1
|
Shams RB, Nieman EL, Perilla-Young Y, Morrell DS, Hildebrandt C. TYMS-ENOSF1 Dyskeratosis Congenita in a Patient With Ring Chromosome 18: A Case Report. Am J Med Genet A 2025:e64081. [PMID: 40207375 DOI: 10.1002/ajmg.a.64081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Dyskeratosis Congenita (DC) is a rare genetic syndrome due to variants in genes involved in telomeric regulation and maintenance, impacting multiple organ systems. We report a case of DC secondary to TYMS gene deletion in a patient with ring chromosome 18 and related partial monosomy 18p and 18q. TYMS encodes thymidylate synthase, and compound heterozygosity for loss of function variants in TYMS and a specific haplotype of its antisense regulator ENOSFI (enolase super family 1) causes digenic DC. The patient had physical and developmental features of 18p monosomy, including poor growth, feeding issues, distinctive facial features, and strabismus. In early infancy, he developed diffuse hyperpigmentation as well as numerous punctate hypopigmented macules, sparse hair, and nail dystrophy, and diagnosis of DC was confirmed with a telomere length assay. Our case highlights that individuals with deletions at 18p encompassing TYMS should be evaluated for features of digenic dyskeratosis congenita.
Collapse
Affiliation(s)
- Rayad B Shams
- University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Elizabeth L Nieman
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yezmin Perilla-Young
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dean S Morrell
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Clara Hildebrandt
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Light J, Schratz KE, Nanegrungsunk O, Rudnick N, Armanios M, Bressler NM. Adult-Onset Presentations of Retinopathy Associated With Short Telomere Syndromes. JOURNAL OF VITREORETINAL DISEASES 2025:24741264251316324. [PMID: 39911301 PMCID: PMC11791962 DOI: 10.1177/24741264251316324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Purpose: To describe the association between short telomere syndrome and exudative retinopathies in adults. Methods: This case series compared the presentation, course of treatment, and visual outcomes of 2 patients with adult-onset retinopathy associated with short telomere syndrome. Results: In Case 1, a 53-year-old man initially presented with bilateral retinal telangiectasias and preretinal hemorrhage in the left eye, which was followed by multiple vitreous hemorrhages. In the subsequent 15 years, the patient was diagnosed with pulmonary fibrosis, liver cirrhosis, and a RTEL1 gene mutation, consistent with short telomere syndrome. In Case 2, a previously asymptomatic 26-year-old man with paternally inherited short telomere syndrome (TERC gene mutation) presented with floaters, bilateral peripheral retinal capillary nonperfusion, and an aneurysmal lesion with surrounding exudation. Conclusions: Short telomere syndromes, with systemic features that can be life-threatening, can manifest initially in adulthood with retinal telangiectasia, aneurysmal lesions, exudation, or peripheral retinal capillary nonperfusion, preceding systemic manifestations. Because the systemic manifestations of retinal telangiectasia and peripheral retinal capillary nonperfusion are progressive and can be life-threatening, recognizing these findings in adults with retinal telangiectasia is crucial.
Collapse
Affiliation(s)
- Jacob Light
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen E. Schratz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Onnisa Nanegrungsunk
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Noam Rudnick
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neil M. Bressler
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Savage SA, Bertuch AA. Different phenotypes with different endings-Telomere biology disorders and cancer predisposition with long telomeres. Br J Haematol 2025; 206:69-73. [PMID: 39462986 PMCID: PMC11739769 DOI: 10.1111/bjh.19851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Rare germline pathogenic variants (GPVs) in genes essential in telomere length maintenance and function have been implicated in two broad classes of human disease. The telomere biology disorders (TBDs) are a spectrum of life-threatening conditions, including bone marrow failure, liver and lung disease, cancer and other complications caused by GPVs in telomere maintenance genes that result in short and/or dysfunctional telomeres and reduced cellular replicative capacity. In contrast, cancer predisposition with long telomeres (CPLT) is a disorder associated with elevated risk of a variety of cancers, primarily melanoma, thyroid cancer, sarcoma, glioma and lymphoproliferative neoplasms caused by GPVs in shelterin complex genes that lead to excessive telomere elongation and increased cellular replicative capacity. While telomeres are at the root of both disorders, the term TBD is used to convey the clinical phenotypes driven by critically short or otherwise dysfunctional telomeres and their biological consequences.
Collapse
Affiliation(s)
- Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | | |
Collapse
|
4
|
Li J, Bledsoe JR. Inherited bone marrow failure syndromes and germline predisposition to myeloid neoplasia: A practical approach for the pathologist. Semin Diagn Pathol 2023; 40:429-442. [PMID: 37507252 DOI: 10.1053/j.semdp.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The diagnostic work up and surveillance of germline disorders of bone marrow failure and predisposition to myeloid malignancy is complex and involves correlation between clinical findings, laboratory and genetic studies, and bone marrow histopathology. The rarity of these disorders and the overlap of clinical and pathologic features between primary and secondary causes of bone marrow failure, acquired aplastic anemia, and myelodysplastic syndrome may result in diagnostic uncertainty. With an emphasis on the pathologist's perspective, we review diagnostically useful features of germline disorders including Fanconi anemia, Shwachman-Diamond syndrome, telomere biology disorders, severe congenital neutropenia, GATA2 deficiency, SAMD9/SAMD9L diseases, Diamond-Blackfan anemia, and acquired aplastic anemia. We discuss the distinction between baseline morphologic and genetic findings of these disorders and features that raise concern for the development of myelodysplastic syndrome.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, United States.
| |
Collapse
|
5
|
Uria-Oficialdegui ML, Navarro S, Murillo-Sanjuan L, Rodriguez-Vigil C, Benitez-Carbante MI, Blazquez-Goñi C, Salinas JA, Diaz-de-Heredia C. Dyskeratosis congenita: natural history of the disease through the study of a cohort of patients diagnosed in childhood. Front Pediatr 2023; 11:1182476. [PMID: 37593443 PMCID: PMC10427857 DOI: 10.3389/fped.2023.1182476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Background Dyskeratosis congenita (DC) is a multisystem and ultra-rare hereditary disease characterized by somatic involvement, bone marrow failure, and predisposition to cancer. The main objective of this study is to describe the natural history of DC through a cohort of patients diagnosed in childhood and followed up for a long period of time. Material and methods Multicenter, retrospective, longitudinal study conducted in patients followed up to 24 years since being diagnosed in childhood (between 1998 and 2020). Results Fourteen patients were diagnosed with DC between the ages of 3 and 17 years (median, 8.5 years). They all had hematologic manifestations at diagnosis, and nine developed mucocutaneous manifestations during the first decade of life. Seven presented severe DC variants. All developed non-hematologic manifestations during follow-up. Mutations were identified in 12 patients. Thirteen progressed to bone marrow failure at a median age of 8 years [range, 3-18 years], and eight received a hematopoietic stem cell transplant. Median follow-up time was 9 years [range, 2-24 years]. Six patients died, the median age was 13 years [range, 6-24 years]. As of November 2022, eight patients were still alive, with a median age of 18 years [range, 6-32 years]. None of them have developed myeloblastic syndrome or cancer. Conclusions DC was associated with high morbidity and mortality in our series. Hematologic manifestations appeared early and consistently. Non-hematologic manifestations developed progressively. No patient developed cancer possibly due to their young age. Due to the complexity of the disease multidisciplinary follow-up and adequate transition to adult care are essential.
