, and plays an important role in neuronal structure and function. To date, only heterozygous loss-of-function CTNND2 variants have been associated with mild neurodevelopmental delay and behavioral anomalies, a condition, which we named Rauch-Azzarello syndrome. Here, we report three siblings of a consanguineous family of Syrian descent with a homozygous deletion encompassing the last 19 exons of CTNND2 predicted to disrupt the transcript. All presented with severe neurodevelopmental delay with absent speech, profound motor delay, stereotypic behavior, microcephaly, short stature, muscular hypotonia with lower limb hypertonia, and variable eye anomalies. The parents and the fourth sibling were heterozygous carriers of the deletion and exhibited mild neurodevelopmental impairment resembling that of the previously described heterozygous individuals. The present study unveils a severe manifestation of CTNND2-associated Rauch-Azzarello syndrome attributed to biallelic loss-of-function aberrations, clinically distinct from the already described mild presentation of heterozygous individuals. Furthermore, we demonstrate novel clinical features in homozygous individuals that have not been reported in heterozygous cases to date.
Collapse
Affiliation(s)
- Melissa Pauly
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Trumpp
- Children's Clinic, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Sonja Braig
- Children's Clinic, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Thomas Rupprecht
- Children's Clinic, Klinikum Bayreuth GmbH, Bayreuth, Germany
- MCO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Tan CX, Bindu DS, Hardin EJ, Sakers K, Baumert R, Ramirez JJ, Savage JT, Eroglu C. δ-Catenin controls astrocyte morphogenesis via layer-specific astrocyte-neuron cadherin interactions. J Cell Biol 2023; 222:e202303138. [PMID: 37707499 PMCID: PMC10501387 DOI: 10.1083/jcb.202303138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Astrocytes control the formation of specific synaptic circuits via cell adhesion and secreted molecules. Astrocyte synaptogenic functions are dependent on the establishment of their complex morphology. However, it is unknown if distinct neuronal cues differentially regulate astrocyte morphogenesis. δ-Catenin was previously thought to be a neuron-specific protein that regulates dendrite morphology. We found δ-catenin is also highly expressed by astrocytes and required both in astrocytes and neurons for astrocyte morphogenesis. δ-Catenin is hypothesized to mediate transcellular interactions through the cadherin family of cell adhesion proteins. We used structural modeling and biochemical analyses to reveal that δ-catenin interacts with the N-cadherin juxtamembrane domain to promote N-cadherin surface expression. An autism-linked δ-catenin point mutation impaired N-cadherin cell surface expression and reduced astrocyte complexity. In the developing mouse cortex, only lower-layer cortical neurons express N-cadherin. Remarkably, when we silenced astrocytic N-cadherin throughout the cortex, only lower-layer astrocyte morphology was disrupted. These findings show that δ-catenin controls astrocyte-neuron cadherin interactions that regulate layer-specific astrocyte morphogenesis.
Collapse
Affiliation(s)
- Christabel Xin Tan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Evelyn J. Hardin
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kristina Sakers
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan Baumert
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Juan J. Ramirez
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Justin T. Savage
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Vaz R, Edwards S, Dueñas-Rey A, Hofmeister W, Lindstrand A. Loss of ctnnd2b affects neuronal differentiation and behavior in zebrafish. Front Neurosci 2023; 17:1205653. [PMID: 37465584 PMCID: PMC10351287 DOI: 10.3389/fnins.2023.1205653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Delta-catenin (CTNND2) is an adhesive junction associated protein belonging to the family of p120 catenins. The human gene is located on the short arm of chromosome 5, the region deleted in Cri-du-chat syndrome (OMIM #123450). Heterozygous loss of CTNND2 has been linked to a wide spectrum of neurodevelopmental disorders such as autism, schizophrenia, and intellectual disability. Here we studied how heterozygous loss of ctnnd2b affects zebrafish embryonic development, and larvae and adult behavior. First, we observed a disorganization of neuronal subtypes in the developing forebrain, namely the presence of ectopic isl1-expressing cells and a local reduction of GABA-positive neurons in the optic recess region. Next, using time-lapse analysis, we found that the disorganized distribution of is1l-expressing forebrain neurons resulted from an increased specification of Isl1:GFP neurons. Finally, we studied the swimming patterns of both larval and adult heterozygous zebrafish and observed an increased activity compared to wildtype animals. Overall, this data suggests a role for ctnnd2b in the differentiation cascade of neuronal subtypes in specific regions of the vertebrate brain, with repercussions in the animal's behavior.
