1
|
Clément AE, Merdrignac C, Puiggros SR, Sévère D, Brionne A, Lafond T, Nguyen T, Montfort J, Guyomar C, Dauvé A, Herpin A, Jabaudon D, Colson V, Murat F, Bobe J. Parent-of-origin regulation by maternal auts2 shapes neurodevelopment and behavior in fish. Genome Biol 2025; 26:125. [PMID: 40346605 PMCID: PMC12063280 DOI: 10.1186/s13059-025-03600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Parental experience can influence progeny behavior through gamete-mediated non-genetic inheritance, that is, mechanisms that do not involve changes in inherited DNA sequence. However, underlying mechanisms remain poorly understood in vertebrates, especially for maternal effects. Here, we use the medaka, a model fish species, to investigate the role of auts2a, the ortholog of human AUTS2, a gene repressed in the fish oocyte following maternal stress and associated with neurodevelopmental disorders. RESULTS We show that auts2a expression in the oocyte influences long-term progeny behavior, including anxiety-like behavior and environment recognition capabilities. Using single-nuclei RNA-sequencing, we reveal that maternal auts2a influences gene expression in neural cell populations during neurodevelopment. We also show that maternal auts2a knock-out triggers differences in maternally inherited factors, including early embryonic transcriptional and post-transcriptional regulators. CONCLUSIONS Together, our results reveal the unsuspected role of an autism-related gene expressed in the mother's oocyte in shaping progeny neurodevelopment and behavior. Finally, we report that auts2a/AUTS2 is part of a group of evolutionarily conserved genes associated with human neurodevelopmental disorders and expressed in oocytes across species, from fish to mammals. These findings raise important questions about their potential role in the non-genetic regulation of progeny neurodevelopment and behavior in vertebrates.
Collapse
Affiliation(s)
| | | | - Sergi Roig Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Dorine Sévère
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Aurélien Brionne
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thomas Lafond
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thaovi Nguyen
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Jérôme Montfort
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Cervin Guyomar
- Sigenae, GenPhySE, INRAE, ENVT, Université de Toulouse, Toulouse, Castanet Tolosan, France
| | - Alexandra Dauvé
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Amaury Herpin
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Violaine Colson
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Florent Murat
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Julien Bobe
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France.
| |
Collapse
|
2
|
Shimaoka K, Hori K, Miyashita S, Inoue YU, Tabe NKN, Sakamoto A, Hasegawa I, Nishitani K, Yamashiro K, Egusa SF, Tatsumoto S, Go Y, Abe M, Sakimura K, Inoue T, Imamura T, Hoshino M. The microcephaly-associated transcriptional regulator AUTS2 cooperates with Polycomb complex PRC2 to produce upper-layer neurons in mice. EMBO J 2025; 44:1354-1378. [PMID: 39815005 PMCID: PMC11876313 DOI: 10.1038/s44318-024-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/18/2025] Open
Abstract
AUTS2 syndrome is characterized by intellectual disability and microcephaly, and is often associated with autism spectrum disorder, but the underlying mechanisms, particularly concerning microcephaly, remain incompletely understood. Here, we analyze mice mutated for the transcriptional regulator AUTS2, which recapitulate microcephaly. Their brains exhibit reduced division of intermediate progenitor cells (IPCs), leading to fewer neurons and decreased thickness in the upper-layer cortex. Increased expression of the AUTS2 transcriptional target Robo1 in the mutant animals suppresses IPC division, and transcriptomic and chromatin profiling shows that AUTS2 primarily represses transcription of genes like Robo1 in IPCs. Regions around the transcriptional start sites of AUTS2 target genes are enriched for the repressive histone modification H3K27me3, which is reduced in Auts2 mutants. Furthermore, we find that AUTS2 interacts with Polycomb complex PRC2, with which it cooperates to promote IPC division. These findings shed light on the microcephaly phenotype observed in the AUTS2 syndrome.
Collapse
Affiliation(s)
- Kazumi Shimaoka
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Nao K N Tabe
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
- Department of NCNP Brain Physiology and Pathology, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Asami Sakamoto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Ikuko Hasegawa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kayo Nishitani
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kunihiko Yamashiro
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Saki F Egusa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Department of System Neuroscience, Division of Behavioral Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Graduate School of Information Science, University of Hyogo, Kobe, Hyogo, 650-0047, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Takuya Imamura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
- Department of NCNP Brain Physiology and Pathology, Institute of Science Tokyo, Tokyo, 113-8510, Japan.
| |
Collapse
|
3
|
Loberti L, Adamo L, Antolini E, Casamassima G, Destrèe A, Brunetti-Pierri N, Genevieve D, Christophe P, Coubes C, Van Esch H, Herget T, Kortüm F, Lisfeld J, Möllring AC, Zenker M, Levy J, Perrin L, Tabet AC, Maruani A, Sorlin A, Stieber D, Herissant L, Dahan K, Sinibaldi L, Capolino R, Dentici ML, Dallapiccola B, Novelli A, Garavelli L, Caraffi SG, Piatelli G, Valenzuela I, Digilio MC, Caumes R, Knopp C, Chwiałkowska K, Jezela-Stanek A, Kwasniewski M, Korotko U, Gorzałczyńska E, Canitano R, Grosso S, Rahikkala E, Mattern L, Elbracht M, Zuffardi O, Caputo V, Toschi B, Beunders G, Leeuwen L, Elting MW, van der Laan L, Broekema MF, Groffen AJ, van de Kamp JM, van Haelst MM, Alders M, Mauro SP, De Razza F, Varvara D, Kick J, Gaspar H, Braun D, Lausberg E, Maier A, Ruault V, Genesio R, Tartaglia M, Tita R, Bruttini M, Longo I, Baldassarri M, Mencarelli MA, Renieri A, Pinto AM. AUTS2-related syndrome: Insights from a large European cohort. Genet Med 2025; 27:101375. [PMID: 39953909 DOI: 10.1016/j.gim.2025.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
PURPOSE AUTS2-related syndrome is characterized by developmental delay, autism spectrum disorder, and intellectual disability. From alternative promoters, AUTS2 encodes 2 distinct long and short isoforms encoding a putative transcriptional activator. METHODS Through a European collaborative study, we collected clinical and genotype data on the largest AUTS2-related syndrome cohort of 58 patients harboring genomic rearrangements or single-nucleotide variants (SNVs). RESULTS Pathogenic SNVs were recurrently found in individuals from different countries, suggesting mutational hotspots. Independent of the underlying defect at the AUTS2 locus, we observed that autistic behavior, hyperactivity, learning difficulties, and speech delay are common features of AUTS2-related syndrome. Among patients with SNVs, individuals carrying pathogenic variants affecting both longer and shorter AUTS2 transcripts showed a recognizable phenotype with microcephaly, brachycephaly, microretrognathia, broad nasal base, and anteverted nares. Behavioral disorders were more common in patients with variants affecting only the longer isoform. Arthrogryposis and stiff movements were only observed in patients with SNVs. CONCLUSION This study provides a comprehensive clinical characterization of AUTS2-related syndrome, reveals few genotype-phenotype correlations, and suggests that the disruption of the 2 distinct AUTS2 transcripts has a different impact on the clinical phenotype.
Collapse
Affiliation(s)
- Lorenzo Loberti
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Loredaria Adamo
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Enrica Antolini
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulia Casamassima
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anne Destrèe
- Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - David Genevieve
- Montpellier University and INSERM U1183, Montpellier, France; Reference Center for Malformative Syndrome and Developmental Anomalies, Clinical Genetics Unit, Montpellier University Hospital, ERN ITHACA, Montpellier, France
| | - Philippe Christophe
- Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Dijon, France
| | - Christine Coubes
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, CHRU Montpellier, Montpellier, France
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jonathan Levy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Laurence Perrin
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Anne-Claude Tabet
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Anna Maruani
- Excellence Centre for Autism & Neuro-developmental Disorders, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, and CRMR Déficiences intellectuelles et TND de causes rares-Robert-Debré, Paris, France
| | - Arthur Sorlin
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Daniel Stieber
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Lucas Herissant
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Karin Dahan
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Lorenzo Sinibaldi
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Gianluca Piatelli
- U.O.C. Neurochirurgia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Irene Valenzuela
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Maria Cristina Digilio
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karolina Chwiałkowska
- IMAGENE.ME SA, Bialystok, Poland; Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Białystok, Poland
| | - Aleksandra Jezela-Stanek
- IMAGENE.ME SA, Bialystok, Poland; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Miroslaw Kwasniewski
- IMAGENE.ME SA, Bialystok, Poland; Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Białystok, Poland
| | - Urszula Korotko
- IMAGENE.ME SA, Bialystok, Poland; Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Białystok, Poland
| | | | - Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Clinical Paediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Elisa Rahikkala
- Department of Clinical Genetics, Research Unit of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Larissa Mattern
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Valentina Caputo
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Benedetta Toschi
- Medical Genetics Unit, Oncological Department, University Hospital of Pisa, Pisa, Italy
| | - Gea Beunders
- University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Lisette Leeuwen
- University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Mariet W Elting
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjoleine F Broekema
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander J Groffen
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jiddeke M van de Kamp
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Dora Varvara
- UOC Genetica Medica, Presidio Ospedaliero Vito Fazzi, Lecce, Italy
| | - Johanna Kick
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Harald Gaspar
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Eva Lausberg
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Andrea Maier
- Department of Neurology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Valentin Ruault
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Tita
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Ilaria Longo
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| |
Collapse
|
4
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
5
|
Ryan CW, Regan SL, Mills EF, McGrath BT, Gong E, Lai YT, Sheingold JB, Patel K, Horowitz T, Moccia A, Tsan YC, Srivastava A, Bielas SL. RING1 missense variants reveal sensitivity of DNA damage repair to H2A monoubiquitination dosage during neurogenesis. Nat Commun 2024; 15:7931. [PMID: 39256363 PMCID: PMC11387726 DOI: 10.1038/s41467-024-52292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Polycomb repressive complex 1 (PRC1) modifies chromatin through catalysis of histone H2A lysine 119 monoubiquitination (H2AK119ub1). RING1 and RNF2 interchangeably serve as the catalytic subunit within PRC1. Pathogenic missense variants in PRC1 core components reveal functions of these proteins that are obscured in knockout models. While Ring1a knockout models remain healthy, the microcephaly and neuropsychiatric phenotypes associated with a pathogenic RING1 missense variant implicate unappreciated functions. Using an in vitro model of neurodevelopment, we observe that RING1 contributes to the broad placement of H2AK119ub1, and that its targets overlap with those of RNF2. PRC1 complexes harboring hypomorphic RING1 bind target loci but do not catalyze H2AK119ub1, reducing H2AK119ub1 by preventing catalytically active complexes from accessing the locus. This results in delayed DNA damage repair and cell cycle progression in neural progenitor cells (NPCs). Conversely, reduced H2AK119ub1 due to hypomorphic RING1 does not generate differential expression that impacts NPC differentiation. In contrast, hypomorphic RNF2 generates a greater reduction in H2AK119ub1 that results in both delayed DNA repair and widespread transcriptional changes. These findings suggest that the DNA damage response is more sensitive to H2AK119ub1 dosage change than is regulation of gene expression.