Collapse
Affiliation(s)
- M. L. Uria-Oficialdegui
- Pediatric Hematology and Oncology Division, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | - S. Navarro
- Pediatric Division, Hospital Universitario SonEspases, Palma de Mallorca, Spain
| | - L. Murillo-Sanjuan
- Pediatric Hematology and Oncology Division, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | - C. Rodriguez-Vigil
- Pediatric Oncohaematology Unit, Paediatric Division, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - M. I. Benitez-Carbante
- Pediatric Hematology and Oncology Division, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | | | - J. A. Salinas
- Pediatric Division, Hospital Universitario SonEspases, Palma de Mallorca, Spain
| | - C. Diaz-de-Heredia
- Pediatric Hematology and Oncology Division, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| |
Collapse
|
6
|
Putra J, Agarwal S, Al-Ibraheemi A, Alomari AI, Perez-Atayde AR. Spectrum of Liver Pathology in Dyskeratosis Congenita. Am J Surg Pathol 2023; 47:869-877. [PMID: 37246821 PMCID: PMC10524011 DOI: 10.1097/pas.0000000000002060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Dyskeratosis congenita (DC) is a rare multisystemic disorder associated with defective telomere maintenance. Frequent clinical manifestations of DC include reticular skin pigmentation, dystrophic nails, oral leukoplakia, and bone marrow failure. Hepatic disturbances are reported to occur in 7% of DC patients. This study aimed to evaluate the histopathologic spectrum of hepatic involvement in this disorder. DC patients with liver tissue in the pathology database at Boston Children's Hospital from 1995 to 2022 were identified. Clinical and pathologic information was documented. Thirteen specimens from 11 DC patients were included (M:F = 7:4; median age at the time of liver tissue evaluation: 18 y). DC-associated gene mutations were identified in 9 patients; TERF1-interacting nuclear factor 2 ( TINF2) was the most frequently represented gene mutation, seen in 4 patients. All patients had bone marrow failure, whereas dystrophic nails, cutaneous abnormal pigmentation, and oral leukoplakia were noted in 73%, 64%, and 55% of patients, respectively. Seven patients underwent bone marrow transplants before biopsy/autopsy (median interval of 45 mo). Histologically, 3 of 4 patients who presented with portal hypertension showed noncirrhotic changes (nodular regenerative hyperplasia and/or obliterative portal venopathy), whereas prominent central and sinusoidal fibrosis was noted in patients with intrahepatic shunting and those showing features of chronic passive congestion. All cases showed hepatocyte anisonucleosis. One patient developed hepatic angiosarcoma, and another 1 had colorectal adenocarcinoma metastatic to the liver. DC patients show heterogeneous histologic findings in their liver. The findings of noncirrhotic portal hypertension, intrahepatic shunting, and angiosarcoma suggest vascular functional/structural pathology as a possible unifying etiology of hepatic manifestations of DC.
Collapse
Affiliation(s)
| | | | | | - Ahmad I Alomari
- Division of Vascular and Interventional Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | | |
Collapse
|
7
|
Lin MH, Chou PC, Lee IC, Yang SF, Yu HS, Yu S. Inherited Reticulate Pigmentary Disorders. Genes (Basel) 2023; 14:1300. [PMID: 37372478 DOI: 10.3390/genes14061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Reticulate pigmentary disorders (RPDs) are a group of inherited and acquired skin conditions characterized by hyperpigmented and/or hypopigmented macules. Inherited RPDs include dyschromatosis symmetrica hereditaria (DSH), dyschromatosis universalis hereditaria (DUH), reticulate acropigmentation of Kitamura (RAK), Dowling-Degos disease (DDD), dyskeratosis congenita (DKC), Naegeli-Franceschetti-Jadassohn syndrome (NFJS), dermatopathia pigmentosa reticularis (DPR), and X-linked reticulate pigmentary disorder. Although reticulate pattern of pigmentation is a common characteristic of this spectrum of disorders, the distribution of pigmentation varies among these disorders, and there may be clinical manifestations beyond pigmentation. DSH, DUH, and RAK are mostly reported in East Asian ethnicities. DDD is more common in Caucasians, although it is also reported in Asian countries. Other RPDs show no racial predilection. This article reviews the clinical, histological, and genetic variations of inherited RPDs.
Collapse
Affiliation(s)
- Min-Huei Lin
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Chen Chou
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Chen Lee
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Syuan-Fei Yang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sebastian Yu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Özdek Ş, Özdemir Zeydanlı E, Baumal C, Hoyek S, Patel N, Berrocal A, Lopez-Cañizares A, Al-Khersan H, Kusaka S, Mano F, Jalali S, Lepore D, Akar S. Avascular Peripheral Retina in Infants. Turk J Ophthalmol 2023; 53:44-57. [PMID: 36847634 PMCID: PMC9973209 DOI: 10.4274/tjo.galenos.2022.76436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Avascular peripheral retina in an infant is a common characteristic of numerous pediatric retinal vascular disorders and often presents a diagnostic challenge to the clinician. In this review, key features of each disease in the differential diagnosis, from retinopathy of prematurity, familial exudative vitreoretinopathy, Coats disease, incontinentia pigmenti, Norrie disease, and persistent fetal vasculature, to other rare hematologic conditions and telomere disorders, will be discussed by expert ophthalmologists in the field.
Collapse
Affiliation(s)
- Şengül Özdek
- Gazi University Faculty of Medicine, Department of Ophthalmology, Ankara, Türkiye
| | | | - Caroline Baumal
- Tufts University Faculty of Medicine, Department of Ophthalmology, Tufts Medical Center, Boston, United States of America
| | - Sandra Hoyek
- Harvard Medical School, Massachusetts Eye and Ear, Department of Ophthalmology, Boston, United States of America
| | - Nimesh Patel
- Harvard Medical School, Massachusetts Eye and Ear, Department of Ophthalmology, Boston, United States of America
| | - Audina Berrocal
- University of Miami Miller Faculty of Medicine, Bascom Palmer Eye Institute, Department of Ophthalmology, Miami, United States of America
| | - Ashley Lopez-Cañizares
- University of Miami Miller Faculty of Medicine, Bascom Palmer Eye Institute, Department of Ophthalmology, Miami, United States of America
| | - Hasenin Al-Khersan
- University of Miami Miller Faculty of Medicine, Bascom Palmer Eye Institute, Department of Ophthalmology, Miami, United States of America
| | - Shunji Kusaka
- Kindai University Faculty of Medicine, Department of Ophthalmology, Osaka, Japan
| | - Fukutaro Mano
- Kindai University Faculty of Medicine, Department of Ophthalmology, Osaka, Japan
| | - Subhadra Jalali
- L V Prasad Eye Institute, Anant Bajaj Retina Institute and Child Sight Institute, Hyderabad, India
| | - Domenico Lepore
- Catholic University of the Sacred Heart, Department of Geriatrics and Neuroscience, A. Gemelli Foundation IRCSS, Rome, Italy
| | - Solmaz Akar
- Acıbadem Bakırkoy Hospital, Clinic of Ophthalmology, İstanbul, Türkiye
| |
Collapse
|
9
|
Tummala H, Walne A, Dokal I. The biology and management of dyskeratosis congenita and related disorders of telomeres. Expert Rev Hematol 2022; 15:685-696. [PMID: 35929966 DOI: 10.1080/17474086.2022.2108784] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/29/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a multisystem syndrome characterized by mucocutaneous abnormalities, bone marrow failure, and predisposition to cancer. Studies over the last 25 years have led to the identification of 18 disease genes. These have a principal role in telomere maintenance, and patients usually have very short/abnormal telomeres. The advances have also led to the unification of DC with a number of other diseases, now collectively referred to as the telomeropathies or telomere biology disorders. WHAT IS COVERED Clinical features, genetics, and biology of the different subtypes. Expert view on diagnosis, treatment of the hematological complications and future. EXPERT VIEW As these are very pleotropic disorders affecting multiple organs, a high index of suspicion is necessary to make the diagnosis. Telomere length measurement and genetic analysis of the disease genes have become useful diagnostic tools. Although hematological defects can respond to danazol/oxymetholone, the only current curative treatment for these is hematopoietic stem cell transplantation (HSCT) using fludarabine-based conditioning protocols. New therapies are needed where danazol/oxymetholone is ineffective and HSCT is not feasible.