Collapse
Affiliation(s)
- Raquel Vaz
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Steven Edwards
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alfredo Dueñas-Rey
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Almeida VT, Chehimi SN, Gasparini Y, Nascimento AM, Carvalho GF, Montenegro MM, Zanardo ÉA, Dias AT, Assunção NA, Kim CA, Kulikowski LD. Cri-du-Chat Syndrome: Revealing a Familial Atypical Deletion in 5p. Mol Syndromol 2023; 13:527-536. [PMID: 36660031 PMCID: PMC9843554 DOI: 10.1159/000524371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/29/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Cri-du-chat syndrome is generally diagnosed when patients present a high-pitched cry at birth, microcephaly, ocular hypertelorism, and prominent nasal bridge. The karyotype is useful to confirm deletions in the short arm of chromosome 5 (5p-) greater than 10 Mb. In cases of smaller deletions, it is necessary to resort to other molecular techniques such as fluorescence in situ hybridization, multiplex ligation-dependent probe amplification (MLPA) or genomic array. Case Presentation We report a family with an atypical deletion in 5p (mother and 2 children) and variable phenotypes compared with the literature. We applied a P064 MLPA kit to evaluate 5p- in the mother and the 2 children, and we used the Infinium CytoSNP-850K BeadChip genomic array to evaluate the siblings, an 11-year-old boy and a 13-year-old girl, to better define the 5p breakpoints. Both children presented a high-pitched cry at birth, but they did not present any of the typical physical features of 5p- syndrome. The MLPA technique with 5 probes for the 5p region revealed that the patients and their mother presented an atypical deletion with only 4 probes deleted (TERT_ex2, TERT_ex13, CLPTM1L, and IRX4). The genomic array performed in the siblings' samples revealed a 6.2-Mb terminal deletion in 5p15.33p15.32, which was likely inherited from their mother, who presented similar molecular features, seen in MLPA. Discussion The sparing of the CTNND2 gene, which is associated with cerebral development, in both siblings may explain why these 2 patients had features such as better communication skills which most patients with larger 5p deletions usually do not present. In addition, both patients had smaller deletions than those found in patients with a typical 5p- phenotype. This report demonstrates the utility of genomic arrays as a diagnostic tool to better characterize atypical deletions in known syndromes such as 5p- syndrome, which will allow a better understanding of the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Vanessa T. Almeida
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil,*Vanessa T. Almeida,
| | - Samar N. Chehimi
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Yanca Gasparini
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amom M. Nascimento
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gleyson F.S. Carvalho
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marília M. Montenegro
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Évelin Aline Zanardo
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Alexandre T. Dias
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Nilson A. Assunção
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Chong A. Kim
- Unidade de Genetica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leslie D. Kulikowski
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Bai MM, Li W, Meng L, Sang YF, Cui YJ, Feng HY, Zong ZT, Zhang HB. Neonatal Cri du chat syndrome with atypical facial appearance: A case report. World J Clin Cases 2022; 10:11031-11036. [PMID: 36338241 PMCID: PMC9631138 DOI: 10.12998/wjcc.v10.i30.11031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cri du chat syndrome (CdCS), also known as 5p deletion syndrome (5p-) is a syndrome caused by partial deletion of the 5p chromosome in human beings. The incidence accounts for 1/50000 and the cause of CdCS is related to partial deletion of chromosome 5 short arm (p). CdCS is a sporadic event. Only one case of CdCS was detected by chromosome screening in 125 and 170 pregnant Iranian women[1]. The most prominent clinical manifestations of CdCS are typical high-pitched cat calls, severe mental retardation or mental retardation and is most harmful to both language and growth retardation[2]. CdCS is a chromosome mutation disease which occurs during embryonic development and the symptoms of some cases are extremely atypical. It is difficult to make an early diagnosis and screening in clinic. We can suspect the disease from its atypical manifestations in the weak crying of cats, and chromosome karyotype analysis can find some questionable gene deletion fragments to assist the clinical diagnosis and prognosis of CdCS.
CASE SUMMARY A 2-d-old male child who was admitted to our hospital with a poor postnatal reaction and poor milk intake. The baby's crying and sucking is weak, reaction and feeding time is poor and the baby has nausea and vomiting. Karyotype analysis showed that the chromosomes were 46, XY, deletion (5) p15. Whole genome microarray analysis (named ISCN2013) showed that the chromosomes of the child were male karyotypes and contained three chromosomal abnormalities. Among them, loss of 5p15.2pter (113576-13464559) was associated with cat call syndrome. After 3 mo of follow-up, the child still vomited repeatedly, had poor milk intake, did not return to normal growth, had developmental retardation and a poor directional response.
CONCLUSION Therefore, when cat crying and laryngeal sounds occur in the neonatal period, it should be considered that they are related to CdCS. Chromosome karyotype and genome analysis are helpful for the diagnosis of CdCS.
Collapse
Affiliation(s)
- Meng-Meng Bai
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, Hubei Province, China
| | - Wen Li
- Department of Pediatrics, Chengde Central Hospital, Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Lin Meng
- Department of Pediatrics, Chengde Central Hospital, Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Yan-Feng Sang
- Department of Pediatrics, Chengde Central Hospital, Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Yu-Jie Cui
- Department of Pediatrics, Chengde Central Hospital, Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Hui-Ying Feng
- Department of Pediatrics, Chengde Central Hospital, Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Zhi-Tao Zong
- Department of Neurosurgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332005, Jiangxi Province, China
| | - Hong-Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
7
|
Schumann PG, Meade EB, Zhi H, LeFevre GH, Kolpin DW, Meppelink SM, Iwanowicz LR, Lane RF, Schmoldt A, Mueller O, Klaper RD. RNA-seq reveals potential gene biomarkers in fathead minnows ( Pimephales promelas) for exposure to treated wastewater effluent. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1708-1724. [PMID: 35938375 DOI: 10.1039/d2em00222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Discharged wastewater treatment plant (WWTP) effluent greatly contributes to the generation of complex mixtures of contaminants of emerging concern (CECs) in aquatic environments which often contain neuropharmaceuticals and other emerging contaminants that may impact neurological function. However, there is a paucity of knowledge on the neurological impacts of these exposures to aquatic organisms. In this study, caged fathead minnows (Pimephales promelas) were exposed in situ in a temperate-region effluent-dominated stream (i.e., Muddy Creek) in Coralville, Iowa, USA upstream and downstream of a WWTP effluent outfall. The pharmaceutical composition of Muddy Creek was recently characterized by our team and revealed many compounds there were at a low microgram to high nanogram per liter concentration. Total RNA sequencing analysis on brain tissues revealed 280 gene isoforms that were significantly differentially expressed in male fish and 293 gene isoforms in female fish between the upstream and downstream site. Only 66 (13%) of such gene isoforms overlapped amongst male and female fish, demonstrating sex-dependent impacts on neuronal gene expression. By using a systems biology approach paired with functional enrichment analyses, we identified several potential novel gene biomarkers for treated effluent exposure that could be used to expand monitoring of environmental effects with respect to complex CEC mixtures. Lastly, when comparing the results of this study to those that relied on a single-compound approach, there was relatively little overlap in terms of gene-specific effects. This discovery brings into question the application of single-compound exposures in accurately characterizing environmental risks of complex mixtures and for gene biomarker identification.