Collapse
Affiliation(s)
- C W Ryan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
- Medical Science Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - S L Regan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - E F Mills
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - B T McGrath
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - E Gong
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Y T Lai
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J B Sheingold
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Patel
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T Horowitz
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - A Moccia
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Y C Tsan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - A Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow, India
| | - S L Bielas
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Geng Z, Tai YT, Wang Q, Gao Z. AUTS2 disruption causes neuronal differentiation defects in human cerebral organoids through hyperactivation of the WNT/β-catenin pathway. Sci Rep 2024; 14:19522. [PMID: 39174599 PMCID: PMC11341827 DOI: 10.1038/s41598-024-69912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Individuals with the Autism Susceptibility Candidate 2 (AUTS2) gene disruptions exhibit symptoms such as intellectual disability, microcephaly, growth retardation, and distinct skeletal and facial differences. The role of AUTS2 in neurodevelopment has been investigated using animal and embryonic stem cell models. However, the precise molecular mechanisms of how AUTS2 influences neurodevelopment, particularly in humans, are not thoroughly understood. Our study employed a 3D human cerebral organoid culture system, in combination with genetic, genomic, cellular, and molecular approaches, to investigate how AUTS2 impacts neurodevelopment through cellular signaling pathways. We used CRISPR/Cas9 technology to create AUTS2-deficient human embryonic stem cells and then generated cerebral organoids with these cells. Our transcriptomic analyses revealed that the absence of AUTS2 in cerebral organoids reduces the populations of cells committed to the neuronal lineage, resulting in an overabundance of cells with a transcription profile resembling that of choroid plexus (ChP) cells. Intriguingly, we found that AUTS2 negatively regulates the WNT/β-catenin signaling pathway, evidenced by its overactivation in AUTS2-deficient cerebral organoids and in luciferase reporter cells lacking AUTS2. Importantly, treating the AUTS2-deficient cerebral organoids with a WNT inhibitor reversed the overexpression of ChP genes and increased the downregulated neuronal gene expression. This study offers new insights into the role of AUTS2 in neurodevelopment and suggests potential targeted therapies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA
| | - Yen Teng Tai
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA.
| |
Collapse
|
7
|
Vardhan A, Kamath A, Soman S, Nagaraj AKM, Bhat V, Vishwanath R. AUTS2 variant in a child diagnosed with autism spectrum disorder and intellectual disability disorder, a case report. Indian J Psychiatry 2024; 66:673-675. [PMID: 39257499 PMCID: PMC11382742 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_66_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Arohi Vardhan
- Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India E-mail:
| | - Avinash Kamath
- Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India E-mail:
| | - Savitha Soman
- Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India E-mail:
| | - Anil Kumar M Nagaraj
- Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India E-mail:
| | - Vivekananda Bhat
- Department of Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rashmi Vishwanath
- Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India E-mail:
| |
Collapse
|
8
|
Ryan CW, Peirent ER, Regan SL, Guxholli A, Bielas SL. H2A monoubiquitination: insights from human genetics and animal models. Hum Genet 2024; 143:511-527. [PMID: 37086328 DOI: 10.1007/s00439-023-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Metazoan development arises from spatiotemporal control of gene expression, which depends on epigenetic regulators like the polycomb group proteins (PcG) that govern the chromatin landscape. PcG proteins facilitate the addition and removal of histone 2A monoubiquitination at lysine 119 (H2AK119ub1), which regulates gene expression, cell fate decisions, cell cycle progression, and DNA damage repair. Regulation of these processes by PcG proteins is necessary for proper development, as pathogenic variants in these genes are increasingly recognized to underly developmental disorders. Overlapping features of developmental syndromes associated with pathogenic variants in specific PcG genes suggest disruption of central developmental mechanisms; however, unique clinical features observed in each syndrome suggest additional non-redundant functions for each PcG gene. In this review, we describe the clinical manifestations of pathogenic PcG gene variants, review what is known about the molecular functions of these gene products during development, and interpret the clinical data to summarize the current evidence toward an understanding of the genetic and molecular mechanism.
Collapse
Affiliation(s)
- Charles W Ryan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Medical Science Training Program, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Emily R Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA
| | - Stephanie L Bielas
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA.
| |
Collapse
|
9
|
Song Y, Seward CH, Chen CY, LeBlanc A, Leddy AM, Stubbs L. Isolated loss of the AUTS2 long isoform, brain-wide or targeted to Calbindin-lineage cells, generates a specific suite of brain, behavioral, and molecular pathologies. Genetics 2024; 226:iyad182. [PMID: 37816306 PMCID: PMC10763537 DOI: 10.1093/genetics/iyad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/25/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Rearrangements within the AUTS2 region are associated with a rare syndromic disorder with intellectual disability, developmental delay, and behavioral abnormalities as core features. In addition, smaller regional variants are linked to wide range of neuropsychiatric disorders, underscoring the gene's essential role in brain development. Like many essential neurodevelopmental genes, AUTS2 is large and complex, generating distinct long (AUTS2-l) and short (AUTS2-s) protein isoforms from alternative promoters. Although evidence suggests unique isoform functions, the contributions of each isoform to specific AUTS2-linked phenotypes have not been clearly resolved. Furthermore, Auts2 is widely expressed across the developing brain, but cell populations most central to disease presentation have not been determined. In this study, we focused on the specific roles of AUTS2-l in brain development, behavior, and postnatal brain gene expression, showing that brain-wide AUTS2-l ablation leads to specific subsets of the recessive pathologies associated with mutations in 3' exons (exons 8-19) that disrupt both major isoforms. We identify downstream genes that could explain expressed phenotypes including hundreds of putative direct AUTS2-l target genes. Furthermore, in contrast to 3' Auts2 mutations which lead to dominant hypoactivity, AUTS2-l loss-of-function is associated with dominant hyperactivity and repetitive behaviors, phenotypes exhibited by many human patients. Finally, we show that AUTS2-l ablation in Calbindin 1-expressing cell lineages is sufficient to yield learning/memory deficits and hyperactivity with abnormal dentate gyrus granule cell maturation, but not other phenotypic effects. These data provide new clues to in vivo AUTS2-l functions and novel information relevant to genotype-phenotype correlations in the human AUTS2 region.
Collapse
Affiliation(s)
- Yunshu Song
- Pacific Northwest Research Institute, Seattle WA 98122, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Chih-Ying Chen
- Pacific Northwest Research Institute, Seattle WA 98122, USA
| | - Amber LeBlanc
- Pacific Northwest Research Institute, Seattle WA 98122, USA
| | | | - Lisa Stubbs
- Pacific Northwest Research Institute, Seattle WA 98122, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
St John M, Tripathi T, Morgan AT, Amor DJ. To speak may draw on epigenetic writing and reading: Unravelling the complexity of speech and language outcomes across chromatin-related neurodevelopmental disorders. Neurosci Biobehav Rev 2023; 152:105293. [PMID: 37353048 DOI: 10.1016/j.neubiorev.2023.105293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Speech and language development are complex neurodevelopmental processes that are incompletely understood, yet current evidence suggests that speech and language disorders are prominent in those with disorders of chromatin regulation. This review aimed to unravel what is known about speech and language outcomes for individuals with chromatin-related neurodevelopmental disorders. A systematic literature search following PRISMA guidelines was conducted on 70 chromatin genes, to identify reports of speech/language outcomes across studies, including clinical reports, formal subjective measures, and standardised/objective measures. 3932 studies were identified and screened and 112 were systematically reviewed. Communication impairment was core across chromatin disorders, and specifically, chromatin writers and readers appear to play an important role in motor speech development. Identification of these relationships is important because chromatin disorders show promise as therapeutic targets due to the capacity for epigenetic modification. Further research is required using standardised and formal assessments to understand the nuanced speech/language profiles associated with variants in each gene, and the influence of chromatin dysregulation on the neurobiology of speech and language development.
Collapse
Affiliation(s)
- Miya St John
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia.
| | - Tanya Tripathi
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia.
| | - David J Amor
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Song Y, Seward CH, Chen CY, LeBlanc A, Leddy AM, Stubbs L. Isolated loss of the AUTS2 long isoform, brain-wide or targeted to Calbindin -lineage cells, generates a specific suite of brain, behavioral and molecular pathologies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539486. [PMID: 37205596 PMCID: PMC10187298 DOI: 10.1101/2023.05.04.539486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rearrangements within the AUTS2 region are associated with a rare syndromic disorder with intellectual disability, developmental delay and behavioral abnormalities as core features. In addition, smaller regional variants are linked to wide range of neuropsychiatric disorders, underscoring the gene's essential role in brain development. Like many essential neurodevelopmental genes, AUTS2 is large and complex, generating distinct long (AUTS2-l) and short (AUTS2-s) protein isoforms from alternative promoters. Although evidence suggests unique isoform functions, the contributions of each isoform to specific AUTS2- linked phenotypes have not been clearly resolved. Furthermore, Auts2 is widely expressed across the developing brain, but cell populations most central to disease presentation have not been determined. In this study, we focused on the specific roles of AUTS2-l in brain development, behavior, and postnatal brain gene expression, showing that brain-wide AUTS2-l ablation leads to specific subsets of the recessive pathologies associated with C-terminal mutations that disrupt both isoforms. We identify downstream genes that could explain expressed phenotypes including hundreds of putative direct AUTS2- l target genes. Furthermore, in contrast to C-terminal Auts2 mutations which lead to dominant hypoactivity, AUTS2-l loss-of-function is associated with dominant hyperactivity, a phenotype exhibited by many human patients. Finally, we show that AUTS2-l ablation in Calbindin 1 -expressing cell lineages is sufficient to yield learning/memory deficits and hyperactivity with abnormal dentate gyrus granule cell maturation, but not other phenotypic effects. These data provide new clues to in vivo AUTS2-l functions and novel information relevant to genotype-phenotype correlations in the human AUTS2 region.
Collapse
|
12
|
Thongkorn S, Kanlayaprasit S, Kasitipradit K, Lertpeerapan P, Panjabud P, Hu VW, Jindatip D, Sarachana T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol Sex Differ 2023; 14:8. [PMID: 36803626 PMCID: PMC9940328 DOI: 10.1186/s13293-023-00496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewarit Sarachana
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Geng Z, Wang Q, Miao W, Wolf T, Chavez J, Giddings E, Hobbs R, DeGraff DJ, Wang Y, Stafford J, Gao Z. AUTS2 Controls Neuronal Lineage Choice Through a Novel PRC1-Independent Complex and BMP Inhibition. Stem Cell Rev Rep 2023; 19:531-549. [PMID: 36258139 PMCID: PMC9905272 DOI: 10.1007/s12015-022-10459-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Despite a prominent risk factor for Neurodevelopmental disorders (NDD), it remains unclear how Autism Susceptibility Candidate 2 (AUTS2) controls the neurodevelopmental program. Our studies investigated the role of AUTS2 in neuronal differentiation and discovered that AUTS2, together with WDR68 and SKI, forms a novel protein complex (AWS) specifically in neuronal progenitors and promotes neuronal differentiation through inhibiting BMP signaling. Genomic and biochemical analyses demonstrated that the AWS complex achieves this effect by recruiting the CUL4 E3 ubiquitin ligase complex to mediate poly-ubiquitination and subsequent proteasomal degradation of phosphorylated SMAD1/5/9. Furthermore, using primary cortical neurons, we observed aberrant BMP signaling and dysregulated expression of neuronal genes upon manipulating the AWS complex, indicating that the AWS-CUL4-BMP axis plays a role in regulating neuronal lineage specification in vivo. Thus, our findings uncover a sophisticated cellular signaling network mobilized by a prominent NDD risk factor, presenting multiple potential therapeutic targets for NDD.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Qiang Wang
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Weili Miao
- Department of Chemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - Trevor Wolf
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jessenia Chavez
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Emily Giddings
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Ryan Hobbs
- Department of Dermatology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - David J DeGraff
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA, 17033, USA
- Penn State Hershey Cancer Institute, Hershey, PA, 17033, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - James Stafford
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Zhonghua Gao
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA.