Collapse
Affiliation(s)
- Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amanda Walne
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Haematology, Barts Health, London, UK
| |
Collapse
|
10
|
Agrawal S, Shanmugam PM, Shah PN, Mishra DK, Ramanjulu R. The Masquerading Retinopathy of Revesz Syndrome. Ophthalmic Surg Lasers Imaging Retina 2022; 53:346-348. [PMID: 35724369 DOI: 10.3928/23258160-20220421-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Revesz syndrome is a rare telomeropathy characterized by bone marrow failure and exudative retinopathy. We report the case of a 2-year-old male child, initially treated with bilateral laser photocoagulation for retinopathy of prematurity. He developed exudative changes in the right eye, presumed to be Coats disease. Later, the left eye developed a total vitreous hemorrhage. Proliferative retinopathy was noted intraoperatively. Systemic features of bone marrow failure, growth retardation, and nail pigmentation were present. Genetic testing confirmed the diagnosis of Revesz syndrome. We describe our approach to diagnosis and surgical management of the case. [Ophthalmic Surg Lasers Imaging Retina 2022;53(6): 346-348.].
Collapse
|
11
|
Functional interaction between compound heterozygous TERT mutations causes severe telomere biology disorder. Blood Adv 2022; 6:3779-3791. [PMID: 35477117 DOI: 10.1182/bloodadvances.2022007029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Telomere biology disorders (TBDs) are a spectrum of multisystem inherited disorders characterized by bone marrow failure, resulting from mutations in genes encoding telomerase or other proteins involved in maintaining telomere length and integrity. Pathogenicity of variants in these genes can be hard to evaluate, since TBD mutations show highly variable penetrance and genetic anticipation due to inheritance of shorter telomeres with each generation. Thus, detailed functional analysis of newly identified variants is often essential. Here we describe a patient with compound heterozygous variants in the TERT gene, which encodes the catalytic subunit of telomerase, hTERT; this patient has the extremely severe Hoyeraal-Hreidarsson form of TBD, although his heterozygous parents are clinically unaffected. Molecular dynamic modeling and detailed biochemical analyses demonstrate that 1 allele (L557P) affects association of hTERT with its cognate RNA component hTR, while the other (K1050E) affects the binding of telomerase to its DNA substrate and enzyme processivity. Unexpectedly, the data demonstrate a functional interaction between the proteins encoded by the 2 alleles, with WT hTERT able to rescue the effect of K1050E on processivity, whereas L557P hTERT cannot. These data contribute to the mechanistic understanding of telomerase, indicating that RNA binding in 1 hTERT molecule affects the processivity of telomere addition by the other molecule. This work emphasizes the importance of functional characterization of TERT variants to reach a definitive molecular diagnosis for TBD patients, and in particular it illustrates the importance of analyzing the effects of compound heterozygous variants in combination to reveal interallelic effects.
Collapse
|
12
|
Multisystemic Manifestations in Rare Diseases: The Experience of Dyskeratosis Congenita. Genes (Basel) 2022; 13:genes13030496. [PMID: 35328050 PMCID: PMC8953471 DOI: 10.3390/genes13030496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Dyskeratosis congenital (DC) is the first genetic syndrome described among telomeropathies. Its classical phenotype is characterized by the mucocutaneous triad of reticulated pigmentation of skin lace, nail dystrophy and oral leukoplakia. The clinical presentation, however, is heterogeneous and serious clinical complications include bone marrow failure, hematological and solid tumors. It may also involve immunodeficiencies, dental, pulmonary and liver disorders, and other minor complication. Dyskeratosis congenita shows marked genetic heterogeneity, as at least 14 genes are responsible for the shortening of telomeres characteristic of this disease. This review discusses clinical characteristics, molecular genetics, disease evolution, available therapeutic options and differential diagnosis of dyskeratosis congenita to provide an interdisciplinary and personalized medical assessment that includes family genetic counseling.
Collapse
|
13
|
Asano M, Tsukamoto S, Sonoda KH, Kondo H. Revesz syndrome with bilateral retinal detachments successfully treated by pars plana vitrectomy. Am J Ophthalmol Case Rep 2021; 23:101137. [PMID: 34189343 PMCID: PMC8220311 DOI: 10.1016/j.ajoc.2021.101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/23/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background Revesz syndrome is a rare type of the dyskeratosis congenita spectrum disorder that is characterized by nail dystrophy, oral leukoplakia, and abnormal skin pigmentation. The retinal features are similar to those of exudative retinopathy with avascular areas of the peripheral retina. There are only a few publications describing patients with Revesz syndrome who underwent ocular treatments for the retinal complications. We report a Case of Revesz syndrome with bilateral retinal detachments that were successfully reattached by pars plana vitrectomy. Observations A 3-year-old Japanese girl with Revesz Syndrome had progressive vitreal hemorrhages and tractional retinal detachments in both eyes. She underwent pars plana vitrectomy with lensectomy on both eyes. A retinal attachment with vision improvement was achieved by a single surgery for the right eye and after repeated surgeries for the left eye. Postoperative electroretinographic (ERG) examinations of the right eye showed a negative type ERG with the b-wave/a-wave ratio <1.0. There were extensive areas of avascular retina detected by fluorescein angiography and a thinning of the inner and outer retina detected by optical coherence tomography. Conclusion and importance Pars plana vitrectomy can effectively treat the extensive retinal detachment in an eye with Revesz syndrome. However, postoperative retinal ischemia can be detected by careful imaging.
Collapse
Affiliation(s)
- Mamika Asano
- Department of Ophthalmology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Shoko Tsukamoto
- Department of Ophthalmology, Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
- Corresponding author. 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
14
|
Kondo H, Matsushita I, Nagata T, Fujihara E, Hosono K, Uchio E, Hotta Y, Kusaka S. Retinal Features of Family Members With Familial Exudative Vitreoretinopathy Caused By Mutations in KIF11 Gene. Transl Vis Sci Technol 2021; 10:18. [PMID: 34128965 PMCID: PMC8212440 DOI: 10.1167/tvst.10.7.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose To determine the clinical characteristics of patients and family members with familial exudative vitreoretinopathy (FEVR) caused by mutations in the KIF11 gene. Methods Twenty-one patients from 10 FEVR families with mutations in the KIF11 gene were studied. The retinal and systemic features were examined. The genetic analyses performed included Sanger sequencing of the KIF11 gene, whole exome sequencing, as well as array comparative genomic hybridization (CGH) analysis and multiple ligation probe assay (MLPA). Results Sequence analysis revealed seven different KIF11 mutations. Array CGH with MLPA revealed two different exon deletions. All probands had advanced FEVR with retinal detachments (RDs) and microcephaly with or without developmental disabilities. Patients with bilateral RDs were more frequently associated with developmental disabilities (P = 0.023). Multimodal imaging of the family members revealed that six of nine patients without RDs (66%) had varying degrees of chorioretinopathy. The retinal folds in FEVR patients were associated with severe retinal avascularization. However, funduscopic changes in the peripheral retina were unremarkable in family members without RDs. A score representing the peripheral vascular anomalies determined from the fluorescein angiograms was lower than that of control eyes of patients with mutations of the Wnt signaling genes (P = 0.0029). Conclusions The probands with KIF11 mutations were associated with severe ocular and systemic pathologies, whereas affected family members showed highly variable clinical manifestations. Peripheral vascular anomalies can often be unremarkable in eyes without RDs. Translational Relevance These findings highlight more diverse mechanisms that underlie the pathological changes in patients with FEVR.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Nagata
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Etsuko Fujihara
- Division of Ophthalmology, Matsue Red Cross Hospital, Matsue, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University, Fukuoka, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
15
|
Karremann M, Neumaier-Probst E, Schlichtenbrede F, Beier F, Brümmendorf TH, Cremer FW, Bader P, Dürken M. Revesz syndrome revisited. Orphanet J Rare Dis 2020; 15:299. [PMID: 33097095 PMCID: PMC7583287 DOI: 10.1186/s13023-020-01553-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background Revesz syndrome (RS) is an extremely rare variant of dyskeratosis congenita (DKC) with only anecdotal reports in the literature. Methods To further characterize the typical features and natural course of the disease, we screened the English literature and summarized the clinical and epidemiological features of previously published RS cases. In addition, we herein describe the first recorded patient in central Europe. Results The literature review included 18 children. Clinical features are summarized, indicating a low prevalence of the classical DKC triad. All patients experienced early bone marrow failure, in most cases within the second year of life (median age 1.5 years; 95% CI 1.4–1.6). Retinopathy occurred typically between 6 and 18 months of age (median age 1.1 years; 95% CI 0.7–1.5). The incidence of seizures was low and was present in an estimated 20% of patients. The onset of seizures was exclusively during early childhood. The Kaplan–Meier estimate of survival was dismal (median survival 6.5 years; 95% CI 3.6–9.4), and none of the patients survived beyond the age of 12 years. Stem cell transplantation (SCT) was performed in eight children, and after a median of 22 months from SCT four of these patients were alive at the last follow up visit. Conclusion RS is a severe variant of DKC with early bone marrow failure and retinopathy in all patients. Survival is dismal, but stem cell transplantation may be performed successfully and might improve prognosis in the future.