Collapse
Affiliation(s)
| | - Emma B Meade
- University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
| | - Hui Zhi
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | - Olaf Mueller
- Great Lakes Genomics Center, Milwaukee, Wisconsin, USA
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
- Great Lakes Genomics Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Donta MS, Srivastava Y, McCrea PD. Delta-Catenin as a Modulator of Rho GTPases in Neurons. Front Cell Neurosci 2022; 16:939143. [PMID: 35860313 PMCID: PMC9289679 DOI: 10.3389/fncel.2022.939143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Small Rho GTPases are molecular switches that are involved in multiple processes including regulation of the actin cytoskeleton. These GTPases are activated (turned on) and inactivated (turned off) through various upstream effector molecules to carry out many cellular functions. One such upstream modulator of small Rho GTPase activity is delta-catenin, which is a protein in the p120-catenin subfamily that is enriched in the central nervous system. Delta-catenin affects small GTPase activity to assist in the developmental formation of dendrites and dendritic spines and to maintain them once they mature. As the dendritic arbor and spine density are crucial for synapse formation and plasticity, delta-catenin's ability to modulate small Rho GTPases is necessary for proper learning and memory. Accordingly, the misregulation of delta-catenin and small Rho GTPases has been implicated in several neurological and non-neurological pathologies. While links between delta-catenin and small Rho GTPases have yet to be studied in many contexts, known associations include some cancers, Alzheimer's disease (AD), Cri-du-chat syndrome, and autism spectrum disorder (ASD). Drawing from established studies and recent discoveries, this review explores how delta-catenin modulates small Rho GTPase activity. Future studies will likely elucidate how PDZ proteins that bind delta-catenin further influence small Rho GTPases, how delta-catenin may affect small GTPase activity at adherens junctions when bound to N-cadherin, mechanisms behind delta-catenin's ability to modulate Rac1 and Cdc42, and delta-catenin's ability to modulate small Rho GTPases in the context of diseases, such as cancer and AD.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| |
Collapse
|
9
|
Alharatani R, Ververi A, Beleza-Meireles A, Ji W, Mis E, Patterson QT, Griffin JN, Bhujel N, Chang CA, Dixit A, Konstantino M, Healy C, Hannan S, Neo N, Cash A, Li D, Bhoj E, Zackai EH, Cleaver R, Baralle D, McEntagart M, Newbury-Ecob R, Scott R, Hurst JA, Au PYB, Hosey MT, Khokha M, Marciano DK, Lakhani SA, Liu KJ. Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome. Hum Mol Genet 2021; 29:1900-1921. [PMID: 32196547 PMCID: PMC7372553 DOI: 10.1093/hmg/ddaa050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell–cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.
Collapse
Affiliation(s)
- Reham Alharatani
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Paediatric Dentistry, Centre of Oral, Clinical and Translational Science, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE5 9RS, UK
| | - Athina Ververi
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Ana Beleza-Meireles
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Quinten T Patterson
- Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | - John N Griffin
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Pediatric Genomics Discovery Program, Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nabina Bhujel
- South Thames Cleft Service, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Caitlin A Chang
- Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, AB, Canada
| | - Abhijit Dixit
- Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Christopher Healy
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Sumayyah Hannan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Natsuko Neo
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Tokyo Medical and Dental University, Tokyo, Japan
| | - Alex Cash
- South Thames Cleft Service, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth Bhoj
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elaine H Zackai
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ruth Cleaver
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Meriel McEntagart
- Department of Clinical Genetics, St George's Hospital, London SW17 0RE, UK
| | - Ruth Newbury-Ecob
- Clinical Genetics, University Hospital Bristol NHS Foundation Trust, Bristol BS2 8EG, UK
| | - Richard Scott
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Jane A Hurst
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Ping Yee Billie Au
- Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, AB, Canada
| | - Marie Therese Hosey
- Paediatric Dentistry, Centre of Oral, Clinical and Translational Science, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE5 9RS, UK
| | - Mustafa Khokha
- Pediatric Genomics Discovery Program, Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Denise K Marciano
- Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
10
|
Detection of copy number variation associated with ventriculomegaly in fetuses using single nucleotide polymorphism arrays. Sci Rep 2021; 11:5291. [PMID: 33674646 PMCID: PMC7935846 DOI: 10.1038/s41598-021-83147-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Etiopathogenesis of fetal ventriculomegaly is poorly understood. Associations between fetal isolated ventriculomegaly and copy number variations (CNVs) have been previously described. We investigated the correlations between fetal ventriculomegaly-with or without other ultrasound anomalies-and chromosome abnormalities. 222 fetuses were divided into four groups: (I) 103 (46.4%) cases with isolated ventriculomegaly, (II) 41 (18.5%) cases accompanied by soft markers, (III) 33 (14.9%) cases complicated with central nervous system (CNS) anomalies, and (IV) 45 (20.3%) cases with accompanying anomalies. Karyotyping and single nucleotide polymorphism (SNP) array were used in parallel. Karyotype abnormalities were identified in 15/222 (6.8%) cases. Karyotype abnormalities in group I, II, III, and IV were 4/103 (3.9%), 2/41 (4.9%), 4/33 (12.1%), and 5/45 (11.1%), respectively. Concerning the SNP array analysis results, 31/222 (14.0%) were CNVs, CNVs in groups I, II, III, and IV were 11/103 (10.7%), 6/41 (14.6%), 9/33 (27.3%), and 5/45 fetuses (11.1%), respectively. Detections of clinical significant CNVs were higher in non-isolated ventriculomegaly than in isolated ventriculomegaly (16.81% vs 10.7%, P = 0.19). SNP arrays can effectively identify CNVs in fetuses with ventriculomegaly and increase the abnormal chromosomal detection rate by approximately 7.2%, especially ventriculomegaly accompanied by CNS anomalies.
Collapse
|
11
|
Adegbola A, Lutz R, Nikkola E, Strom SP, Picker J, Wynshaw-Boris A. Disruption of CTNND2, encoding delta-catenin, causes a penetrant attention deficit disorder and myopia. HGG ADVANCES 2020; 1:100007. [PMID: 33718894 PMCID: PMC7948131 DOI: 10.1016/j.xhgg.2020.100007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with poorly understood pathophysiology and genetic mechanisms. A balanced chromosomal translocation interrupts CTNND2 in several members of a family with profound attentional deficit and myopia, and disruption of the gene was found in a separate unrelated individual with ADHD and myopia. CTNND2 encodes a brain-specific member of the adherens junction complex essential for postsynaptic and dendritic development, a site of potential pathophysiology in attentional disorders. Therefore, we propose that the severe and highly penetrant nature of the ADHD phenotype in affected individuals identifies CTNND2 as a potential gateway to ADHD pathophysiology similar to the DISC1 translocation in psychosis or AUTS2 in autism.