- Penn State Hershey Cancer Institute, Hershey, PA, 17033, USA.
- The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
14
|
RINGs, DUBs and Abnormal Brain Growth-Histone H2A Ubiquitination in Brain Development and Disease. EPIGENOMES 2022; 6:epigenomes6040042. [PMID: 36547251 PMCID: PMC9778336 DOI: 10.3390/epigenomes6040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
During mammalian neurodevelopment, signaling pathways converge upon transcription factors (TFs) to establish appropriate gene expression programmes leading to the production of distinct neural and glial cell types. This process is partially regulated by the dynamic modulation of chromatin states by epigenetic systems, including the polycomb group (PcG) family of co-repressors. PcG proteins form multi-subunit assemblies that sub-divide into distinct, yet functionally related families. Polycomb repressive complexes 1 and 2 (PRC1 and 2) modify the chemical properties of chromatin by covalently modifying histone tails via H2A ubiquitination (H2AK119ub1) and H3 methylation, respectively. In contrast to the PRCs, the Polycomb repressive deubiquitinase (PR-DUB) complex removes H2AK119ub1 from chromatin through the action of the C-terminal hydrolase BAP1. Genetic screening has identified several PcG mutations that are causally associated with a range of congenital neuropathologies associated with both localised and/or systemic growth abnormalities. As PRC1 and PR-DUB hold opposing functions to control H2AK119ub1 levels across the genome, it is plausible that such neurodevelopmental disorders arise through a common mechanism. In this review, we will focus on advancements regarding the composition and opposing molecular functions of mammalian PRC1 and PR-DUB, and explore how their dysfunction contributes to the emergence of neurodevelopmental disorders.
Collapse
|
15
|
Fair SR, Schwind W, Julian DL, Biel A, Guo G, Rutherford R, Ramadesikan S, Westfall J, Miller KE, Kararoudi MN, Hickey SE, Mosher TM, McBride KL, Neinast R, Fitch J, Lee DA, White P, Wilson RK, Bedrosian TA, Koboldt DC, Hester ME. Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain 2022; 146:387-404. [PMID: 35802027 PMCID: PMC9825673 DOI: 10.1093/brain/awac244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 01/12/2023] Open
Abstract
Variants in the AUTS2 gene are associated with a broad spectrum of neurological conditions characterized by intellectual disability, microcephaly, and congenital brain malformations. Here, we use a human cerebral organoid model to investigate the pathophysiology of a heterozygous de novo missense AUTS2 variant identified in a patient with multiple neurological impairments including primary microcephaly and profound intellectual disability. Proband cerebral organoids exhibit reduced growth, deficits in neural progenitor cell (NPC) proliferation and disrupted NPC polarity within ventricular zone-like regions compared to control cerebral organoids. We used CRISPR-Cas9-mediated gene editing to correct this variant and demonstrate rescue of impaired organoid growth and NPC proliferative deficits. Single-cell RNA sequencing revealed a marked reduction of G1/S transition gene expression and alterations in WNT-β-catenin signalling within proband NPCs, uncovering a novel role for AUTS2 in NPCs during human cortical development. Collectively, these results underscore the value of cerebral organoids to investigate molecular mechanisms underlying AUTS2 syndrome.
Collapse
Affiliation(s)
- Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Wesley Schwind
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Alecia Biel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Gongbo Guo
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Swetha Ramadesikan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jesse Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kim L McBride
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Reid Neinast
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dean A Lee
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel C Koboldt
- Correspondence may also be addressed to: Daniel C. Koboldt, MS E-mail:
| | - Mark E Hester
- Correspondence to: Mark E. Hester, PhD 575 Children’s Crossroad Columbus OH 43205-2716, USA E-mail:
| |
Collapse
|
16
|
Gill PS, Dweep H, Rose S, Wickramasinghe PJ, Vyas KK, McCullough S, Porter-Gill PA, Frye RE. Integrated microRNA–mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Autism. J Pers Med 2022; 12:jpm12060920. [PMID: 35743705 PMCID: PMC9225282 DOI: 10.3390/jpm12060920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, with mutations in hundreds of genes contributing to its risk. Herein, we studied lymphoblastoid cell lines (LCLs) from children diagnosed with autistic disorder (n = 10) and controls (n = 7) using RNA and miRNA sequencing profiles. The sequencing analysis identified 1700 genes and 102 miRNAs differentially expressed between the ASD and control LCLs (p ≤ 0.05). The top upregulated genes were GABRA4, AUTS2, and IL27, and the top upregulated miRNAs were hsa-miR-6813-3p, hsa-miR-221-5p, and hsa-miR-21-5p. The RT-qPCR analysis confirmed the sequencing results for randomly selected candidates: AUTS2, FMR1, PTEN, hsa-miR-15a-5p, hsa-miR-92a-3p, and hsa-miR-125b-5p. The functional enrichment analysis showed pathways involved in ASD control proliferation of neuronal cells, cell death of immune cells, epilepsy or neurodevelopmental disorders, WNT and PTEN signaling, apoptosis, and cancer. The integration of mRNA and miRNA sequencing profiles by miRWalk2.0 identified correlated changes in miRNAs and their targets’ expression. The integration analysis found significantly dysregulated miRNA–gene pairs in ASD. Overall, these findings suggest that mRNA and miRNA expression profiles in ASD are greatly altered in LCLs and reveal numerous miRNA–gene interactions that regulate critical pathways involved in the proliferation of neuronal cells, cell death of immune cells, and neuronal development.
Collapse
Affiliation(s)
- Pritmohinder S. Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
- Correspondence: ; Tel.: +1-501-364-2743
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA; (H.D.); (P.J.W.)
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | | | - Kanan K. Vyas
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Sandra McCullough
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Patricia A. Porter-Gill
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Richard E. Frye
- Barrow Neurological Institute at Phoenix Children′s Hospital, Phoenix, AZ 85016, USA;
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| |
Collapse
|
17
|
Genetic investigation of syndromic forms of obesity. Int J Obes (Lond) 2022; 46:1582-1586. [PMID: 35597848 DOI: 10.1038/s41366-022-01149-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Syndromic obesity (SO) refers to obesity with additional phenotypes, including intellectual disability (ID)/developmental delay (DD), dysmorphic features, or organ-specific abnormalities. SO is rare, has high phenotypic variability, and frequently follows a monogenic pattern of inheritance. However, the genetic etiology of most cases of SO has not been elucidated. SUBJECTS AND METHODS In this study, we investigated 20 SO patients by whole-exome sequencing (WES) trios to identify causal genetic variants. RESULTS 4/20 patients had negative results for array comparative genomic hybridization (aCGH) analyses. In the remaining 15 patients, in addition to SNVs and indels, CNVs were also evaluated. Pathogenic/likely pathogenic (P/LP) SNVs/indels were detected in 6/20 patients (involving MED13L, AHDC1, EHMT1, MYT1L, GRIA3, and SETD1A), while two patients carried an inherited VUS. In addition, P/LP CNVs were observed in 3/15 patients (involving SATG2, KIAA0442, and MEIS2). CONCLUSIONS All nine detected P/LP variants involved genes already known to lead to syndromic ID/DD; however, for only two genes (EHMT1 and MYT1L) is the link with obesity well established. This is the first study applying a comprehensive genomic investigation of an SO cohort, showing a high diagnostic yield (~47%). Additionally, our findings suggested that several known ID/DD genes may also predispose individuals to SO.
Collapse
|
18
|
Biel A, Castanza AS, Rutherford R, Fair SR, Chifamba L, Wester JC, Hester ME, Hevner RF. AUTS2 Syndrome: Molecular Mechanisms and Model Systems. Front Mol Neurosci 2022; 15:858582. [PMID: 35431798 PMCID: PMC9008325 DOI: 10.3389/fnmol.2022.858582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 01/16/2023] Open
Abstract
AUTS2 syndrome is a genetic disorder that causes intellectual disability, microcephaly, and other phenotypes. Syndrome severity is worse when mutations involve 3' regions (exons 9-19) of the AUTS2 gene. Human AUTS2 protein has two major isoforms, full-length (1259 aa) and C-terminal (711 aa), the latter produced from an alternative transcription start site in exon 9. Structurally, AUTS2 contains the putative "AUTS2 domain" (∼200 aa) conserved among AUTS2 and its ohnologs, fibrosin, and fibrosin-like-1. Also, AUTS2 contains extensive low-complexity sequences and intrinsically disordered regions, features typical of RNA-binding proteins. During development, AUTS2 is expressed by specific progenitor cell and neuron types, including pyramidal neurons and Purkinje cells. AUTS2 localizes mainly in cell nuclei, where it regulates transcription and RNA metabolism. Some studies have detected AUTS2 in neurites, where it may regulate cytoskeletal dynamics. Neurodevelopmental functions of AUTS2 have been studied in diverse model systems. In zebrafish, auts2a morphants displayed microcephaly. In mice, excision of different Auts2 exons (7, 8, or 15) caused distinct phenotypes, variously including neonatal breathing abnormalities, cerebellar hypoplasia, dentate gyrus hypoplasia, EEG abnormalities, and behavioral changes. In mouse embryonic stem cells, AUTS2 could promote or delay neuronal differentiation. Cerebral organoids, derived from an AUTS2 syndrome patient containing a pathogenic missense variant in exon 9, exhibited neocortical growth defects. Emerging technologies for analysis of human cerebral organoids will be increasingly useful for understanding mechanisms underlying AUTS2 syndrome. Questions for future research include whether AUTS2 binds RNA directly, how AUTS2 regulates neurogenesis, and how AUTS2 modulates neural circuit formation.
Collapse
Affiliation(s)
- Alecia Biel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Anthony S. Castanza
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Summer R. Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Lincoln Chifamba
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jason C. Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Mark E. Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Robert F. Hevner
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
19
|
Li J, Sun X, You Y, Li Q, Wei C, Zhao L, Sun M, Meng H, Zhang T, Yue W, Wang L, Zhang D. Auts2 deletion involves in DG hypoplasia and social recognition deficit: The developmental and neural circuit mechanisms. SCIENCE ADVANCES 2022; 8:eabk1238. [PMID: 35235353 PMCID: PMC8890717 DOI: 10.1126/sciadv.abk1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/06/2022] [Indexed: 05/30/2023]
Abstract
The involvement of genetic risk and the underlying developmental and neural circuit mechanisms in autism-related social deficit are largely unclear. Here, we report that deletion of AUTS2, a high-susceptibility gene of ASDs, caused postnatal dentate gyrus (DG) hypoplasia, which was closely relevant to social recognition deficit. Furthermore, a previously unknown mechanism for neural cell migration in postnatal DG development was identified, in which Auts2-related signaling played a vital role as the transcription repressor. Moreover, the supramammillary nucleus (SuM)-DG-CA3 neural circuit was found to be involved in social recognition and affected in Auts2-deleted mice due to DG hypoplasia. Correction of DG-CA3 synaptic transmission by using a pharmacological approach or chemo/optogenetic activation of the SuM-DG circuit restored the social recognition deficit in Auts2-deleted mice. Our findings demonstrated the vital role of Auts2 in postnatal DG development, and this role was critical for SuM-DG-CA3 neural circuit-mediated social recognition behavior.