Collapse
Affiliation(s)
- Michael Karremann
- Department of Pediatrics, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Eva Neumaier-Probst
- Department of Neuroradiology, University Medical Center Mannheim, Mannheim, Germany
| | | | - Fabian Beier
- Department of Hematology and Oncology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology and Oncology, University Hospital of RWTH Aachen, Aachen, Germany
| | | | - Peter Bader
- Department of Pediatrics, Pediatric Stem Cell Transplantation, University Hospital Frankfurt, Frankfurt, Germany
| | - Matthias Dürken
- Department of Pediatrics, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
16
|
Intracranial calcifications in childhood: Part 2. Pediatr Radiol 2020; 50:1448-1475. [PMID: 32642802 DOI: 10.1007/s00247-020-04716-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
This article is the second of a two-part series on intracranial calcification in childhood. In Part 1, the authors discussed the main differences between physiological and pathological intracranial calcification. They also outlined histological intracranial calcification characteristics and how these can be detected across different neuroimaging modalities. Part 1 emphasized the importance of age at presentation and intracranial calcification location and proposed a comprehensive neuroimaging approach toward the differential diagnosis of the causes of intracranial calcification. Pathological intracranial calcification can be divided into infectious, congenital, endocrine/metabolic, vascular, and neoplastic. In Part 2, the chief focus is on discussing endocrine/metabolic, vascular, and neoplastic intracranial calcification etiologies of intracranial calcification. Endocrine/metabolic diseases causing intracranial calcification are mainly from parathyroid and thyroid dysfunction and inborn errors of metabolism, such as mitochondrial disorders (MELAS, or mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; Kearns-Sayre; and Cockayne syndromes), interferonopathies (Aicardi-Goutières syndrome), and lysosomal disorders (Krabbe disease). Specific noninfectious causes of intracranial calcification that mimic TORCH (toxoplasmosis, other [syphilis, varicella-zoster, parvovirus B19], rubella, cytomegalovirus, and herpes) infections are known as pseudo-TORCH. Cavernous malformations, arteriovenous malformations, arteriovenous fistulas, and chronic venous hypertension are also known causes of intracranial calcification. Other vascular-related causes of intracranial calcification include early atherosclerosis presentation (children with risk factors such as hyperhomocysteinemia, familial hypercholesterolemia, and others), healed hematoma, radiotherapy treatment, old infarct, and disorders of the microvasculature such as COL4A1- and COL4A2-related diseases. Intracranial calcification is also seen in several pediatric brain tumors. Clinical and familial information such as age at presentation, maternal exposure to teratogens including viruses, and association with chromosomal abnormalities, pathogenic genes, and postnatal infections facilitates narrowing the differential diagnosis of the multiple causes of intracranial calcification.
Collapse
|
17
|
Jezela-Stanek A. Interstitial Lung Disease in Rare Congenital Syndromes. JOURNAL OF MOTHER AND CHILD 2020; 24:47-52. [PMID: 33074183 PMCID: PMC8518105 DOI: 10.34763/jmotherandchild.2020241.1931.000004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diffuse or interstitial lung disease (DLD/ILD) comprises a diverse group of disorders that involve the pulmonary parenchyma. Its aetiology varies (which makes the diagnostic process difficult), but congenital diseases, including malformation syndromes or developmental disorders, constitute one of the causative factors. They are rare conditions, and thus their frequency is not high. However, considering the progress and increasing availability of genetic testing, detection of these rare syndromes may increase. The aim of this work is, therefore, to present the symptomatology of selected congenital syndromes with ILD, taking into account the genetic background.
Collapse
Affiliation(s)
- Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
18
|
Han E, Patel NA, Yannuzzi NA, Laura DM, Fan KC, Negron CI, Prakhunhungsit S, Thorson WL, Berrocal AM. A unique case of coats plus syndrome and dyskeratosis congenita in a patient with CTC1 mutations. Ophthalmic Genet 2020; 41:363-367. [PMID: 32543263 DOI: 10.1080/13816810.2020.1772315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Coats plus syndrome (CP) is a rare condition characterized by bilateral exudative retinal telangiectasias with associated systemic disorders primarily affecting the brain, bone and gastrointestinal tract due to a mutation in the CTC1 gene. CTC1 mutations are also known to cause dyskeratosis congenita (DC), which is an inherited bone marrow failure syndrome characterized by skin pigmentation abnormalities, nail dystrophy, and oral leukoplakia. This is the first reported case of a patient diagnosed with both CP and DC caused by compound heterozygous CTC1 gene mutations. Moreover, one of the variant mutations found in this patient has never been published before.
Collapse
Affiliation(s)
- Elaine Han
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Nimesh A Patel
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Nicolas A Yannuzzi
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Diana M Laura
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Kenneth C Fan
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Catherin I Negron
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Supalert Prakhunhungsit
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA.,Department of Ophthalmology, Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Willa L Thorson
- Department of Human Genetics, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Audina M Berrocal
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| |
Collapse
|
19
|
Giri N, Ravichandran S, Wang Y, Gadalla SM, Alter BP, Fontana J, Savage SA. Prognostic significance of pulmonary function tests in dyskeratosis congenita, a telomere biology disorder. ERJ Open Res 2019; 5:00209-2019. [PMID: 31754622 PMCID: PMC6856494 DOI: 10.1183/23120541.00209-2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 11/23/2022] Open
Abstract
Pulmonary fibrosis and pulmonary arteriovenous malformations are known manifestations of dyskeratosis congenita (DC), a telomere biology disorder (TBD) and inherited bone marrow failure syndrome caused by germline mutations in telomere maintenance genes resulting in very short telomeres. Baseline pulmonary function tests (PFTs) and long-term clinical outcomes have not been thoroughly studied in DC/TBDs. In this retrospective study, 43 patients with DC and 67 unaffected relatives underwent baseline PFTs and were followed for a median of 8 years (range 1–14). Logistic regression and competing risk models were used to compare PFT results in relation to clinical and genetic characteristics, and patient outcomes. Restrictive abnormalities on spirometry and moderate-to-severe reduction in diffusing capacity of the lung for carbon monoxide were significantly more frequent in patients with DC than relatives (42% versus 12%; p=0.008). The cumulative incidence of pulmonary disease by age 20 years was 55% in patients with DC with baseline PFT abnormalities compared with 17% in those with normal PFTs (p=0.02). None of the relatives developed pulmonary disease. X-linked recessive, autosomal recessive inheritance or heterozygous TINF2 variants were associated with early-onset pulmonary disease that mainly developed after haematopoietic cell transplantation (HCT). Overall, seven of 14 patients developed pulmonary disease post-HCT at a median of 4.7 years (range 0.7–12). The cumulative incidence of pulmonary fibrosis in patients with heterozygous non-TINF2 pathogenic variants was 70% by age 60 years. Baseline PFT abnormalities are common in patients with DC and associated with progression to significant pulmonary disease. Prospective studies are warranted to facilitate clinical trial development for patients with DC and related TBDs. About 40% of patients with dyskeratosis congenita, a telomere biology disorder, have abnormal pulmonary function tests and progress to life-threatening pulmonary disease (PD). Prospective therapeutic studies of PD in these disorders are urgently needed.http://bit.ly/2HBSNCO
Collapse
Affiliation(s)
- Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sandhiya Ravichandran
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Fontana
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,These authors contributed equally
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,These authors contributed equally
| |
Collapse
|
20
|
Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2019; 12:1037-1052. [PMID: 31478401 DOI: 10.1080/17474086.2019.1662720] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. Possible TBD manifestations range from complex multisystem disorders with onset in childhood such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to adults presenting with one or two DC-related features.Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic cell transplantation and lung transplantation are the only current therapeutic modalities but are complicated by numerous comorbidities. This review summarizes the pathophysiology underlying TBDs, associated clinical features, management recommendations and therapeutic options.Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous genetic background and diverse phenotypes, highlights the importance of clinical surveillance and the urgent need to develop new therapeutic strategies to improve health outcomes.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Armando RG, Mengual Gomez DL, Maggio J, Sanmartin MC, Gomez DE. Telomeropathies: Etiology, diagnosis, treatment and follow-up. Ethical and legal considerations. Clin Genet 2019; 96:3-16. [PMID: 30820928 DOI: 10.1111/cge.13526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Telomeropathies involve a wide variety of infrequent genetic diseases caused by mutations in the telomerase maintenance mechanism or the DNA damage response (DDR) system. They are considered a family of rare diseases that often share causes, molecular mechanisms and symptoms. Generally, these diseases are not diagnosed until the symptoms are advanced, diminishing the survival time of patients. Although several related syndromes may still be unrecognized this work describes those that are known, highlighting that because they are rare diseases, physicians should be trained in their early diagnosis. The etiology and diagnosis are discussed for each telomeropathy and the treatments when available, along with a new classification of this group of diseases. Ethical and legal issues related to this group of diseases are also considered.