Collapse
Affiliation(s)
- Abidemi Adegbola
- Department of Psychiatry, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences and Center for Human Genetics, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Richard Lutz
- Department of Genetic Medicine, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | - Jonathan Picker
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Child and Adolescent Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences and Center for Human Genetics, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
de Abreu MS, Genario R, Giacomini AC, Demin KA, Lakstygal AM, Amstislavskaya TG, Fontana BD, Parker MO, Kalueff AV. Zebrafish as a Model of Neurodevelopmental Disorders. Neuroscience 2020; 445:3-11. [DOI: 10.1016/j.neuroscience.2019.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/21/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
|
13
|
Lancaster HS, Liu X, Dinu V, Li J. Identifying interactive biological pathways associated with reading disability. Brain Behav 2020; 10:e01735. [PMID: 32596987 PMCID: PMC7428467 DOI: 10.1002/brb3.1735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Past research has suggested that reading disability is a complex disorder involving genetic and environment contributions, as well as gene-gene and gene-environment interaction, but to date little is known about the underlying mechanisms. METHOD Using the Avon Longitudinal Study of Parents and Children, we assessed the contributions of genetic, demographic, and environmental variables on case-control status using machine learning. We investigated the functional interactions between genes using pathway and network analysis. RESULTS Our results support a systems approach to studying the etiology of reading disability with many genes (e.g., RAPGEF2, KIAA0319, DLC1) and biological pathways (e.g., neuron migration, positive regulation of dendrite regulation, nervous system development) interacting with each other. We found that single nucleotide variants within genes often had opposite effects and that enriched biological pathways were mediated by neuron migration. We also identified behavioral (i.e., receptive language, nonverbal intelligence, and vocabulary), demographic (i.e., mother's highest education), and environmental (i.e., birthweight) factors that influenced case-control status when accounting for genetic information. DISCUSSION The behavioral and demographic factors were suggested to be protective against reading disability status, while birthweight conveyed risk. We provided supporting evidence that reading disability has a complex biological and environmental etiology and that there may be a shared genetic and neurobiological architecture for reading (dis)ability.
Collapse
Affiliation(s)
- Hope Sparks Lancaster
- College of Health SolutionsArizona State UniversityTempeAZUSA
- Department of Computing, Informatics, and Decision Systems EngineeringSchools of EngineeringArizona State UniversityTempeAZUSA
| | - Xiaonan Liu
- Department of Computing, Informatics, and Decision Systems EngineeringSchools of EngineeringArizona State UniversityTempeAZUSA
| | - Valentin Dinu
- College of Health SolutionsArizona State UniversityTempeAZUSA
| | - Jing Li
- School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
14
|
Peng Y, Pang J, Hu J, Jia Z, Xi H, Ma N, Yang S, Liu J, Huang X, Tang C, Wang H. Clinical and molecular characterization of 12 prenatal cases of Cri-du-chat syndrome. Mol Genet Genomic Med 2020; 8:e1312. [PMID: 32500674 PMCID: PMC7434726 DOI: 10.1002/mgg3.1312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background This study aimed to define the molecular basis for 12 prenatal cases of Cri‐du‐chat syndrome (CdCS) and the potential genotyping‐phenotyping association. Methods Karyotyping and single nucleotide polymorphism array analyses for copy number variants were performed. Results Nine cases had 5p terminal deletions and three had 5p interstitial deletions, and these cases had variable deletion sizes with partial overlapping. Phenotypically, besides intrauterine growth restriction (IUGR) and brain as well as heart abnormalities, hypospadias, and lung dysplasia were observed. Potential genetic causes for specific phenotypes in these cases were identified. Conclusion This study defined the molecular bases for the patients of CdCS, which is important for genetic counseling for these families. The findings of present study expand the clinical features of CdCS in the fetal period, and provided important information for further refining the genotypic–phenotypic correlations for this syndrome.
Collapse
Affiliation(s)
- Ying Peng
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Jialun Pang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Jiancheng Hu
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Zhengjun Jia
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Hui Xi
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Na Ma
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Shuting Yang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Jing Liu
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Xiaoliang Huang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| |
Collapse
|
15
|
Ryu T, Park HJ, Kim H, Cho YC, Kim BC, Jo J, Seo YW, Choi WS, Kim K. Improved memory and reduced anxiety in δ-catenin transgenic mice. Exp Neurol 2019; 318:22-31. [PMID: 30981806 DOI: 10.1016/j.expneurol.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
δ-Catenin is abundant in the brain and affects its synaptic plasticity. Furthermore, loss of δ-catenin is related to the deficits of learning and memory, mental retardation (cri-du-chat syndrome), and autism. A few studies about δ-catenin deficiency mice were performed. However, the effect of δ-catenin overexpression in the brain has not been investigated as yet. Therefore we generated a δ-catenin overexpressing mouse model. To generate a transgenic mouse model overexpressing δ-catenin in the brain, δ-catenin plasmid having a Thy-1 promotor was microinjected in C57BL/6 mice. Our results showed δ-catenin transgenic mice expressed higher levels of N-cadherin, β-catenin, and p120-catenin than did wild type mice. Furthermore, δ-catenin transgenic mice exhibited better object recognition, better sociability, and lower anxiety than wild type mice. However, both mice groups showed a similar pattern in locomotion tests. Although δ-catenin transgenic mice show similar locomotion, they show improved sociability and reduced anxiety. These characteristics are opposite to the symptoms of autism or mental retardation, which are caused when δ-catenin is deficient. These results suggest that δ-catenin may alleviate symptoms of autism, Alzheimer's disease and mental retardation.
Collapse
Affiliation(s)
- Taeyong Ryu
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung Joon Park
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwnagju 61469, Republic of Korea
| | - Jihoon Jo
- Department of Neurology, Chonnam National University Medical School, Gwnagju 61469, Republic of Korea
| | - Young-Woo Seo
- Korea Basic Science Institute, Gwangju Center, Gwangju 61186, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
16
|
Corrêa T, Feltes BC, Riegel M. Integrated analysis of the critical region 5p15.3-p15.2 associated with cri-du-chat syndrome. Genet Mol Biol 2019; 42:186-196. [PMID: 30985858 PMCID: PMC6687350 DOI: 10.1590/1678-4685-gmb-2018-0173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/29/2018] [Indexed: 11/21/2022] Open
Abstract
Cri-du-chat syndrome (CdCs) is one of the most common contiguous gene syndromes, with an incidence of 1:15,000 to 1:50,000 live births. To better understand the etiology of CdCs at the molecular level, we investigated theprotein-protein interaction (PPI) network within the critical chromosomal region 5p15.3-p15.2 associated with CdCs using systemsbiology. Data were extracted from cytogenomic findings from patients with CdCs. Based on clinical findings, molecular characterization of chromosomal rearrangements, and systems biology data, we explored possible genotype-phenotype correlations involving biological processes connected with CdCs candidate genes. We identified biological processes involving genes previously found to be associated with CdCs, such as TERT, SLC6A3, and CTDNND2, as well as novel candidate proteins with potential contributions to CdCs phenotypes, including CCT5, TPPP, MED10, ADCY2, MTRR, CEP72, NDUFS6, and MRPL36. Although further functional analyses of these proteins are required, we identified candidate proteins for the development of new multi-target genetic editing tools to study CdCs. Further research may confirm those that are directly involved in the development of CdCs phenotypes and improve our understanding of CdCs-associated molecular mechanisms.