Collapse
Affiliation(s)
- Jun Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiaoxuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yang You
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qiongwei Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chengwen Wei
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Linnan Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Mengwen Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Hu Meng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Tian Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Lifang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
20
|
Venegas-Zamora L, Bravo-Acuña F, Sigcho F, Gomez W, Bustamante-Salazar J, Pedrozo Z, Parra V. New Molecular and Organelle Alterations Linked to Down Syndrome Heart Disease. Front Genet 2022; 12:792231. [PMID: 35126461 PMCID: PMC8808411 DOI: 10.3389/fgene.2021.792231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by a trisomy of the human chromosome 21 (Hsa21). Overexpression of Hsa21 genes that encode proteins and non-coding RNAs (ncRNAs) can disrupt several cellular functions and biological processes, especially in the heart. Congenital heart defects (CHDs) are present in 45–50% of individuals with DS. Here, we describe the genetic background of this condition (Hsa21 and non-Hsa21 genes), including the role of ncRNAs, and the relevance of these new players in the study of the pathophysiology of DS heart diseases. Additionally, we discuss several distinct pathways in cardiomyocytes which help maintain a functional heart, but that might trigger hypertrophy and oxidative stress when altered. Moreover, we highlight the importance of investigating how mitochondrial and lysosomal dysfunction could eventually contribute to understanding impaired heart function and development in subjects with the Hsa21 trisomy. Altogether, this review focuses on the newest insights about the gene expression, molecular pathways, and organelle alterations involved in the cardiac phenotype of DS.
Collapse
Affiliation(s)
- Leslye Venegas-Zamora
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Bravo-Acuña
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Sigcho
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - José Bustamante-Salazar
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| |
Collapse
|
21
|
AUTS2 Gene: Keys to Understanding the Pathogenesis of Neurodevelopmental Disorders. Cells 2021; 11:cells11010011. [PMID: 35011572 PMCID: PMC8750789 DOI: 10.3390/cells11010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASD) and intellectual disability (ID), are a large group of neuropsychiatric illnesses that occur during early brain development, resulting in a broad spectrum of syndromes affecting cognition, sociability, and sensory and motor functions. Despite progress in the discovery of various genetic risk factors thanks to the development of novel genomics technologies, the precise pathological mechanisms underlying the onset of NDDs remain elusive owing to the profound genetic and phenotypic heterogeneity of these conditions. Autism susceptibility candidate 2 (AUTS2) has emerged as a crucial gene associated with a wide range of neuropsychological disorders, such as ASD, ID, schizophrenia, and epilepsy. AUTS2 has been shown to be involved in multiple neurodevelopmental processes; in cell nuclei, it acts as a key transcriptional regulator in neurodevelopment, whereas in the cytoplasm, it participates in cerebral corticogenesis, including neuronal migration and neuritogenesis, through the control of cytoskeletal rearrangements. Postnatally, AUTS2 regulates the number of excitatory synapses to maintain the balance between excitation and inhibition in neural circuits. In this review, we summarize the knowledge regarding AUTS2, including its molecular and cellular functions in neurodevelopment, its genetics, and its role in behaviors.
Collapse
|
22
|
Liu S, Aldinger KA, Cheng CV, Kiyama T, Dave M, McNamara HK, Zhao W, Stafford JM, Descostes N, Lee P, Caraffi SG, Ivanovski I, Errichiello E, Zweier C, Zuffardi O, Schneider M, Papavasiliou AS, Perry MS, Humberson J, Cho MT, Weber A, Swale A, Badea TC, Mao CA, Garavelli L, Dobyns WB, Reinberg D. NRF1 association with AUTS2-Polycomb mediates specific gene activation in the brain. Mol Cell 2021; 81:4663-4676.e8. [PMID: 34637754 PMCID: PMC8604784 DOI: 10.1016/j.molcel.2021.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.
Collapse
Affiliation(s)
- Sanxiong Liu
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Chi Vicky Cheng
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Mitali Dave
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Hanna K McNamara
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Wukui Zhao
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Nicolas Descostes
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Pedro Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Stefano G Caraffi
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ivan Ivanovski
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Institute of Medical Genetics, University of Zürich, Zürich, Switzerland
| | - Edoardo Errichiello
- Dipartimento di Medicina Molecolare, Università di Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054 Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Orsetta Zuffardi
- Dipartimento di Medicina Molecolare, Università di Pavia, Pavia, Italy
| | - Michael Schneider
- Carle Physicians Group, Section of Neurology, St. Christopher's Hospital for Children, Urbana, IL, USA
| | | | - M Scott Perry
- Comprehensive Epilepsy Program, Jane and John Justin Neuroscience Center, Cook Children's Medical Center, Fort Worth, TX 76104, USA
| | - Jennifer Humberson
- Division of Genetics, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, VA, USA
| | | | | | - Andrew Swale
- Liverpool Women's Hospital, Liverpool, UK; Manchester Centre for Genomic Medicine, Manchester, UK
| | - Tudor C Badea
- National Eye Institute, NIH, Bethesda, MD 20892, USA; Research and Development Institute, Transilvania University of Brasov, School of Medicine, Brasov, Romania
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Livia Garavelli
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics (Genetic Medicine), University of Washington, Seattle, WA, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
23
|
Pauli S, Berger H, Ufartes R, Borchers A. Comparing a Novel Malformation Syndrome Caused by Pathogenic Variants in FBRSL1 to AUTS2 Syndrome. Front Cell Dev Biol 2021; 9:779009. [PMID: 34805182 PMCID: PMC8602103 DOI: 10.3389/fcell.2021.779009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Truncating variants in specific exons of Fibrosin-like protein 1 (FBRSL1) were recently reported to cause a novel malformation and intellectual disability syndrome. The clinical spectrum includes microcephaly, facial dysmorphism, cleft palate, skin creases, skeletal anomalies and contractures, postnatal growth retardation, global developmental delay as well as respiratory problems, hearing impairment and heart defects. The function of FBRSL1 is largely unknown, but pathogenic variants in the FBRSL1 paralog Autism Susceptibility Candidate 2 (AUTS2) are causative for an intellectual disability syndrome with microcephaly (AUTS2 syndrome). Some patients with AUTS2 syndrome also show additional symptoms like heart defects and contractures overlapping with the phenotype presented by patients with FBRSL1 mutations. For AUTS2, a dual function, depending on different isoforms, was described and suggested for FBRSL1. Both, nuclear FBRSL1 and AUTS2 are components of the Polycomb subcomplexes PRC1.3 and PRC1.5. These complexes have essential roles in developmental processes, cellular differentiation and proliferation by regulating gene expression via histone modification. In addition, cytoplasmic AUTS2 controls neural development, neuronal migration and neurite extension by regulating the cytoskeleton. Here, we review recent data on FBRSL1 in respect to previously published data on AUTS2 to gain further insights into its molecular function, its role in development as well as its impact on human genetics.
Collapse
Affiliation(s)
- Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Hanna Berger
- Faculty of Biology, Molecular Embryology, Philipps‐University Marburg, Marburg, Germany
| | - Roser Ufartes
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Faculty of Biology, Molecular Embryology, Philipps‐University Marburg, Marburg, Germany
| |
Collapse
|
24
|
Sanchez-Jimeno C, Blanco-Kelly F, López-Grondona F, Losada-Del Pozo R, Moreno B, Rodrigo-Moreno M, Martinez-Cayuelas E, Riveiro-Alvarez R, Fenollar-Cortés M, Ayuso C, Rodríguez de Alba M, Lorda-Sanchez I, Almoguera B. Attention Deficit Hyperactivity and Autism Spectrum Disorders as the Core Symptoms of AUTS2 Syndrome: Description of Five New Patients and Update of the Frequency of Manifestations and Genotype-Phenotype Correlation. Genes (Basel) 2021; 12:genes12091360. [PMID: 34573342 PMCID: PMC8471078 DOI: 10.3390/genes12091360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Haploinsufficiency of AUTS2 has been associated with a syndromic form of neurodevelopmental delay characterized by intellectual disability, autistic features, and microcephaly, also known as AUTS2 syndrome. While the phenotype associated with large deletions and duplications of AUTS2 is well established, clinical features of patients harboring AUTS2 sequence variants have not been extensively described. In this study, we describe the phenotype of five new patients with AUTS2 pathogenic variants, three of them harboring loss-of-function sequence variants. The phenotype of the patients was characterized by attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) or autistic features and mild global developmental delay (GDD) or intellectual disability (ID), all in 4/5 patients (80%), a frequency higher than previously reported for ADHD and autistic features. Microcephaly and short stature were found in 60% of the patients; and feeding difficulties, generalized hypotonia, and ptosis, were each found in 40%. We also provide the aggregated frequency of the 32 items included in the AUTS2 syndrome severity score (ASSS) in patients currently reported in the literature. The main characteristics of the syndrome are GDD/ID in 98% of patients, microcephaly in 65%, feeding difficulties in 62%, ADHD or hyperactivity in 54%, and autistic traits in 52%. Finally, using the location of 31 variants from the literature together with variants from the five patients, we found significantly higher ASSS values in patients with pathogenic variants affecting the 3′ end of the gene, confirming the genotype-phenotype correlation initially described.
Collapse
Affiliation(s)
- Carolina Sanchez-Jimeno
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Fermina López-Grondona
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Rebeca Losada-Del Pozo
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Beatriz Moreno
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - María Rodrigo-Moreno
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Elena Martinez-Cayuelas
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Rosa Riveiro-Alvarez
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - María Fenollar-Cortés
- Clinical Genetics Unit, Department of Clinical Analysis, Clínico San Carlos University Hospital, 28040 Madrid, Spain;
- IIS-Clínico San Carlos University Hospital (IsISSC), 28040 Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Marta Rodríguez de Alba
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Isabel Lorda-Sanchez
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Berta Almoguera
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
25
|
Tamburri S, Conway E, Pasini D. Polycomb-dependent histone H2A ubiquitination links developmental disorders with cancer. Trends Genet 2021; 38:333-352. [PMID: 34426021 DOI: 10.1016/j.tig.2021.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Cell identity is tightly controlled by specific transcriptional programs which require post-translational modifications of histones. These histone modifications allow the establishment and maintenance of active and repressed chromatin domains. Histone H2A lysine 119 ubiquitination (H2AK119ub1) has an essential role in building repressive chromatin domains during development. It is regulated by the counteracting activities of the Polycomb repressive complex 1 (PRC1) and the Polycomb repressive-deubiquitinase (PR-DUB) complexes, two multi-subunit ensembles that write and erase this modification, respectively. We have catalogued the recurrent genetic alterations in subunits of the PRC1 and PR-DUB complexes in both neurodevelopmental disorders and cancer. These genetic lesions are often shared across disorders, and we highlight common mechanisms of H2AK119ub1 dysregulation and how they affect development in multiple disease contexts.