Collapse
Affiliation(s)
- Romina G Armando
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego L Mengual Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Julián Maggio
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María C Sanmartin
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
22
|
Sakwit A, Rojanaporn D, Mekjaruskul P, Suriyajakryuththana W, Sasanakul W, Sirachainan N. Novel mutation of the TINF2 gene resulting in severe phenotypic Revesz syndrome. Pediatr Blood Cancer 2019; 66:e27557. [PMID: 30478948 DOI: 10.1002/pbc.27557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Anusak Sakwit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangnate Rojanaporn
- Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pimsiri Mekjaruskul
- Department of Pediatrics, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima, Thailand
| | - Wiboon Suriyajakryuththana
- Department of Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Werasak Sasanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nongnuch Sirachainan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Watanabe K, Arakawa Y, Kambe T, Oguma E, Kishimoto H, Koh K. Unrelated allogeneic hematopoietic stem cell transplantation in a patient with Revesz syndrome, a severe variant of dyskeratosis congenita. Pediatr Blood Cancer 2019; 66:e27476. [PMID: 30259646 DOI: 10.1002/pbc.27476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Kentaro Watanabe
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Yuki Arakawa
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Tomoka Kambe
- Department of Ophthalmology, Saitama Children's Medical Center, Saitama, Japan
| | - Eiji Oguma
- Department of Radiology, Saitama Children's Medical Center, Saitama, Japan
| | - Hiroshi Kishimoto
- Department of Diagnostic Pathology, Saitama Children's Medical Center, Saitama, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| |
Collapse
|
24
|
Abstract
Bone marrow failure (BMF) is a rare but life-threatening disorder that usually manifests as (pan)cytopenia. BMF can be caused by a variety of diseases, but inherited BMF (IBMF) syndromes are a clinically important cause, especially in children. IBMF syndromes are a heterogeneous group of genetic disorders characterized by BMF, physical abnormalities, and predisposition to malignancy. An accurate diagnosis is critical, as disease-specific management, surveillance, and genetic counselling are required for each patient. The major differential diagnoses of IBMF syndromes are acquired aplastic anemia (AA) and refractory cytopenia of childhood (RCC). These diseases have overlapping features, such as BM hypocellularity and/or dysplastic changes, which make the differential diagnosis challenging. RCC has been defined as a histomorphologically distinct entity. Therefore, understanding the BM histopathology of these diseases is essential for the differential diagnosis. However, the BM histopathological features have not been characterized in detail, as descriptions of BM histopathology are very limited due to the rarity of the diseases. This review provides a detailed description of the BM histopathology in cases of RCC, AA, and the four most common IBMF syndromes: Fanconi anemia (FA), dysketatosis congenita (DC), Diamond-Blackfan anemia (DBA), and Shwachman-Diamond syndrome (SDS). An overview, including the clinical features and diagnosis, is also provided.
Collapse
|
25
|
Pańczyszyn A, Boniewska-Bernacka E. Telomeropathies: rare disease syndromes. MEDICAL SCIENCE PULSE 2018. [DOI: 10.5604/01.3001.0012.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Telomeres are located at the end of the chromosomes. They protect chromosomes from fusion and degradation. Every cell division causes a shortening of the telomeres. A special enzymatic complex called telomerase is responsible for maintaining telomere length in intensively dividing cells, such as epithelial cells and bone marrow cells. The enzymatic complex includes the TERT subunit, which has reverse transcriptase activity, and the TERC subunit, which acts as a template. Other important components of telomerase are the proteins that are responsible for structural stability. Telomerase remains active only in the dividing cells of the body. The rate of telomere shortening depends on many factors including age, sex, and comorbidities. Faster shortening of telomeres is caused by gene defects, which have an impact on telomerase action. Collectively, these are called telomeropathies. Common causes of telomeropathies are mutations in the TERT and TERC telomerase genes. Types of telemeropathies include dyskeratosis congenita, idiopathic pulmonary fibrosis, and aplastic anaemia, among others. Clinical manifestations and prognoses depend on the type and quantity of mutated genes. Diagnosis of telomeropathies is often problematic because they present with the same symptoms as other diseases. So far, no effective therapeutic methods have been developed for telomeropathies. A therapeutic method for patients with bone marrow failure may be the transplantation of hematopoietic stem cells. For patients with idiopathic pulmonary fibrosis, treatments include immunosuppressive therapy, lung transplantation, or palliative care. In the future, gene therapy may be an effective treatment strategy for telomeropathies. Lifestyle changes may also have a positive impact on the person. Physical activity combined with a healthy diet rich in antioxidants and unsaturated fatty acids can decrease the oxidative stress levels in cells and lead to a slower shortening of the telomeres.
Collapse
Affiliation(s)
- Anna Pańczyszyn
- Independent Department of Biotechnology and Molecular Biology, Faculty of Natural Sciences and Technology, University of Opole, Poland
| | - Ewa Boniewska-Bernacka
- Independent Department of Biotechnology and Molecular Biology, Faculty of Natural Sciences and Technology, University of Opole, Poland
| |
Collapse
|
26
|
Ratnasamy V, Navaneethakrishnan S, Sirisena ND, Grüning NM, Brandau O, Thirunavukarasu K, Dagnall CL, McReynolds LJ, Savage SA, Dissanayake VHW. Dyskeratosis congenita with a novel genetic variant in the DKC1 gene: a case report. BMC MEDICAL GENETICS 2018; 19:85. [PMID: 29801475 PMCID: PMC5970516 DOI: 10.1186/s12881-018-0584-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/19/2018] [Indexed: 12/02/2022]
Abstract
Background Dyskeratosis congenita (DC) is a rare genetic disorder of bone marrow failure inherited in an X-linked, autosomal dominant or autosomal recessive pattern. It has a wide array of clinical features and patients may be cared for by many medical sub specialties. The typical clinical features consist of lacy reticular skin pigmentation, nail dystrophy and oral leukoplakia. As the disease advances, patients may develop progressive bone marrow failure, pulmonary fibrosis, oesophageal stenosis, urethral stenosis, liver cirrhosis as well as haematological and solid malignancies. Several genes have been implicated in the pathogenesis of dyskeratosis congenita, with the dyskerin pseudouridine synthase 1 (DKC1) gene mutations being the X-linked recessive gene. Case presentation Herein, we report a 31-year-old male with history of recurrent febrile episodes who was found to have reticulate skin pigmentation interspersed with hypopigmented macules involving the face, neck and extremities, hyperkeratosis of palms and soles, nail dystrophy, leukoplakia of the tongue, premature graying of hair, watery eyes and dental caries. Several of his male relatives, including two maternal uncles and three maternal cousins were affected with a similar type of disease condition. Pedigree analysis suggested a possible X-linked pattern of inheritance. Genetic testing in the proband showed a novel hemizygous, non-synonymous likely pathogenic variant [NM_001363.4: c.1054A > G: p.Thr352Ala] in the PUA domain of the DKC1 gene. Quantitative polymerase chain reaction for relative telomere length measurements performed in the proband showed that he had very short telomeres [0.38, compared to a control median of 0.71 (range 0.44–1.19)], which is consistent with the DC diagnosis. Co-segregation analysis of the novel mutation and telomere length measurements in the extended family members could not be performed as they were unwilling to provide consent for testing. Conclusions The novel variant detected in the DKC1 gene adds further to the existing scientific literature on the genotype-phenotype correlation of DC, and has important implications for the clinical and molecular characterization of the disease.