Collapse
Affiliation(s)
- Thiago Corrêa
- Post-Graduate Program in Genetics and Molecular Biology,
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Universidade Federal do Rio Grande
do Sul, Porto Alegre, RS, Brazil
| | - Mariluce Riegel
- Post-Graduate Program in Genetics and Molecular Biology,
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Vaz R, Hofmeister W, Lindstrand A. Zebrafish Models of Neurodevelopmental Disorders: Limitations and Benefits of Current Tools and Techniques. Int J Mol Sci 2019; 20:ijms20061296. [PMID: 30875831 PMCID: PMC6471844 DOI: 10.3390/ijms20061296] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
For the past few years there has been an exponential increase in the use of animal models to confirm the pathogenicity of candidate disease-causing genetic variants found in patients. One such animal model is the zebrafish. Despite being a non-mammalian animal, the zebrafish model has proven its potential in recapitulating the phenotypes of many different human genetic disorders. This review will focus on recent advances in the modeling of neurodevelopmental disorders in zebrafish, covering aspects from early brain development to techniques used for modulating gene expression, as well as how to best characterize the resulting phenotypes. We also review other existing models of neurodevelopmental disorders, and the current efforts in developing and testing compounds with potential therapeutic value.
Collapse
Affiliation(s)
- Raquel Vaz
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.
| | - Wolfgang Hofmeister
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark and the Novo Nordisk Foundation for Stem cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| |
Collapse
|
18
|
Prenatal Neuropathologies in Autism Spectrum Disorder and Intellectual Disability: The Gestation of a Comprehensive Zebrafish Model. J Dev Biol 2018; 6:jdb6040029. [PMID: 30513623 PMCID: PMC6316217 DOI: 10.3390/jdb6040029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental disorders with overlapping diagnostic behaviors and risk factors. These include embryonic exposure to teratogens and mutations in genes that have important functions prenatally. Animal models, including rodents and zebrafish, have been essential in delineating mechanisms of neuropathology and identifying developmental critical periods, when those mechanisms are most sensitive to disruption. This review focuses on how the developmentally accessible zebrafish is contributing to our understanding of prenatal pathologies that set the stage for later ASD-ID behavioral deficits. We discuss the known factors that contribute prenatally to ASD-ID and the recent use of zebrafish to model deficits in brain morphogenesis and circuit development. We conclude by suggesting that a future challenge in zebrafish ASD-ID modeling will be to bridge prenatal anatomical and physiological pathologies to behavioral deficits later in life.
Collapse
|
19
|
Tran AN, Taylan F, Zachariadis V, Ivanov Öfverholm I, Lindstrand A, Vezzi F, Lötstedt B, Nordenskjöld M, Nordgren A, Nilsson D, Barbany G. High-resolution detection of chromosomal rearrangements in leukemias through mate pair whole genome sequencing. PLoS One 2018. [PMID: 29529047 PMCID: PMC5846771 DOI: 10.1371/journal.pone.0193928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The detection of recurrent somatic chromosomal rearrangements is standard of care for most leukemia types. Even though karyotype analysis-a low-resolution genome-wide chromosome analysis-is still the gold standard, it often needs to be complemented with other methods to increase resolution. To evaluate the feasibility and applicability of mate pair whole genome sequencing (MP-WGS) to detect structural chromosomal rearrangements in the diagnostic setting, we sequenced ten bone marrow samples from leukemia patients with recurrent rearrangements. Samples were selected based on cytogenetic and FISH results at leukemia diagnosis to include common rearrangements of prognostic relevance. Using MP-WGS and in-house bioinformatic analysis all sought rearrangements were successfully detected. In addition, unexpected complexity or additional, previously undetected rearrangements was unraveled in three samples. Finally, the MP-WGS analysis pinpointed the location of chromosome junctions at high resolution and we were able to identify the exact exons involved in the resulting fusion genes in all samples and the specific junction at the nucleotide level in half of the samples. The results show that our approach combines the screening character from karyotype analysis with the specificity and resolution of cytogenetic and molecular methods. As a result of the straightforward analysis and high-resolution detection of clinically relevant rearrangements, we conclude that MP-WGS is a feasible method for routine leukemia diagnostics of structural chromosomal rearrangements.
Collapse
Affiliation(s)
- Anh Nhi Tran
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingegerd Ivanov Öfverholm
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
| | - Francesco Vezzi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Britta Lötstedt
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
20
|
Ouimette JF, Rougeulle C, Veitia RA. Three-dimensional genome architecture in health and disease. Clin Genet 2018; 95:189-198. [PMID: 29377081 DOI: 10.1111/cge.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 11/29/2022]
Abstract
More than a decade of massive DNA sequencing efforts have generated a large body of genomic, transcriptomic and epigenomic information that has provided a more and more detailed view of the functional elements and transactions within the human genome. Considerable efforts have also focused on linking these elements with one another by mapping their interactions and by establishing 3-dimensional (3D) genomic landscapes in various cell and tissue types. In parallel, multiple studies have associated genomic deletions, duplications and other rearrangements with human pathologies. In this review, we explore recent progresses that have allowed connecting disease-causing alterations with perturbations of the 3D genome organization.