Collapse
Affiliation(s)
- Simone Tamburri
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via Antonio di Rudinì 8, 20142 Milan, Italy.
| | - Eric Conway
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via Antonio di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
26
|
Erotomania and phenotypic continuum in a family frameshift variant of AUTS2: a case report and review. BMC Psychiatry 2021; 21:360. [PMID: 34273950 PMCID: PMC8285776 DOI: 10.1186/s12888-021-03342-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pathogenic variants of the AUTS2 (Autism Susceptibility candidate 2) gene predispose to intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, facial dysmorphism and short stature. This phenotype is therefore associated with neurocognitive disturbances and social cognition, indicating potential functional maladjustment in the affected subjects, and a potentially significant impact on quality of life. Although many isolated cases have been reported in the literature, to date no families have been described. This case reports on a family (three generations) with a frameshift variant in the AUTS2 gene. CASE PRESENTATION The proband is 13 years old with short stature, dysmorphic features, moderate intellectual disability and autism spectrum disorder. His mother is 49 years old and also has short stature and similar dysmorphic features. She does not have autism disorder but presents an erotomaniac delusion. Her cognitive performance is heterogeneous. The two aunts are also of short stature. The 50-year-old aunt has isolated social cognition disorders. The 45-year-old aunt has severe cognitive impairment and autism spectrum disorder. The molecular analysis of the three sisters and the proband shows the same AUTS2 heterozygous duplication leading to a frame shift expected to produce a premature stop codon, p.(Met593Tyrfs*85). Previously reported isolated cases revealed phenotypic and cognitive impairment variability. In this case report, these variabilities are present within the same family, presenting the same variant. CONCLUSIONS The possibility of a phenotypic spectrum within the same family highlights the need for joint psychiatry and genetics research.
Collapse
|
27
|
Meerschaut I, Vergult S, Dheedene A, Menten B, De Groote K, De Wilde H, Muiño Mosquera L, Panzer J, Vandekerckhove K, Coucke PJ, De Wolf D, Callewaert B. A Reassessment of Copy Number Variations in Congenital Heart Defects: Picturing the Whole Genome. Genes (Basel) 2021; 12:genes12071048. [PMID: 34356064 PMCID: PMC8304049 DOI: 10.3390/genes12071048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Copy number variations (CNVs) can modulate phenotypes by affecting protein-coding sequences directly or through interference of gene expression. Recent studies in cancer and limb defects pinpointed the relevance of non-coding gene regulatory elements such as long non-coding RNAs (lncRNAs) and topologically associated domain (TAD)-related gene-enhancer interactions. The contribution of such non-coding elements is largely unexplored in congenital heart defects (CHD). We performed a retrospective analysis of CNVs reported in a cohort of 270 CHD patients. We reviewed the diagnostic yield of pathogenic CNVs, and performed a comprehensive reassessment of 138 CNVs of unknown significance (CNV-US), evaluating protein-coding genes, lncRNA genes, and potential interferences with TAD-related gene-enhancer interactions. Fifty-two of the 138 CNV-US may relate to CHD, revealing three candidate CHD regions, 19 candidate CHD genes, 80 lncRNA genes of interest, and six potentially CHD-related TAD interferences. Our study thus indicates a potential relevance of non-coding gene regulatory elements in CNV-related CHD pathogenesis. Shortcomings in our current knowledge on genomic variation call for continuous reporting of CNV-US in international databases, careful patient counseling, and additional functional studies to confirm these preliminary findings.
Collapse
Affiliation(s)
- Ilse Meerschaut
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Annelies Dheedene
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Katya De Groote
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Hans De Wilde
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Laura Muiño Mosquera
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Joseph Panzer
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Kristof Vandekerckhove
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Paul J. Coucke
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Daniël De Wolf
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
- Department of Pediatric Cardiology, Brussels University Hospital, 1090 Brussels, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
- Correspondence: ; Tel.: +32-9-332-3603
| |
Collapse
|
28
|
Castanza AS, Ramirez S, Tripathi PP, Daza RAM, Kalume FK, Ramirez JM, Hevner RF. AUTS2 Regulates RNA Metabolism and Dentate Gyrus Development in Mice. Cereb Cortex 2021; 31:4808-4824. [PMID: 34013328 DOI: 10.1093/cercor/bhab124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Human AUTS2 mutations are linked to a syndrome of intellectual disability, autistic features, epilepsy, and other neurological and somatic disorders. Although it is known that this unique gene is highly expressed in developing cerebral cortex, the molecular and developmental functions of AUTS2 protein remain unclear. Using proteomics methods to identify AUTS2 binding partners in neonatal mouse cerebral cortex, we found that AUTS2 associates with multiple proteins that regulate RNA transcription, splicing, localization, and stability. Furthermore, AUTS2-containing protein complexes isolated from cortical tissue bound specific RNA transcripts in RNA immunoprecipitation and sequencing assays. Deletion of all major functional isoforms of AUTS2 (full-length and C-terminal) by conditional excision of exon 15 caused breathing abnormalities and neonatal lethality when Auts2 was inactivated throughout the developing brain. Mice with limited inactivation of Auts2 in cerebral cortex survived but displayed abnormalities of cerebral cortex structure and function, including dentate gyrus hypoplasia with agenesis of hilar mossy neurons, and abnormal spiking activity on EEG. Also, RNA transcripts that normally associate with AUTS2 were dysregulated in mutant mice. Together, these findings indicate that AUTS2 regulates RNA metabolism and is essential for development of cerebral cortex, as well as subcortical breathing centers.
Collapse
Affiliation(s)
- Anthony S Castanza
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanja Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Prem P Tripathi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ray A M Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Franck K Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Neurological Surgery, University of Washington, Seattle, WA 98014, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Neurological Surgery, University of Washington, Seattle, WA 98014, USA
| | - Robert F Hevner
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.,Department of Neurological Surgery, University of Washington, Seattle, WA 98014, USA
| |
Collapse
|
29
|
Gieldon L, Jauch A, Obeid K, Kaufmann L, Hinderhofer K, Haug U, Moog U. Germ cell mosaicism for AUTS2 exon 6 deletion. Am J Med Genet A 2021; 185:1261-1265. [PMID: 33577136 DOI: 10.1002/ajmg.a.62091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/11/2022]
Abstract
Haploinsufficiency of AUTS2 has been associated with neurodevelopmental disorders and dysmorphic features (MIM # 615834). More than 50 patients have been described, mostly carrying de novo deletions of one or more exons, including eight patients with exon 6 deletions. We report on two siblings, a girl and a boy aged 11 and 13 years, in whom the same pathogenic 85 kb deletion on 7q11.22 encompassing exon 6 of AUTS2 by SNP array analysis was identified. Both children had typical symptoms of AUTS2 syndrome such as intellectual impairment and behavioral problems, but with markedly different expression. SNP array analysis excluded the deletion in blood samples of both parents and a healthy brother. Conventional karyotyping of both parents and additional FISH analyses, marking the flanking regions of the deletion, did not show any structural rearrangements involving 7q11.22. A germ cell mosaicism was suggested as the most probable explanation for occurrence of the same deletion in these two siblings. To our knowledge this is the first report of germ cell mosaicism for AUTS2 syndrome. It additionally provides further evidence of intrafamilial phenotypic variability in AUTS2 syndrome and adds clinical information to the phenotypic spectrum of patients with AUTS2 exon 6 deletions.
Collapse
Affiliation(s)
- Laura Gieldon
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Katharina Obeid
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Lilian Kaufmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Ulrich Haug
- Center for Child Neurology and Social Pediatrics Maulbronn, Maulbronn, Germany
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
30
|
Whole Exome Sequencing Reveals a Novel AUTS2 In-Frame Deletion in a Boy with Global Developmental Delay, Absent Speech, Dysmorphic Features, and Cerebral Anomalies. Genes (Basel) 2021; 12:genes12020229. [PMID: 33562463 PMCID: PMC7915150 DOI: 10.3390/genes12020229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of highly prevalent, clinically and genetically heterogeneous pediatric disorders comprising, according to the Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-V), intellectual disability, developmental delay, autism spectrum disorders, and other neurological and cognitive disorders manifesting in the developmental age. To date, more than 1000 genes have been implicated in the etiopathogenesis of NNDs. Among them, AUTS2 (OMIM # 607270) encodes a protein involved in neural migration and neuritogenesis, and causes NNDs with different molecular mechanisms including copy number variations, single or multiple exonic deletion and single nucleotide variants. We describes a 9-year-old boy with global developmental delay, absent speech, minor craniofacial anomalies, hypoplasia of the cerebellar vermis and thinning of the corpus callosum, resulted carrier of the de novo AUTS2 c.1603_1626del deletion at whole exome sequencing (WES) predicted to cause the loss of eight amino acids [p.(His535_Thr542del)]. Notably, our patient is the first reported so far in medical literature carrying an in-frame deletion and the first in which absent language, hypoplasia of the cerebellar vermis and thinning of the corpus callosum has been observed thus useful to expand the molecular spectrum of AUTS2 pathogenic variants and to broaden our knowledge on the clinical phenotype associated.
Collapse
|
31
|
Martinez-Delgado B, Lopez-Martin E, Lara-Herguedas J, Monzon S, Cuesta I, Juliá M, Aquino V, Rodriguez-Martin C, Damian A, Gonzalo I, Gomez-Mariano G, Baladron B, Cazorla R, Iglesias G, Roman E, Ros P, Tutor P, Mellor S, Jimenez C, Cabrejas MJ, Gonzalez-Vioque E, Alonso J, Bermejo-Sánchez E, Posada M. De novo small deletion affecting transcription start site of short isoform of AUTS2 gene in a patient with syndromic neurodevelopmental defects. Am J Med Genet A 2020; 185:877-883. [PMID: 33346930 DOI: 10.1002/ajmg.a.62017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
Disruption of the autism susceptibility candidate 2 (AUTS2) gene through genomic rearrangements, copy number variations (CNVs), and intragenic deletions and mutations, has been recurrently involved in syndromic forms of developmental delay and intellectual disability, known as AUTS2 syndrome. The AUTS2 gene plays an important role in regulation of neuronal migration, and when altered, associates with a variable phenotype from severely to mildly affected patients. The more severe phenotypes significantly correlate with the presence of defects affecting the C-terminus part of the gene. This article reports a new patient with a syndromic neurodevelopmental disorder, who presents a deletion of 30 nucleotides in the exon 9 of the AUTS2 gene. Importantly, this deletion includes the transcription start site for the AUTS2 short transcript isoform, which has an important role in brain development. Gene expression analysis of AUTS2 full-length and short isoforms revealed that the deletion found in this patient causes a remarkable reduction in the expression level, not only of the short isoform, but also of the full AUTS2 transcripts. This report adds more evidence for the role of mutated AUTS2 short transcripts in the development of a severe phenotype in the AUTS2 syndrome.