Collapse
Affiliation(s)
- Vithiya Ratnasamy
- University Medical Unit, Teaching Hospital Jaffna, Jaffna, Sri Lanka
| | | | | | | | - Oliver Brandau
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany
| | | | - Casey L Dagnall
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Vajira H W Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 8, Sri Lanka.
| |
Collapse
|
27
|
Abstract
Studies of rare and common illnesses have led to remarkable progress in the understanding of the role of telomeres (nucleoprotein complexes at chromosome ends essential for chromosomal integrity) in human disease. Telomere biology disorders encompass a growing spectrum of conditions caused by rare pathogenic germline variants in genes encoding essential aspects of telomere function. Dyskeratosis congenita, a disorder at the severe end of this spectrum, typically presents in childhood with the classic triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia, accompanied by a very high risk of bone marrow failure, cancer, pulmonary fibrosis, and other medical problems. In contrast, the less severe end of the telomere biology disorder spectrum consists of middle-age or older adults with just one feature typically seen in dyskeratosis congenita, such as pulmonary fibrosis or bone marrow failure. In the common disease realm, large-scale molecular epidemiology studies have discovered novel associations between illnesses, such as cancer, heart disease, and mental health, and both telomere length and common genetic variants in telomere biology genes. This review highlights recent findings of telomere biology in human disease from both the rare and common disease perspectives. Multi-disciplinary collaborations between clinicians, basic scientists, and epidemiologist are essential as we seek to incorporate new telomere biology discoveries to improve health outcomes.
Collapse
Affiliation(s)
- Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Moussa K, Huang JN, Moore AT. Revesz syndrome masquerading as traumatic retinal detachment. J AAPOS 2017; 21:422-425.e1. [PMID: 28866069 DOI: 10.1016/j.jaapos.2017.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 11/17/2022]
Abstract
A 13-month-old boy with mild hemophilia A presented for strabismus evaluation and was found to have retinal hemorrhages in the right eye, left exotropia, and left total retinal detachment. These findings were attributed to trauma and hemophilia A. Routine blood work for hemophilia A subsequently showed pancytopenia. A bone marrow aspirate showed marked hypocellularity consistent with severe aplastic anemia, and telomere testing revealed very short telomeres. The patient was found to have a TINF2 mutation consistent with a diagnosis of Revesz syndrome, a variant of dyskeratosis congenita. He underwent successful bone marrow transplantation, and on subsequent evaluation was found to have retinal hemorrhages, vessel sclerosis, and cotton wool spots in the right eye associated with peripheral retinal nonperfusion. He underwent retinal laser treatment to the areas of retinal nonperfusion which resulted in stable visual function.
Collapse
Affiliation(s)
- Kareem Moussa
- Department of Ophthalmology, University of California, San Francisco
| | - James N Huang
- Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital
| | - Anthony T Moore
- Department of Ophthalmology, University of California, San Francisco.
| |
Collapse
|
29
|
Abstract
PURPOSE To report a case of severe, bilateral, rapidly progressing peripheral retinal nonperfusion associated with underlying aplastic anemia. METHODS An interventional case report. RESULTS A 4-year-old girl presented with decreased visual acuity. On clinical examination, she was found to have a RAPD, elevated intraocular pressure, 360° rubeosis, vitreous hemorrhage, severe exudative retinal detachment, and telangiectasia with severe peripheral retinal nonperfusion. Laboratory workup was significant for pancytopenia, and a bone marrow biopsy showed extreme hypocellularity with no malignant cells. The patient was diagnosed with primary aplastic anemia. She developed dramatic progression of retinal nonperfusion in the left eye, as well as in the fellow right eye. This bilateral retinopathy was poorly responsive to aggressive management, which included laser photocoagulation and intravitreal injections of anti-vascular endothelial growth factor medications. CONCLUSION Asymmetric, bilateral quickly progressing peripheral retinal ischemia, in conjunction with pancytopenia and otherwise negative workup may be related to underlying bone marrow failure and aplastic anemia.
Collapse
|
30
|
Thanos A, Todorich B, Hypes SM, Yonekawa Y, Thomas B, Randhawa S, Drenser KA, Trese MT. RETINAL VASCULAR TORTUOSITY AND EXUDATIVE RETINOPATHY IN A FAMILY WITH DYSKERATOSIS CONGENITA MASQUERADING AS FAMILIAL EXUDATIVE VITREORETINOPATHY. Retin Cases Brief Rep 2017; 11 Suppl 1:S187-S190. [PMID: 27685501 DOI: 10.1097/icb.0000000000000430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
PURPOSE To report a novel presentation of dyskeratosis congenita masquerading as familial exudative vitreoretinopathy. METHODS Observational case series involving single family and literature review. RESULTS A brother and sister were diagnosed with familial exudative vitreoretinopathy at ages 4 and 2, respectively. Both patients were managed with laser photocoagulation. Eight years after the initial presentation, both siblings developed pancytopenia secondary to bone marrow failure. Laboratory work-up revealed severely shortened telomere length in both patients, and genetic testing revealed a missense mutation in the gene that encodes the reverse transcriptase component of telomerase, confirming the diagnosis of dyskeratosis congenita. The father of both children was a carrier of the same mutation, who exhibited marked retinal vascular tortuosity of the second-order vessels. CONCLUSION Dyskeratosis congenita is a severe multisystem disorder, which should be considered in cases of pediatric exudative retinopathies with concurrent signs and/or symptoms of bone marrow failure.
Collapse
Affiliation(s)
- Aristomenis Thanos
- *Associated Retinal Consultants, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan; †Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan; ‡Department of Ophthalmology, Beaumont Hospital-Southshore Campus, Trenton, Michigan; §Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts; ¶Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and **Florida Retina Institute, Jacksonville, Florida
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wegman-Ostrosky T, Savage SA. The genomics of inherited bone marrow failure: from mechanism to the clinic. Br J Haematol 2017; 177:526-542. [PMID: 28211564 DOI: 10.1111/bjh.14535] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/19/2016] [Indexed: 12/31/2022]
Abstract
The inherited bone marrow failure syndromes (IBMFS) typically present with significant cytopenias in at least one haematopoietic cell lineage that may progress to pancytopenia, and are associated with increased risk of cancer. Although the clinical features of the IBMFS are often diagnostic, variable disease penetrance and expressivity may result in diagnostic dilemmas. The discovery of the genetic aetiology of the IBMFS has been greatly facilitated by next-generation sequencing methods. This has advanced understanding of the underlying biology of the IBMFS and been essential in improving clinical management and genetic counselling for affected patients. Herein we review the clinical features, underlying biology, and new genomic discoveries in the IBMFS, including Fanconi anaemia, dyskeratosis congenita, Diamond Blackfan anaemia, Shwachman Diamond syndrome and some disorders of the myeloid and megakaryocytic lineages.