Collapse
Affiliation(s)
- J-F Ouimette
- Epigenetics and Cell Fate Center, UMR7216 CNRS, Université Paris Diderot, Paris, France.,Université Paris Diderot, Paris, France
| | - C Rougeulle
- Epigenetics and Cell Fate Center, UMR7216 CNRS, Université Paris Diderot, Paris, France.,Université Paris Diderot, Paris, France
| | - R A Veitia
- Université Paris Diderot, Paris, France.,Institut Jacques Monod, Paris, France
| |
Collapse
|
21
|
Costantini A, Skarp S, Kämpe A, Mäkitie RE, Pettersson M, Männikkö M, Jiao H, Taylan F, Lindstrand A, Mäkitie O. Rare Copy Number Variants in Array-Based Comparative Genomic Hybridization in Early-Onset Skeletal Fragility. Front Endocrinol (Lausanne) 2018; 9:380. [PMID: 30042735 PMCID: PMC6048219 DOI: 10.3389/fendo.2018.00380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Early-onset osteoporosis is characterized by low bone mineral density (BMD) and fractures since childhood or young adulthood. Several monogenic forms have been identified but the contributing genes remain inadequately characterized. In search for novel variants and novel candidate loci, we screened a cohort of 70 young subjects with mild to severe skeletal fragility for rare copy-number variants (CNVs). Our study cohort included 15 subjects with primary osteoporosis before age 30 years and 55 subjects with a pathological fracture history and low or normal BMD before age 16 years. A custom-made high-resolution comparative genomic hybridization array with enriched probe density in >1,150 genes important for bone metabolism and ciliary function was used to search for CNVs. We identified altogether 14 rare CNVs. Seven intronic aberrations were classified as likely benign. Five CNVs of unknown clinical significance affected coding regions of genes not previously associated with skeletal fragility (ETV1-DGKB, AGBL2, ATM, RPS6KL1-PGF, and SCN4A). Finally, two CNVs were pathogenic and likely pathogenic, respectively: a 4 kb deletion involving exons 1-4 of COL1A2 (NM_000089.3) and a 12.5 kb duplication of exon 3 in PLS3 (NM_005032.6). Although both genes have been linked to monogenic forms of osteoporosis, COL1A2 deletions are rare and PLS3 duplications have not been described previously. Both CNVs were identified in subjects with significant osteoporosis and segregated with osteoporosis within the families. Our study expands the number of pathogenic CNVs in monogenic skeletal fragility and shows the validity of targeted CNV screening to potentially pinpoint novel candidate loci in early-onset osteoporosis.
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Alice Costantini
| | - Sini Skarp
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Riikka E. Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minna Männikkö
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hong Jiao
- Science for Life Laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
22
|
Identification of NCAN as a candidate gene for developmental dyslexia. Sci Rep 2017; 7:9294. [PMID: 28839234 PMCID: PMC5570950 DOI: 10.1038/s41598-017-10175-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/04/2017] [Indexed: 01/22/2023] Open
Abstract
A whole-genome linkage analysis in a Finnish pedigree of eight cases with developmental dyslexia (DD) revealed several regions shared by the affected individuals. Analysis of coding variants from two affected individuals identified rs146011974G > A (Ala1039Thr), a rare variant within the NCAN gene co-segregating with DD in the pedigree. This variant prompted us to consider this gene as a putative candidate for DD. The RNA expression pattern of the NCAN gene in human tissues was highly correlated (R > 0.8) with that of the previously suggested DD susceptibility genes KIAA0319, CTNND2, CNTNAP2 and GRIN2B. We investigated the association of common variation in NCAN to brain structures in two data sets: young adults (Brainchild study, Sweden) and infants (FinnBrain study, Finland). In young adults, we found associations between a common genetic variant in NCAN, rs1064395, and white matter volume in the left and right temporoparietal as well as the left inferior frontal brain regions. In infants, this same variant was found to be associated with cingulate and prefrontal grey matter volumes. Our results suggest NCAN as a new candidate gene for DD and indicate that NCAN variants affect brain structure.
Collapse
|
23
|
Di Gregorio E, Riberi E, Belligni EF, Biamino E, Spielmann M, Ala U, Calcia A, Bagnasco I, Carli D, Gai G, Giordano M, Guala A, Keller R, Mandrile G, Arduino C, Maffè A, Naretto VG, Sirchia F, Sorasio L, Ungari S, Zonta A, Zacchetti G, Talarico F, Pappi P, Cavalieri S, Giorgio E, Mancini C, Ferrero M, Brussino A, Savin E, Gandione M, Pelle A, Giachino DF, De Marchi M, Restagno G, Provero P, Cirillo Silengo M, Grosso E, Buxbaum JD, Pasini B, De Rubeis S, Brusco A, Ferrero GB. Copy number variants analysis in a cohort of isolated and syndromic developmental delay/intellectual disability reveals novel genomic disorders, position effects and candidate disease genes. Clin Genet 2017; 92:415-422. [PMID: 28295210 DOI: 10.1111/cge.13009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Array-comparative genomic hybridization (array-CGH) is a widely used technique to detect copy number variants (CNVs) associated with developmental delay/intellectual disability (DD/ID). AIMS Identification of genomic disorders in DD/ID. MATERIALS AND METHODS We performed a comprehensive array-CGH investigation of 1,015 consecutive cases with DD/ID and combined literature mining, genetic evidence, evolutionary constraint scores, and functional information in order to assess the pathogenicity of the CNVs. RESULTS We identified non-benign CNVs in 29% of patients. Amongst the pathogenic variants (11%), detected with a yield consistent with the literature, we found rare genomic disorders and CNVs spanning known disease genes. We further identified and discussed 51 cases with likely pathogenic CNVs spanning novel candidate genes, including genes encoding synaptic components and/or proteins involved in corticogenesis. Additionally, we identified two deletions spanning potential Topological Associated Domain (TAD) boundaries probably affecting the regulatory landscape. DISCUSSION AND CONCLUSION We show how phenotypic and genetic analyses of array-CGH data allow unraveling complex cases, identifying rare disease genes, and revealing unexpected position effects.