Collapse
Affiliation(s)
- Beatriz Martinez-Delgado
- Institute of Rare Diseases Research (Instituto de Investigación de Enfermedades Raras/IIER), Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBER de Enfermedades Raras/CIBERER) (CB06/07/1009), ISCIII, Madrid, Spain.,Undiagnosed Diseases Network International, Madrid, Spain
| | - Estrella Lopez-Martin
- Institute of Rare Diseases Research (Instituto de Investigación de Enfermedades Raras/IIER), Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBER de Enfermedades Raras/CIBERER) (CB06/07/1009), ISCIII, Madrid, Spain.,Undiagnosed Diseases Network International, Madrid, Spain
| | - Julián Lara-Herguedas
- Department of Neuropediatrics, Puerta de Hierro University Teaching Hospital, Madrid, Spain
| | - Sara Monzon
- Undiagnosed Diseases Network International, Madrid, Spain.,Bioinformatics Unit, ISCIII, Madrid, Spain
| | - Isabel Cuesta
- Undiagnosed Diseases Network International, Madrid, Spain.,Bioinformatics Unit, ISCIII, Madrid, Spain
| | - Miguel Juliá
- Undiagnosed Diseases Network International, Madrid, Spain.,Bioinformatics Unit, ISCIII, Madrid, Spain
| | - Virginia Aquino
- Institute of Rare Diseases Research (Instituto de Investigación de Enfermedades Raras/IIER), Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - Carlos Rodriguez-Martin
- Institute of Rare Diseases Research (Instituto de Investigación de Enfermedades Raras/IIER), Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - Alejandra Damian
- Institute of Rare Diseases Research (Instituto de Investigación de Enfermedades Raras/IIER), Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - Irene Gonzalo
- Institute of Rare Diseases Research (Instituto de Investigación de Enfermedades Raras/IIER), Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - Gema Gomez-Mariano
- Institute of Rare Diseases Research (Instituto de Investigación de Enfermedades Raras/IIER), Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain.,Undiagnosed Diseases Network International, Madrid, Spain
| | - Beatriz Baladron
- Institute of Rare Diseases Research (Instituto de Investigación de Enfermedades Raras/IIER), Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain.,Undiagnosed Diseases Network International, Madrid, Spain
| | - Rosario Cazorla
- Department of Neuropediatrics, Puerta de Hierro University Teaching Hospital, Madrid, Spain
| | - Gema Iglesias
- Department of Neuropediatrics, Puerta de Hierro University Teaching Hospital, Madrid, Spain
| | - Enriqueta Roman
- Department of Neuropediatrics, Puerta de Hierro University Teaching Hospital, Madrid, Spain
| | | | - Pablo Tutor
- Department of Internal Medicine, Puerta de Hierro University Teaching Hospital, Madrid, Spain
| | - Susana Mellor
- Department of Internal Medicine, Puerta de Hierro University Teaching Hospital, Madrid, Spain
| | - Carlos Jimenez
- Department of Neurology, Puerta de Hierro University Teaching Hospital, Madrid, Spain
| | - Maria Jose Cabrejas
- Department of Clinical Biochemistry, Puerta de Hierro University Teaching Hospital, Madrid, Spain
| | - Emiliano Gonzalez-Vioque
- Department of Clinical Biochemistry, Puerta de Hierro University Teaching Hospital, Madrid, Spain
| | - Javier Alonso
- Institute of Rare Diseases Research (Instituto de Investigación de Enfermedades Raras/IIER), Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBER de Enfermedades Raras/CIBERER) (CB06/07/1009), ISCIII, Madrid, Spain.,Undiagnosed Diseases Network International, Madrid, Spain
| | - Eva Bermejo-Sánchez
- Institute of Rare Diseases Research (Instituto de Investigación de Enfermedades Raras/IIER), Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain.,Undiagnosed Diseases Network International, Madrid, Spain
| | - Manuel Posada
- Institute of Rare Diseases Research (Instituto de Investigación de Enfermedades Raras/IIER), Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBER de Enfermedades Raras/CIBERER) (CB06/07/1009), ISCIII, Madrid, Spain.,Undiagnosed Diseases Network International, Madrid, Spain
| |
Collapse
|
32
|
Sellers RA, Robertson DL, Tassabehji M. Ancestry of the AUTS2 family-A novel group of polycomb-complex proteins involved in human neurological disease. PLoS One 2020; 15:e0232101. [PMID: 33306672 PMCID: PMC7732068 DOI: 10.1371/journal.pone.0232101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/07/2020] [Indexed: 01/10/2023] Open
Abstract
Autism susceptibility candidate 2 (AUTS2) is a neurodevelopmental regulator associated with an autosomal dominant intellectual disability syndrome, AUTS2 syndrome, and is implicated as an important gene in human-specific evolution. AUTS2 exists as part of a tripartite gene family, the AUTS2 family, which includes two relatively undefined proteins, Fibrosin (FBRS) and Fibrosin-like protein 1 (FBRSL1). Evolutionary ancestors of AUTS2 have not been formally identified outside of the Animalia clade. A Drosophila melanogaster protein, Tay bridge, with a role in neurodevelopment, has been shown to display limited similarity to the C-terminal of AUTS2, suggesting that evolutionary ancestors of the AUTS2 family may exist within other Protostome lineages. Here we present an evolutionary analysis of the AUTS2 family, which highlights ancestral homologs of AUTS2 in multiple Protostome species, implicates AUTS2 as the closest human relative to the progenitor of the AUTS2 family, and demonstrates that Tay bridge is a divergent ortholog of the ancestral AUTS2 progenitor gene. We also define regions of high relative sequence identity, with potential functional significance, shared by the extended AUTS2 protein family. Using structural predictions coupled with sequence conservation and human variant data from 15,708 individuals, a putative domain structure for AUTS2 was produced that can be used to aid interpretation of the consequences of nucleotide variation on protein structure and function in human disease. To assess the role of AUTS2 in human-specific evolution, we recalculated allele frequencies at previously identified human derived sites using large population genome data, and show a high prevalence of ancestral alleles, suggesting that AUTS2 may not be a rapidly evolving gene, as previously thought.
Collapse
Affiliation(s)
- Robert A. Sellers
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, United Kingdom
| | - May Tassabehji
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Catusi I, Bonati MT, Mainini E, Russo S, Orlandini E, Larizza L, Recalcati MP. Recombinant Chromosome 7 Driven by Maternal Chromosome 7 Pericentric Inversion in a Girl with Features of Silver-Russell Syndrome. Int J Mol Sci 2020; 21:ijms21228487. [PMID: 33187293 PMCID: PMC7698152 DOI: 10.3390/ijms21228487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Maternal uniparental disomy of chromosome 7 is present in 5-10% of patients with Silver-Russell syndrome (SRS), and duplication of 7p including GRB10 (Growth Factor Receptor-Bound Protein 10), an imprinted gene that affects pre-and postnatal growth retardation, has been associated with the SRS phenotype. Here, we report on a 17 year old girl referred to array-CGH analysis for short stature, psychomotor delay, and relative macrocephaly. Array-CGH analysis showed two copy number variants (CNVs): a ~12.7 Mb gain in 7p13-p11.2, involving GRB10 and an ~9 Mb loss in 7q11.21-q11.23. FISH experiments performed on the proband's mother showed a chromosome 7 pericentric inversion that might have mediated the complex rearrangement harbored by the daughter. Indeed, we found that segmental duplications, of which chromosome 7 is highly enriched, mapped at the breakpoints of both the mother's inversion and the daughter's CNVs. We postulate that pairing of highly homologous sequences might have perturbed the correct meiotic chromosome segregation, leading to unbalanced outcomes and acting as the putative meiotic mechanism that was causative of the proband's rearrangement. Comparison of the girl's phenotype to those of patients with similar CNVs supports the presence of 7p in a locus associated with features of SRS syndrome.
Collapse
Affiliation(s)
- Ilaria Catusi
- Laboratorio di Citogenetica e Genetica Molecolare, Istituto Auxologico Italiano, IRCCS, 20149 Milano, Italy; (I.C.); (E.M.); (S.R.); (L.L.)
| | - Maria Teresa Bonati
- Ambulatorio di Genetica Medica, Istituto Auxologico Italiano, IRCCS, 20149 Milano, Italy; (M.T.B.); (E.O.)
| | - Ester Mainini
- Laboratorio di Citogenetica e Genetica Molecolare, Istituto Auxologico Italiano, IRCCS, 20149 Milano, Italy; (I.C.); (E.M.); (S.R.); (L.L.)
| | - Silvia Russo
- Laboratorio di Citogenetica e Genetica Molecolare, Istituto Auxologico Italiano, IRCCS, 20149 Milano, Italy; (I.C.); (E.M.); (S.R.); (L.L.)
| | - Eleonora Orlandini
- Ambulatorio di Genetica Medica, Istituto Auxologico Italiano, IRCCS, 20149 Milano, Italy; (M.T.B.); (E.O.)
| | - Lidia Larizza
- Laboratorio di Citogenetica e Genetica Molecolare, Istituto Auxologico Italiano, IRCCS, 20149 Milano, Italy; (I.C.); (E.M.); (S.R.); (L.L.)
| | - Maria Paola Recalcati
- Laboratorio di Citogenetica e Genetica Molecolare, Istituto Auxologico Italiano, IRCCS, 20149 Milano, Italy; (I.C.); (E.M.); (S.R.); (L.L.)
- Correspondence:
| |
Collapse
|
34
|
Palmer MR, Kim DS, Crosslin DR, Stanaway IB, Rosenthal EA, Carrell DS, Cronkite DJ, Gordon A, Du X, Li YK, Williams MS, Weng C, Feng Q, Li R, Pendergrass SA, Hakonarson H, Fasel D, Sohn S, Sleiman P, Handelman SK, Speliotes E, Kullo IJ, Larson EB, Jarvik GP. Loci identified by a genome-wide association study of carotid artery stenosis in the eMERGE network. Genet Epidemiol 2020; 45:4-15. [PMID: 32964493 PMCID: PMC7891640 DOI: 10.1002/gepi.22360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
Carotid artery atherosclerotic disease (CAAD) is a risk factor for stroke. We used a genome-wide association (GWAS) approach to discover genetic variants associated with CAAD in participants in the electronic Medical Records and Genomics (eMERGE) Network. We identified adult CAAD cases with unilateral or bilateral carotid artery stenosis and controls without evidence of stenosis from electronic health records at eight eMERGE sites. We performed GWAS with a model adjusting for age, sex, study site, and genetic principal components of ancestry. In eMERGE we found 1793 CAAD cases and 17,958 controls. Two loci reached genome-wide significance, on chr6 in LPA (rs10455872, odds ratio [OR] (95% confidence interval [CI]) = 1.50 (1.30-1.73), p = 2.1 × 10-8 ) and on chr7, an intergenic single nucleotide variant (SNV; rs6952610, OR (95% CI) = 1.25 (1.16-1.36), p = 4.3 × 10-8 ). The chr7 association remained significant in the presence of the LPA SNV as a covariate. The LPA SNV was also associated with coronary heart disease (CHD; 4199 cases and 11,679 controls) in this study (OR (95% CI) = 1.27 (1.13-1.43), p = 5 × 10-5 ) but the chr7 SNV was not (OR (95% CI) = 1.03 (0.97-1.09), p = .37). Both variants replicated in UK Biobank. Elevated lipoprotein(a) concentrations ([Lp(a)]) and LPA variants associated with elevated [Lp(a)] have previously been associated with CAAD and CHD, including rs10455872. With electronic health record phenotypes in eMERGE and UKB, we replicated a previously known association and identified a novel locus associated with CAAD.