Collapse
Affiliation(s)
- Talia Wegman-Ostrosky
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Research Division, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Gupta MP, Talcott KE, Kim DY, Agarwal S, Mukai S. Retinal findings and a novel TINF2 mutation in Revesz syndrome: Clinical and molecular correlations with pediatric retinal vasculopathies. Ophthalmic Genet 2017; 38:51-60. [DOI: 10.1080/13816810.2016.1275019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mrinali P. Gupta
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine E. Talcott
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - David Y. Kim
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shizuo Mukai
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Barbaro PM, Ziegler DS, Reddel RR. The wide-ranging clinical implications of the short telomere syndromes. Intern Med J 2017; 46:393-403. [PMID: 26247919 DOI: 10.1111/imj.12868] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023]
Abstract
There is an increasing number of inherited disorders in which excessive telomere shortening underlies the molecular defect, with dyskeratosis congenita (DC) being the archetypal short telomere syndrome. DC is classically described as a mucocutaneous triad of oral leukoplakia, nail dystrophy and abnormal skin pigmentation. However, excessive telomere shortening can affect almost any organ system, so the clinical manifestations are protean, including developmental delay, cerebellar hypoplasia, exudative retinopathy, aplastic anaemia, acute myeloid leukaemia, idiopathic pulmonary fibrosis, idiopathic hepatic cirrhosis, head and neck cancer and dental abnormalities, and may be multi-systemic. Undiagnosed patients may be seen by essentially any medical subspecialist. Correct diagnosis is important to ensure appropriate management, and for initiating investigations to identify affected family members. Treatment is often supportive, with transplantation offering cure for pulmonary fibrosis or bone marrow failure. Higher rates of mortality and morbidity with transplantation often require regimen alterations, underscoring the need for correct diagnosis. Short telomeres result from mutations in genes essential for telomere maintenance (e.g. genes encoding subunits of the telomerase enzyme complex). Disease severity reflects not only the severity of the defect, but also the inheritance of short telomeres, giving rise to incomplete penetrance and genetic anticipation. Attendees of the inaugural Australian Short Telomere Syndrome Conference were updated on the current scientific and clinical understanding of these disorders, and discussed the best approach for management of these patients in the Australian context. This review will include recommendations from the conference and aims to increase awareness of short telomere disorders.
Collapse
Affiliation(s)
- P M Barbaro
- Haematology Department, Sydney Children's Hospital Network (Westmead), Sydney, New South Wales, Australia.,Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - D S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - R R Reddel
- Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Allingham MJ. Bilateral Proliferative Retinopathy Associated With Hoyeraal-Hreidarsson Syndrome, a Severe Form of Dyskeratosis Congenita. Ophthalmic Surg Lasers Imaging Retina 2016; 47:366-8. [PMID: 27065378 DOI: 10.3928/23258160-20160324-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022]
Abstract
Dyskeratosis congenita (DC) is the prototypical member of a family of diseases caused by defective telomere maintenance. These "telomeropathies" also include Hoyeraal-Hreidarsson syndrome (HH) and Revesz syndrome, which are severe forms of dyskeratosis congenita, as well as a subset of idiopathic pulmonary fibrosis, aplastic anemia, and Coats' plus syndrome. Retinopathy has only rarely been reported in DC and HH, but is universally present in Coats' plus and Revesz syndromes. The care of these patients is typically a multidisciplinary effort, and this should include monitoring by an ophthalmologist.
Collapse
|
35
|
Trivedi MG, Rai PJ, Shirwadkar SP, Pagad HS, Potdar NA, Shinde CA, Nair AG. Ocular Findings of Revesz Syndrome in a 12-Year-Old Girl. J Pediatr Ophthalmol Strabismus 2016; 53:128. [PMID: 27018886 DOI: 10.3928/01913913-20160122-04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Abstract
The importance of telomere function for human health is exemplified by a collection of Mendelian disorders referred to as the telomere biology disorders (TBDs), telomeropathies, or syndromes of telomere shortening. Collectively, the TBDs cover a spectrum of conditions from multisystem disease presenting in infancy to isolated disease presentations in adulthood, most notably idiopathic pulmonary fibrosis. Eleven genes have been found mutated in the TBDs to date, each of which is linked to some aspect of telomere maintenance. This review summarizes the molecular defects that result from mutations in these genes, highlighting recent advances, including the addition of PARN to the TBD gene family and the discovery of heterozygous mutations in RTEL1 as a cause of familial pulmonary fibrosis.
Collapse
Affiliation(s)
- Alison A Bertuch
- a Departments of Pediatrics and Molecular & Human Genetics , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
37
|
Glousker G, Touzot F, Revy P, Tzfati Y, Savage SA. Unraveling the pathogenesis of Hoyeraal-Hreidarsson syndrome, a complex telomere biology disorder. Br J Haematol 2015; 170:457-71. [PMID: 25940403 DOI: 10.1111/bjh.13442] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hoyeraal-Hreidarsson (HH) syndrome is a multisystem genetic disorder characterized by very short telomeres and considered a clinically severe variant of dyskeratosis congenita. The main cause of mortality, usually in early childhood, is bone marrow failure. Mutations in several telomere biology genes have been reported to cause HH in about 60% of the HH patients, but the genetic defects in the rest of the patients are still unknown. Understanding the aetiology of HH and its diverse manifestations is challenging because of the complexity of telomere biology and the multiple telomeric and non-telomeric functions played by telomere-associated proteins in processes such as telomere replication, telomere protection, DNA damage response and ribosome and spliceosome assembly. Here we review the known clinical complications, molecular defects and germline mutations associated with HH, and elucidate possible mechanistic explanations and remaining questions in our understanding of the disease.
Collapse
Affiliation(s)
- Galina Glousker
- Department of Genetics, The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fabien Touzot
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
38
|
Powell JB, Dokal I, Carr R, Taibjee S, Cave B, Moss C. X-linked dyskeratosis congenita presenting in adulthood with photodamaged skin and epiphora. Clin Exp Dermatol 2015; 39:310-4. [PMID: 24635067 DOI: 10.1111/ced.12272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2013] [Indexed: 11/27/2022]
Abstract
Dyskeratosis congenita (DC) is a clinically and genetically heterogeneous multisystem bone marrow failure disorder of telomere maintenance, which may present with dermatological features. The main cause of mortality is bone marrow failure, often developing in the second decade of life, although pulmonary disease and malignancies such as squamous cell carcinomas (SCCs) may also prove fatal. We report the case of a 28-year-old man with X-linked DC and confirmed DKC1 gene mutation. In addition to the classic triad of nail dystrophy, hyperpigmentation and oral leucoplakia, the patient had actinic keratosis (AK) and photodamaged skin, hitherto under-recognized features of this condition. Awareness of the clinical presentation of DC is important, as accurate clinical and molecular diagnosis affords patients and their families genetic counselling, cancer prevention and screening measures, and planning for complications such as bone marrow failure.
Collapse
Affiliation(s)
- J B Powell
- Department of Dermatology, Worcestershire Royal Hospital, Worcester, UK
| | | | | | | | | | | |
Collapse
|
39
|
Sharma A, Myers K, Ye Z, D’Orazio J. Dyskeratosis congenita caused by a novel TERT point mutation in siblings with pancytopenia and exudative retinopathy. Pediatr Blood Cancer 2014; 61:2302-4. [PMID: 25067791 PMCID: PMC4205177 DOI: 10.1002/pbc.25161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/02/2014] [Indexed: 01/07/2023]
Abstract
Two siblings presenting with exudative retinopathy, thrombocytopenia, and macrocytosis were found to have markedly shortened telomeres and a previously unreported inherited mutation in TERT, c.2603A>G. Revesz syndrome, a subtype of dyskeratosis congenita (DC) caused by TINF2 mutation, combines marrow failure with exudative retinopathy, intracranial calcifications, and neurocognitive impairment. As our patients manifested neither intracranial calcification nor significant neurocognitive impairment, we conclude that the c.2603A>G TERT mutation may define a subtype of DC manifesting first as exudative retinopathy without other signs of DC. Children with exudative retinopathy should be periodically screened for macrocytosis and cytopenias to evaluate for underlying DC.