Collapse
Affiliation(s)
- E Di Gregorio
- University of Torino, Department of Medical Sciences, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - E Riberi
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - E F Belligni
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - E Biamino
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - M Spielmann
- Research Group Mundlos, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - U Ala
- Computational Biology Unit, Molecular Biotechnology Center (MBC), Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - A Calcia
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - I Bagnasco
- Neuropsichiatria Infantile, Martini Hospital, ASL TO1, Turin, Italy
| | - D Carli
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - G Gai
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - M Giordano
- Department of Health Sciences, Laboratory of Genetics, University of Eastern Piedmont and Interdisciplinary Research Center of Autoimmune Diseases, Novara, Italy
| | - A Guala
- SOC Pediatria, Castelli Hospital, Verbania, Italy
| | - R Keller
- Mental Health Department, ASL TO2, Adult Autism Center, Turin, Italy
| | - G Mandrile
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy.,Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano (TO), Italy
| | - C Arduino
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - A Maffè
- Molecular Biology and Genetics Unit, Santa Croce e Carle Hospital, Cuneo, Italy
| | - V G Naretto
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - F Sirchia
- Molecular Biology and Genetics Unit, Santa Croce e Carle Hospital, Cuneo, Italy
| | - L Sorasio
- Pediatrics, Santa Croce e Carle Hospital, Cuneo, Italy
| | - S Ungari
- Molecular Biology and Genetics Unit, Santa Croce e Carle Hospital, Cuneo, Italy
| | - A Zonta
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - G Zacchetti
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy.,Department of Health Sciences, Laboratory of Genetics, University of Eastern Piedmont and Interdisciplinary Research Center of Autoimmune Diseases, Novara, Italy
| | - F Talarico
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - P Pappi
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - S Cavalieri
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - E Giorgio
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - C Mancini
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - M Ferrero
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - A Brussino
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - E Savin
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - M Gandione
- Department of Neuropsychiatry, University of Torino, Turin, Italy
| | - A Pelle
- Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano (TO), Italy.,Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - D F Giachino
- Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano (TO), Italy.,Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - M De Marchi
- Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano (TO), Italy.,Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - G Restagno
- Laboratory of Molecular Genetics, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - P Provero
- Computational Biology Unit, Molecular Biotechnology Center (MBC), Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - M Cirillo Silengo
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - E Grosso
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - J D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - B Pasini
- Molecular Biology and Genetics Unit, Santa Croce e Carle Hospital, Cuneo, Italy
| | - S De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - A Brusco
- University of Torino, Department of Medical Sciences, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - G B Ferrero
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| |
Collapse
|
24
|
Eisfeldt J, Vezzi F, Olason P, Nilsson D, Lindstrand A. TIDDIT, an efficient and comprehensive structural variant caller for massive parallel sequencing data. F1000Res 2017; 6:664. [PMID: 28781756 DOI: 10.12688/f1000research.11168.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2017] [Indexed: 01/07/2023] Open
Abstract
Reliable detection of large structural variation ( > 1000 bp) is important in both rare and common genetic disorders. Whole genome sequencing (WGS) is a technology that may be used to identify a large proportion of the genomic structural variants (SVs) in an individual in a single experiment. Even though SV callers have been extensively used in research to detect mutations, the potential usage of SV callers within routine clinical diagnostics is still limited. One well known, but not well-addressed problem is the large number of benign variants and reference errors present in the human genome that further complicates analysis. Even though there is a wide range of SV-callers available, the number of callers that allow detection of the entire spectra of SV at a low computational cost is still relatively limited.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, 171 21 Solna, Sweden
| | - Francesco Vezzi
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 21 Solna, Sweden.,Department of Biochemistry and Biophysics, Stockholm University, 171 21 Stockholm, Sweden
| | - Pall Olason
- Science for Life Laboratory, Dept of Cell and Molecular Biology, Uppsala University, Husargatan 3, Uppsala, SE-752 37, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, 171 21 Solna, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
25
|
Eisfeldt J, Vezzi F, Olason P, Nilsson D, Lindstrand A. TIDDIT, an efficient and comprehensive structural variant caller for massive parallel sequencing data. F1000Res 2017; 6:664. [PMID: 28781756 PMCID: PMC5521161 DOI: 10.12688/f1000research.11168.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2017] [Indexed: 01/25/2023] Open
Abstract
Reliable detection of large structural variation ( > 1000 bp) is important in both rare and common genetic disorders. Whole genome sequencing (WGS) is a technology that may be used to identify a large proportion of the genomic structural variants (SVs) in an individual in a single experiment. Even though SV callers have been extensively used in research to detect mutations, the potential usage of SV callers within routine clinical diagnostics is still limited. One well known, but not well-addressed problem is the large number of benign variants and reference errors present in the human genome that further complicates analysis. Even though there is a wide range of SV-callers available, the number of callers that allow detection of the entire spectra of SV at a low computational cost is still relatively limited.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, 171 21 Solna, Sweden
| | - Francesco Vezzi
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 21 Solna, Sweden.,Department of Biochemistry and Biophysics, Stockholm University, 171 21 Stockholm, Sweden
| | - Pall Olason
- Science for Life Laboratory, Dept of Cell and Molecular Biology, Uppsala University, Husargatan 3, Uppsala, SE-752 37, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, 171 21 Solna, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
26
|
Nilsson D, Pettersson M, Gustavsson P, Förster A, Hofmeister W, Wincent J, Zachariadis V, Anderlid BM, Nordgren A, Mäkitie O, Wirta V, Käller M, Vezzi F, Lupski JR, Nordenskjöld M, Lundberg ES, Carvalho CMB, Lindstrand A. Whole-Genome Sequencing of Cytogenetically Balanced Chromosome Translocations Identifies Potentially Pathological Gene Disruptions and Highlights the Importance of Microhomology in the Mechanism of Formation. Hum Mutat 2017; 38:180-192. [PMID: 27862604 PMCID: PMC5225243 DOI: 10.1002/humu.23146] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/01/2016] [Indexed: 11/07/2022]
Abstract
Most balanced translocations are thought to result mechanistically from nonhomologous end joining or, in rare cases of recurrent events, by nonallelic homologous recombination. Here, we use low-coverage mate pair whole-genome sequencing to fine map rearrangement breakpoint junctions in both phenotypically normal and affected translocation carriers. In total, 46 junctions from 22 carriers of balanced translocations were characterized. Genes were disrupted in 48% of the breakpoints; recessive genes in four normal carriers and known dominant intellectual disability genes in three affected carriers. Finally, seven candidate disease genes were disrupted in five carriers with neurocognitive disabilities (SVOPL, SUSD1, TOX, NCALD, SLC4A10) and one XX-male carrier with Tourette syndrome (LYPD6, GPC5). Breakpoint junction analyses revealed microhomology and small templated insertions in a substantive fraction of the analyzed translocations (17.4%; n = 4); an observation that was substantiated by reanalysis of 37 previously published translocation junctions. Microhomology associated with templated insertions is a characteristic seen in the breakpoint junctions of rearrangements mediated by error-prone replication-based repair mechanisms. Our data implicate that a mechanism involving template switching might contribute to the formation of at least 15% of the interchromosomal translocation events.