Collapse
Affiliation(s)
- Melody R Palmer
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Daniel S Kim
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - David R Crosslin
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ian B Stanaway
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Elisabeth A Rosenthal
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, USA
| | - David S Carrell
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - David J Cronkite
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Adam Gordon
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xiaomeng Du
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yatong K Li
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Marc S Williams
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Qiping Feng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rongling Li
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, Maryland, USA
| | | | - Hakon Hakonarson
- Department of Pediatrics, The Center for Applied Genomics, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Fasel
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | | | - Patrick Sleiman
- Department of Pediatrics, The Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samuel K Handelman
- Division of Gastroenterology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth Speliotes
- Division of Gastroenterology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | -
- The electronic Medical Records and GEnomics Network, NHGRI, NIH, Bethesda, Maryland, USA
| | - Gail P Jarvik
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
35
|
Ufartes R, Berger H, Till K, Salinas G, Sturm M, Altmüller J, Nürnberg P, Thiele H, Funke R, Apeshiotis N, Langen H, Wollnik B, Borchers A, Pauli S. De novo mutations in FBRSL1 cause a novel recognizable malformation and intellectual disability syndrome. Hum Genet 2020; 139:1363-1379. [PMID: 32424618 PMCID: PMC7519918 DOI: 10.1007/s00439-020-02175-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/02/2020] [Indexed: 01/16/2023]
Abstract
We report truncating de novo variants in specific exons of FBRSL1 in three unrelated children with an overlapping syndromic phenotype with respiratory insufficiency, postnatal growth restriction, microcephaly, global developmental delay and other malformations. The function of FBRSL1 is largely unknown. Interestingly, mutations in the FBRSL1 paralogue AUTS2 lead to an intellectual disability syndrome (AUTS2 syndrome). We determined human FBRSL1 transcripts and describe protein-coding forms by Western blot analysis as well as the cellular localization by immunocytochemistry stainings. All detected mutations affect the two short N-terminal isoforms, which show a ubiquitous expression in fetal tissues. Next, we performed a Fbrsl1 knockdown in Xenopus laevis embryos to explore the role of Fbrsl1 during development and detected craniofacial abnormalities and a disturbance in neurite outgrowth. The aberrant phenotype in Xenopus laevis embryos could be rescued with a human N-terminal isoform, while the long isoform and the N-terminal isoform containing the mutation p.Gln163* isolated from a patient could not rescue the craniofacial defects caused by Fbrsl1 depletion. Based on these data, we propose that the disruption of the validated N-terminal isoforms of FBRSL1 at critical timepoints during embryogenesis leads to a hitherto undescribed complex neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Roser Ufartes
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Hanna Berger
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Katharina Till
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076, Tübingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch Str. 21, 50931, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931, Cologne, Germany
| | - Rudolf Funke
- Department of Neuropediatrics, Sozialpädiatrisches Zentrum, Mönchebergstr. 41-43, 34125, Kassel, Germany
| | | | - Hendrik Langen
- Department of Neuropediatrics, Sozialpädiatrisches Zentrum Hannover, Janusz-Korczak-Allee 8, 30173, Hannover, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines To Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany. .,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany.
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
| |
Collapse
|
36
|
Lugo M, Wong ZC, Billington CJ, Parrish PCR, Muldoon G, Liu D, Pober BR, Kozel BA. Social, neurodevelopmental, endocrine, and head size differences associated with atypical deletions in Williams-Beuren syndrome. Am J Med Genet A 2020; 182:1008-1020. [PMID: 32077592 DOI: 10.1002/ajmg.a.61522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Williams-Beuren syndrome (WBS) is a multisystem disorder caused by a hemizygous deletion on 7q11.23 encompassing 26-28 genes. An estimated 2-5% of patients have "atypical" deletions, which extend in the centromeric and/or telomeric direction from the WBS critical region. To elucidate clinical differentiators among these deletion types, we evaluated 10 individuals with atypical deletions in our cohort and 17 individuals with similarly classified deletions previously described in the literature. Larger deletions in either direction often led to more severe developmental delays, while deletions containing MAGI2 were associated with infantile spasms and seizures in patients. In addition, head size was notably smaller in those with centromeric deletions including AUTS2. Because children with atypical deletions were noted to be less socially engaged, we additionally sought to determine how atypical deletions relate to social phenotypes. Using the Social Responsiveness Scale-2, raters scored individuals with atypical deletions as having different social characteristics to those with typical WBS deletions (p = .001), with higher (more impaired) scores for social motivation (p = .005) in the atypical deletion group. In recognizing these distinctions, physicians can better identify patients, including those who may already carry a clinical or FISH WBS diagnosis, who may benefit from additional molecular evaluation, screening, and therapy. In addition to the clinical findings, we note mild endocrine findings distinct from those typically seen in WBS in several patients with telomeric deletions that included POR. Further study in additional telomeric deletion cases will be needed to confirm this observation.
Collapse
Affiliation(s)
- Michael Lugo
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina.,Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Zoë C Wong
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Charles J Billington
- Medical Genetics and Genomic Medicine Training Program, National Human Genetics Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Phoebe C R Parrish
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Glennis Muldoon
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Delong Liu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Barbara R Pober
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Beth A Kozel
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
37
|
Weisner PA, Chen CY, Sun Y, Yoo J, Kao WC, Zhang H, Baltz ET, Troy JM, Stubbs L. A Mouse Mutation That Dysregulates Neighboring Galnt17 and Auts2 Genes Is Associated with Phenotypes Related to the Human AUTS2 Syndrome. G3 (BETHESDA, MD.) 2019; 9:3891-3906. [PMID: 31554716 PMCID: PMC6829118 DOI: 10.1534/g3.119.400723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/19/2019] [Indexed: 01/23/2023]
Abstract
AUTS2 was originally discovered as the gene disrupted by a translocation in human twins with Autism spectrum disorder, intellectual disability, and epilepsy. Since that initial finding, AUTS2-linked mutations and variants have been associated with a very broad array of neuropsychiatric disorders, sugg esting that AUTS2 is required for fundamental steps of neurodevelopment. However, genotype-phenotype correlations in this region are complicated, because most mutations could also involve neighboring genes. Of particular interest is the nearest downstream neighbor of AUTS2, GALNT17, which encodes a brain-expressed N-acetylgalactosaminyltransferase of unknown brain function. Here we describe a mouse (Mus musculus) mutation, T(5G2;8A1)GSO (abbreviated 16Gso), a reciprocal translocation that breaks between Auts2 and Galnt17 and dysregulates both genes. Despite this complex regulatory effect, 16Gso homozygotes model certain human AUTS2-linked phenotypes very well. In addition to abnormalities in growth, craniofacial structure, learning and memory, and behavior, 16Gso homozygotes display distinct pathologies of the cerebellum and hippocampus that are similar to those associated with autism and other types of AUTS2-linked neurological disease. Analyzing mutant cerebellar and hippocampal transcriptomes to explain this pathology, we identified disturbances in pathways related to neuron and synapse maturation, neurotransmitter signaling, and cellular stress, suggesting possible cellular mechanisms. These pathways, coupled with the translocation's selective effects on Auts2 isoforms and coordinated dysregulation of Galnt17, suggest novel hypotheses regarding the etiology of the human "AUTS2 syndrome" and the wide array of neurodevelopmental disorders linked to variance in this genomic region.
Collapse
Affiliation(s)
- P Anne Weisner
- Carl R. Woese Institute for Genomic Biology
- Neuroscience Program
| | - Chih-Ying Chen
- Carl R. Woese Institute for Genomic Biology
- Department of Cell and Developmental Biology, and
| | - Younguk Sun
- Carl R. Woese Institute for Genomic Biology
- Department of Cell and Developmental Biology, and
| | | | | | | | | | - Joseph M Troy
- Carl R. Woese Institute for Genomic Biology
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana IL 61802
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology,
- Neuroscience Program
- Department of Cell and Developmental Biology, and
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana IL 61802
| |
Collapse
|
38
|
Elsen GE, Bedogni F, Hodge RD, Bammler TK, MacDonald JW, Lindtner S, Rubenstein JLR, Hevner RF. The Epigenetic Factor Landscape of Developing Neocortex Is Regulated by Transcription Factors Pax6→ Tbr2→ Tbr1. Front Neurosci 2018; 12:571. [PMID: 30186101 PMCID: PMC6113890 DOI: 10.3389/fnins.2018.00571] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic factors (EFs) regulate multiple aspects of cerebral cortex development, including proliferation, differentiation, laminar fate, and regional identity. The same neurodevelopmental processes are also regulated by transcription factors (TFs), notably the Pax6→ Tbr2→ Tbr1 cascade expressed sequentially in radial glial progenitors (RGPs), intermediate progenitors, and postmitotic projection neurons, respectively. Here, we studied the EF landscape and its regulation in embryonic mouse neocortex. Microarray and in situ hybridization assays revealed that many EF genes are expressed in specific cortical cell types, such as intermediate progenitors, or in rostrocaudal gradients. Furthermore, many EF genes are directly bound and transcriptionally regulated by Pax6, Tbr2, or Tbr1, as determined by chromatin immunoprecipitation-sequencing and gene expression analysis of TF mutant cortices. Our analysis demonstrated that Pax6, Tbr2, and Tbr1 form a direct feedforward genetic cascade, with direct feedback repression. Results also revealed that each TF regulates multiple EF genes that control DNA methylation, histone marks, chromatin remodeling, and non-coding RNA. For example, Tbr1 activates Rybp and Auts2 to promote the formation of non-canonical Polycomb repressive complex 1 (PRC1). Also, Pax6, Tbr2, and Tbr1 collectively drive massive changes in the subunit isoform composition of BAF chromatin remodeling complexes during differentiation: for example, a novel switch from Bcl7c (Baf40c) to Bcl7a (Baf40a), the latter directly activated by Tbr2. Of 11 subunits predominantly in neuronal BAF, 7 were transcriptionally activated by Pax6, Tbr2, or Tbr1. Using EFs, Pax6→ Tbr2→ Tbr1 effect persistent changes of gene expression in cell lineages, to propagate features such as regional and laminar identity from progenitors to neurons.
Collapse
Affiliation(s)
- Gina E. Elsen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Francesco Bedogni
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Rebecca D. Hodge
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
39
|
vonHoldt BM, Ji SS, Aardema ML, Stahler DR, Udell MAR, Sinsheimer JS. Activity of Genes with Functions in Human Williams-Beuren Syndrome Is Impacted by Mobile Element Insertions in the Gray Wolf Genome. Genome Biol Evol 2018; 10:1546-1553. [PMID: 29860323 PMCID: PMC6007319 DOI: 10.1093/gbe/evy112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
In canines, transposon dynamics have been associated with a hyper-social behavioral syndrome, although the functional mechanism has yet to be described. We investigate the epigenetic and transcriptional consequences of these behavior-associated mobile element insertions (MEIs) in dogs and Yellowstone gray wolves. We posit that the transposons themselves may not be the causative feature; rather, their transcriptional regulation may exert the functional impact. We survey four outlier transposons associated with hyper-sociability, with the expectation that they are targeted for epigenetic silencing. We predict hyper-methylation of MEIs, suggestive that the epigenetic silencing of and not the MEIs themselves may be driving dysregulation of nearby genes. We found that transposon-derived sequences are significantly hyper-methylated, regardless of their copy number or species. Further, we have assessed transcriptome sequence data and found evidence that MEIs impact the expression levels of six genes (WBSCR17, LIMK1, GTF2I, WBSCR27, BAZ1B, and BCL7B), all of which have known roles in human Williams-Beuren syndrome due to changes in copy number, typically hemizygosity. Although further evidence is needed, our results suggest that a few insertions alter local expression at multiple genes, likely through a cis-regulatory mechanism that excludes proximal methylation.