Collapse
Affiliation(s)
- Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 21 Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Alisa Förster
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland
| | - Valtteri Wirta
- SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, 171 71 Stockholm, Sweden
| | - Max Käller
- SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, 171 71 Stockholm, Sweden
| | - Francesco Vezzi
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, 171 21 Stockholm, Sweden
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston TX, USA
- Texas Children’s Hospital, 77030 Houston TX, USA
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Claudia M. B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston TX, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
27
|
The X-Linked Autism Protein KIAA2022/KIDLIA Regulates Neurite Outgrowth via N-Cadherin and δ-Catenin Signaling. eNeuro 2016; 3:eN-NWR-0238-16. [PMID: 27822498 PMCID: PMC5083950 DOI: 10.1523/eneuro.0238-16.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 12/26/2022] Open
Abstract
Our previous work showed that loss of the KIAA2022 gene protein results in intellectual disability with language impairment and autistic behavior (KIDLIA, also referred to as XPN). However, the cellular and molecular alterations resulting from a loss of function of KIDLIA and its role in autism with severe intellectual disability remain unknown. Here, we show that KIDLIA plays a key role in neuron migration and morphogenesis. We found that KIDLIA is distributed exclusively in the nucleus. In the developing rat brain, it is expressed only in the cortical plate and subplate region but not in the intermediate or ventricular zone. Using in utero electroporation, we found that short hairpin RNA (shRNA)-mediated knockdown of KIDLIA leads to altered neuron migration and a reduction in dendritic growth and disorganized apical dendrite projections in layer II/III mouse cortical neurons. Consistent with this, in cultured rat neurons, a loss of KIDLIA expression also leads to suppression of dendritic growth and branching. At the molecular level, we found that KIDLIA suppression leads to an increase in cell-surface N-cadherin and an elevated association of N-cadherin with δ-catenin, resulting in depletion of free δ-catenin in the cytosolic compartment. The reduced availability of cytosolic δ-catenin leads to elevated RhoA activity and reduced actin dynamics at the dendritic growth cone. Furthermore, in neurons with KIDLIA knockdown, overexpression of δ-catenin or inhibition of RhoA rescues actin dynamics, dendritic growth, and branching. These findings provide the first evidence on the role of the novel protein KIDLIA in neurodevelopment and autism with severe intellectual disability.
Collapse
|
28
|
Lu Q, Aguilar BJ, Li M, Jiang Y, Chen YH. Genetic alterations of δ-catenin/NPRAP/Neurojungin (CTNND2): functional implications in complex human diseases. Hum Genet 2016; 135:1107-16. [PMID: 27380241 PMCID: PMC5021578 DOI: 10.1007/s00439-016-1705-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Some genes involved in complex human diseases are particularly vulnerable to genetic variations such as single nucleotide polymorphism, copy number variations, and mutations. For example, Ras mutations account for over 30 % of all human cancers. Additionally, there are some genes that can display different variations with functional impact in different diseases that are unrelated. One such gene stands out: δ-catenin/NPRAP/Neurojungin with gene designation as CTNND2 on chromosome 5p15.2. Recent advances in genome wide association as well as molecular biology approaches have uncovered striking involvement of δ-catenin gene variations linked to complex human disorders. These disorders include cancer, bipolar disorder, schizophrenia, autism, Cri-du-chat syndrome, myopia, cortical cataract-linked Alzheimer's disease, and infectious diseases. This list has rapidly grown longer in recent years, underscoring the pivotal roles of δ-catenin in critical human diseases. δ-Catenin is an adhesive junction-associated protein in the delta subfamily of the β-catenin superfamily. δ-Catenin functions in Wnt signaling to regulate gene expression and modulate Rho GTPases of the Ras superfamily in cytoskeletal reorganization. δ-Catenin likely lies where Wnt signaling meets Rho GTPases and is a unique and vulnerable common target for mutagenesis in different human diseases.
Collapse
Affiliation(s)
- Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China.
| | - Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Mingchuan Li
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China
| | - Yongguang Jiang
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
- Department of Pediatrics, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| |
Collapse
|
29
|
Abstract
Language is a defining characteristic of the human species, but its foundations remain mysterious. Heritable disorders offer a gateway into biological underpinnings, as illustrated by the discovery that FOXP2 disruptions cause a rare form of speech and language impairment. The genetic architecture underlying language-related disorders is complex, and although some progress has been made, it has proved challenging to pinpoint additional relevant genes with confidence. Next-generation sequencing and genome-wide association studies are revolutionizing understanding of the genetic bases of other neurodevelopmental disorders, like autism and schizophrenia, and providing fundamental insights into the molecular networks crucial for typical brain development. We discuss how a similar genomic perspective, brought to the investigation of language-related phenotypes, promises to yield equally informative discoveries. Moreover, we outline how follow-up studies of genetic findings using cellular systems and animal models can help to elucidate the biological mechanisms involved in the development of brain circuits supporting language.
Collapse
Affiliation(s)
- Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands;
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; .,Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 EN Nijmegen, The Netherlands;
| |
Collapse
|
30
|
Nguyen JM, Qualmann KJ, Okashah R, Reilly A, Alexeyev MF, Campbell DJ. 5p deletions: Current knowledge and future directions. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2015; 169:224-38. [PMID: 26235846 DOI: 10.1002/ajmg.c.31444] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disorders resulting from 5p deletions (5p-) were first recognized by Lejeune et al. in 1963 [Lejeune et al. (1963); C R Hebd Seances Acad Sci 257:3098-3102]. 5p- is caused by partial or total deletion of the short arm of chromosome 5. The most recognizable phenotype is characterized by a high-pitched cry, dysmorphic features, poor growth, and developmental delay. This report reviews 5p- disorders and their molecular basis. Hemizygosity for genes located within this region have been implicated in contributing to the phenotype. A review of the genes on 5p which may be dosage sensitive is summarized. Because of the growing knowledge of these specific genes, future directions to explore potential targeted therapies for individuals with 5p- are discussed. © 2015 Wiley Periodicals, Inc.
Collapse
|