Collapse
Affiliation(s)
- Bridgett M vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, New Jersey
| | - Sarah S Ji
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California
| | - Matthew L Aardema
- Department of Biology, Montclair State University, New Jersey
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| | - Daniel R Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming
| | - Monique A R Udell
- Department of Animal & Rangeland Sciences, Oregon State University, Oregon
| | - Janet S Sinsheimer
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California
- Departments of Human Genetics and Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
40
|
Varga NÁ, Pentelényi K, Balicza P, Gézsi A, Reményi V, Hársfalvi V, Bencsik R, Illés A, Prekop C, Molnár MJ. Mitochondrial dysfunction and autism: comprehensive genetic analyses of children with autism and mtDNA deletion. Behav Brain Funct 2018; 14:4. [PMID: 29458409 PMCID: PMC5819172 DOI: 10.1186/s12993-018-0135-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/16/2018] [Indexed: 12/27/2022] Open
Abstract
Background The etiology of autism spectrum disorders (ASD) is very heterogeneous. Mitochondrial dysfunction has been described in ASD; however, primary mitochondrial disease has been genetically proven in a small subset of patients. The main goal of the present study was to investigate correlations between mitochondrial DNA (mtDNA) changes and alterations of genes associated with mtDNA maintenance or ASD. Methods Sixty patients with ASD and sixty healthy individuals were screened for common mtDNA mutations. Next generation sequencing was performed on patients with major mtDNA deletions (mtdel-ASD) using two gene panels to investigate nuclear genes that are associated with ASD or are responsible for mtDNA maintenance. Cohorts of healthy controls, ASD patients without mtDNA alterations, and patients with mitochondrial disorders (non-ASD) harbouring mtDNA deletions served as comparison groups. Results MtDNA deletions were confirmed in 16.6% (10/60) of patients with ASD (mtdel-ASD). In 90% of this mtdel-ASD children we found rare SNVs in ASD-associated genes (one of those was pathogenic). In the intergenomic panel of this cohort one likely pathogenic variant was present. In patients with mitochondrial disease in genes responsible for mtDNA maintenance pathogenic mutations and variants of uncertain significance (VUS) were detected more frequently than those found in patients from the mtdel-ASD or other comparison groups. In healthy controls and in patients without a mtDNA deletion, only VUS were detected in both panel. Conclusions MtDNA alterations are more common in patients with ASD than in control individuals. MtDNA deletions are not isolated genetic alterations found in ASD; they coexist either with other ASD-associated genetic risk factors or with alterations in genes responsible for intergenomic communication. These findings indicate that mitochondrial dysfunction is not rare in ASD. The occurring mtDNA deletions in ASD may be mostly a consequence of the alterations of the causative culprit genes for autism or genes responsible for mtDNA maintenance, or because of the harmful effect of environmental factors. Electronic supplementary material The online version of this article (10.1186/s12993-018-0135-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noémi Ágnes Varga
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Klára Pentelényi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Péter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - András Gézsi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Viktória Reményi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Vivien Hársfalvi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Renáta Bencsik
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Anett Illés
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Csilla Prekop
- Vadaskert Foundation for Children's Mental Health, Lipótmezei Str. 1-5, Budapest, 1021, Hungary
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary.
| |
Collapse
|
41
|
van Kampen FS, Doornbos ME, van Rijn MA, den Bever Y. A low-grade astrocytoma in a sixteen-year-old boy with a 7q11.22 deletion. Clin Case Rep 2018; 6:274-277. [PMID: 29445462 PMCID: PMC5799647 DOI: 10.1002/ccr3.1312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 11/23/2022] Open
Abstract
We report a patient with developmental delay due to germline AUTS2 mutation who developed a low‐grade astrocytoma. While the contribution of this mutation to the pathogenesis of the tumor is not known at this time, a role of AUTS2 in deregulation of PRC1 can be a part in tumorigenesis of a brain tumor.
Collapse
Affiliation(s)
| | - Marianne E. Doornbos
- Department of Paediatrics; Albert Schweitzer Hospital; Dordrecht The Netherlands
| | - Monique A. van Rijn
- Department of Neurology; Albert Schweitzer Hospital; Dordrecht The Netherlands
| | - Yolande den Bever
- Department of Clinical Genetics; Erasmus University Hospital; Rotterdam The Netherlands
| |
Collapse
|
42
|
Russo D, Della Ragione F, Rizzo R, Sugiyama E, Scalabrì F, Hori K, Capasso S, Sticco L, Fioriniello S, De Gregorio R, Granata I, Guarracino MR, Maglione V, Johannes L, Bellenchi GC, Hoshino M, Setou M, D'Esposito M, Luini A, D'Angelo G. Glycosphingolipid metabolic reprogramming drives neural differentiation. EMBO J 2017; 37:embj.201797674. [PMID: 29282205 DOI: 10.15252/embj.201797674] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 01/13/2023] Open
Abstract
Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.
Collapse
Affiliation(s)
- Domenico Russo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy.,IRCCS INM, Neuromed, Pozzilli, Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Eiji Sugiyama
- International Mass Imaging Center, Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Francesco Scalabrì
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy.,IRCCS INM, Neuromed, Pozzilli, Italy
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Serena Capasso
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico-SDN, Naples, Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | - Roberto De Gregorio
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Ilaria Granata
- High Performance Computing and Networking Institute, National Research Council, Naples, Italy
| | - Mario R Guarracino
- High Performance Computing and Networking Institute, National Research Council, Naples, Italy
| | | | - Ludger Johannes
- Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, INSERM U 1143, CNRS, UMR 3666, PSL Research University, Paris Cedex 05, France
| | | | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mitsutoshi Setou
- International Mass Imaging Center, Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy.,IRCCS INM, Neuromed, Pozzilli, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico-SDN, Naples, Italy
| | - Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico-SDN, Naples, Italy
| |
Collapse
|
43
|
Marangi G, Di Giacomo MC, Lattante S, Orteschi D, Patrizi S, Doronzio PN, Riviello FN, Vaisfeld A, Frangella S, Zollino M. A novel truncating variant within exon 7 of KAT6B associated with features of both Say-Barber-Bieseker-Young-Simpson syndrome and genitopatellar syndrome: Further evidence of a continuum in the clinical spectrum of KAT6B-related disorders. Am J Med Genet A 2017; 176:455-459. [PMID: 29226580 DOI: 10.1002/ajmg.a.38571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/03/2017] [Accepted: 11/16/2017] [Indexed: 11/07/2022]
Abstract
KAT6B sequence variants have been identified in both patients with the Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) and in the genitopatellar syndrome (GPS). In SBBYSS, they were reported to affect mostly exons 16-18 of KAT6B, and the predicted mechanism of pathogenesis was haploinsufficiency or a partial loss of protein function. Truncating variants in KAT6B leading to GPS appear to cluster within the proximal portion of exon 18, associated with a dominant-negative effect of the mutated protein, most likely. Although SBBYSS and GPS have been initially considered allelic disorders with distinctive genetic and clinical features, there is evidence that they represent two ends of a spectrum of conditions referable as KAT6B-related disorders. We detected a de novo truncating variant within exon 7 of KAT6B in a 8-year-old female who presented with mild intellectual disability, facial dysmorphisms highly consistent with SBBYSS, and skeletal anomalies including exostosis, that are usually considered component manifestations of GPS. Following the clinical diagnosis driven by the striking facial phenotype, we analyzed the KAT6B gene by NGS techniques. The present report highlights the pivotal role of clinical genetics in avoiding clear-cut genotype-phenotype categories in syndromic forms of intellectual disability. In addition, it further supports the evidence that a continuum exists within the clinical spectrum of KAT6B-associated disorders.
Collapse
Affiliation(s)
- Giuseppe Marangi
- Institute of Genomic Medicine, A. Gemelli Hospital, Catholic University, Rome, Italy
| | | | - Serena Lattante
- Institute of Genomic Medicine, A. Gemelli Hospital, Catholic University, Rome, Italy
| | - Daniela Orteschi
- Institute of Genomic Medicine, A. Gemelli Hospital, Catholic University, Rome, Italy
| | - Sara Patrizi
- Institute of Genomic Medicine, A. Gemelli Hospital, Catholic University, Rome, Italy
| | - Paolo N Doronzio
- Institute of Genomic Medicine, A. Gemelli Hospital, Catholic University, Rome, Italy
| | | | - Alessandro Vaisfeld
- Institute of Genomic Medicine, A. Gemelli Hospital, Catholic University, Rome, Italy
| | - Silvia Frangella
- Institute of Genomic Medicine, A. Gemelli Hospital, Catholic University, Rome, Italy
| | - Marcella Zollino
- Institute of Genomic Medicine, A. Gemelli Hospital, Catholic University, Rome, Italy
| |
Collapse
|
44
|
Nagel S, Pommerenke C, Meyer C, Kaufmann M, MacLeod RAF, Drexler HG. NKL homeobox gene MSX1 acts like a tumor suppressor in NK-cell leukemia. Oncotarget 2017; 8:66815-66832. [PMID: 28977998 PMCID: PMC5620138 DOI: 10.18632/oncotarget.18609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022] Open
Abstract
NKL homeobox gene MSX1 is physiologically expressed in lymphoid progenitors and subsequently downregulated in developing T- and B-cells. In contrast, elevated expression levels of MSX1 persist in mature natural killer (NK)-cells, indicating a functional role in this compartment. While T-cell acute lymphoblastic leukemia (T-ALL) subsets exhibit aberrant overexpression of MSX1, we show here that in malignant NK-cells the level of MSX1 transcripts is aberrantly downregulated. Chromosomal deletions at 4p16 hosting the MSX1 locus have been described in NK-cell leukemia patients. However, NK-cell lines analyzed here showed normal MSX1 gene configurations, indicating that this aberration might be uncommon. To identify alternative MSX1 regulatory mechanisms we compared expression profiling data of primary normal NK-cells and malignant NK-cell lines. This procedure revealed several deregulated genes including overexpressed IRF4, MIR155HG and MIR17HG and downregulated AUTS2, EP300, GATA3 and HHEX. As shown recently, chromatin-modulator AUTS2 is overexpressed in T-ALL subsets where it mediates aberrant transcriptional activation of MSX1. Here, our data demonstrate that in malignant NK-cell lines AUTS2 performed MSX1 activation as well, but in accordance with downregulated MSX1 transcription therein we detected reduced AUTS2 expression, a small genomic deletion at 7q11 removing exons 3 and 4, and truncating mutations in exon 1. Moreover, genomic profiling and chromosomal analyses of NK-cell lines demonstrated amplification of IRF4 at 6p25 and deletion of PRDM1 at 6q21, highlighting their potential oncogenic impact. Functional analyses performed via knockdown or forced expression of these genes revealed regulatory network disturbances effecting downregulation of MSX1 which may underlie malignant development in NK-cells.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Roderick A F MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Hans G Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| |
Collapse
|
45
|
Hori K, Hoshino M. Neuronal Migration and AUTS2 Syndrome. Brain Sci 2017; 7:brainsci7050054. [PMID: 28505103 PMCID: PMC5447936 DOI: 10.3390/brainsci7050054] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
Neuronal migration is one of the pivotal steps to form a functional brain, and disorganization of this process is believed to underlie the pathology of psychiatric disorders including schizophrenia, autism spectrum disorders (ASD) and epilepsy. However, it is not clear how abnormal neuronal migration causes mental dysfunction. Recently, a key gene for various psychiatric diseases, the Autism susceptibility candidate 2 (AUTS2), has been shown to regulate neuronal migration, which gives new insight into understanding this question. Interestingly, the AUTS2 protein has dual functions: Cytoplasmic AUTS2 regulates actin cytoskeleton to control neuronal migration and neurite extension, while nuclear AUTS2 controls transcription of various genes as a component of the polycomb complex 1 (PRC1). In this review, we discuss AUTS2 from the viewpoint of human genetics, molecular function, brain development, and behavior in animal models, focusing on its role in neuronal migration.
Collapse
Affiliation(s)
- Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan.
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan.
| |
Collapse
|