Collapse
Affiliation(s)
- Akshay Sharma
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Kasiani Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Zhan Ye
- Department of Pathology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - John D’Orazio
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky,Correspondence to: John D’Orazio, Markey Cancer Center, Combs Research Building, 800 Rose Street, Lexington, KY 40536.
| |
Collapse
|
40
|
Yannuzzi NA, Tzu JH, Ko AC, Hess DJ, Cristian I, Berrocal AM. Ocular Findings and Treatment of a Young Boy With Coats’ Plus. Ophthalmic Surg Lasers Imaging Retina 2014; 45:462-5. [DOI: 10.3928/23258160-20140827-02] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 06/17/2014] [Indexed: 11/20/2022]
|
41
|
Leukoencephalopathy, cerebral calcifications and cysts: a family study. J Neurol 2014; 261:1911-6. [DOI: 10.1007/s00415-014-7393-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
42
|
Mansour AM, Lee JW, Yahng SA, Kim KS, Shahin M, Hamerschlak N, Belfort RN, Kurup SK. Ocular manifestations of idiopathic aplastic anemia: retrospective study and literature review. Clin Ophthalmol 2014; 8:777-87. [PMID: 24790407 PMCID: PMC4000245 DOI: 10.2147/opth.s62163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aplastic anemia (AA) is a rare disease with few reports on its ophthalmic manifestations. The ocular findings are described in a retrospective consecutive series of 719 AA Korean patients followed at the Hematology Clinic of The Catholic University of Korea. Out of a total of 719 patients, 269 patients had eye examinations, 156 patients had retinal evaluation, and 37 (23.7%) had retinal findings. These 37 patients had unilateral retinal hemorrhage in seven and bilateral retinal hemorrhage in 30 with mean hemoglobin of 6.6 g/dL (range 2.7–12.6 g/dL) and platelet counts of 18.8×109/L (range 4–157×109/L); central retinal vein occlusion-like picture occurred in nine patients and these had similar rheology to the rest of the subjects; optic disc edema, cotton-wool spots, macular edema, and dry eyes occurred in two, three, five, and three patients, respectively. In this Korean series of 141 subjects with AA, systemic bleeding occurred in 24.8% of subjects, retinal hemorrhage in 37% of subjects, and any bleeding site (eye or elsewhere) occurred in 47.5% of subjects with AA. A literature review (1958–2010) of 200 AA cases revealed retinal hemorrhages in 56%, subhyaloid or vitreous hemorrhage in 9%, peripheral retinal vasculopathy in 5.5%, and cotton-wool spots, Sjögren’s syndrome, or optic disc edema in 4% each. The prevalence of retinopathy among series of AA patients varied from 20% to 28.3%, which is consistent with the Korean series of 24.8%. Management of AA patients needs to involve multiple specialties, including hematologists, ophthalmologists, and infectious disease specialists.
Collapse
Affiliation(s)
- Ahmad M Mansour
- Department of Ophthalmology, American University of Beirut, Rafic Hariri University Hospital, Beirut, Lebanon
| | - Jong Wook Lee
- Division of Hematology, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Ah Yahng
- Division of Hematology, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyu Seop Kim
- Department of Ophthalmology, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Maha Shahin
- Department of Ophthalmology, Mansoura University, Mansoura City, Egypt
| | - Nelson Hamerschlak
- Oncology and Hematology Program, Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| | - Rubens N Belfort
- Vision Institute, Hospital São Paulo, Federal University of São Paulo, Brazil
| | - Shree K Kurup
- Department of Ophthalmology, Wake Forest University Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
43
|
Savage SA. Human telomeres and telomere biology disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:41-66. [PMID: 24993697 DOI: 10.1016/b978-0-12-397898-1.00002-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Telomeres consist of long nucleotide repeats and a protein complex at chromosome ends essential for chromosome stability. Telomeres shorten with each cell division and thus are markers of cellular age. Dyskeratosis congenita (DC) is a cancer-prone inherited bone marrow failure syndrome caused by germ-line mutations in key telomere biology genes that result in extremely short telomeres. The triad of nail dysplasia, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC but highly variable. Patients with DC may also have but numerous other medical problems, including pulmonary fibrosis, liver abnormalities, avascular necrosis of the hips, and stenosis of the esophagus, lacrimal ducts, and/or urethra. All modes of inheritance have been reported in DC and de novo mutations are common. Broad phenotypic heterogeneity occurs within DC. Clinically severe variants of DC are Hoyeraal-Hreidarsson syndrome and Revesz syndrome. Coats plus syndrome joined the spectrum of DC with the discovery that it is caused by mutations in a telomere-capping gene. Less clinically severe variants, such as subsets of apparently isolated aplastic anemia or pulmonary fibrosis, have also been recognized. These patients may not have the DC-associated mucocutaneous triad or complicated medical features, but they do have the same underlying genetic etiology. This has led to the use of the descriptive term telomere biology disorder (TBD). This chapter will review the connection between telomere biology and human disease through the examples of DC and its related TBDs.
Collapse
Affiliation(s)
- Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Ballew BJ, Savage SA. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2013; 6:327-37. [PMID: 23782086 DOI: 10.1586/ehm.13.23] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dyskeratosis congenita (DC) is a cancer-prone inherited bone marrow failure syndrome caused by aberrant telomere biology. The mucocutaneous triad of nail dysplasia, abnormal skin pigmentation and oral leukoplakia is diagnostic, but is not always present; DC can also be diagnosed by the presence of very short leukocyte telomeres. Patients with DC are at high risk of bone marrow failure, pulmonary fibrosis, liver disease, cancer and other medical problems. Germline mutations in one of nine genes associated with telomere maintenance are present in approximately 60% of patients. DC is one among the group of clinically and biologically related telomere biology disorders, including Hoyeraal-Hreidarsson syndrome, Revesz syndrome, Coats plus (also known as cranioretinal microangiopathy with calcifications and cysts) and subsets of aplastic anemia, pulmonary fibrosis, nonalcoholic and noninfectious liver disease and leukemia. The authors review the pathobiology that connects DC and the related telomere biology disorders, methods of diagnosis and management modalities.
Collapse
Affiliation(s)
- Bari J Ballew
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd. EPS 7018, Rockville, MD 20892, USA
| | | |
Collapse
|
45
|
Short telomeres: from dyskeratosis congenita to sporadic aplastic anemia and malignancy. Transl Res 2013; 162:353-63. [PMID: 23732052 PMCID: PMC3834083 DOI: 10.1016/j.trsl.2013.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022]
Abstract
Telomeres are DNA-protein structures that form a protective cap on chromosome ends. As such, they prevent the natural ends of linear chromosomes from being subjected to DNA repair activities that would result in telomere fusion, degradation, or recombination. Both the DNA and protein components of the telomere are required for this essential function, because insufficient telomeric DNA length, loss of the terminal telomeric DNA structure, or deficiency of key telomere-associated factors may elicit a DNA damage response and result in cellular senescence or apoptosis. In the setting of failed checkpoint mechanisms, such DNA-protein defects can also lead to genomic instability through telomere fusions or recombination. Thus, as shown in both model systems and in humans, defects in telomere biology are implicated in cellular and organismal aging as well as in tumorigenesis. Bone marrow failure and malignancy are 2 life-threatening disease manifestations in the inherited telomere biology disorder dyskeratosis congenita. We provide an overview of basic telomere structure and maintenance. We outline the telomere biology defects observed in dyskeratosis congenita, focusing on recent discoveries in this field. Last, we review the evidence of how telomere biology may impact sporadic aplastic anemia and the risk for various cancers.
Collapse
|
46
|
Revesz syndrome masquerading as bilateral cicatricial retinopathy of prematurity. J AAPOS 2013; 17:634-6. [PMID: 24321428 DOI: 10.1016/j.jaapos.2013.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/14/2013] [Accepted: 07/20/2013] [Indexed: 12/21/2022]
Abstract
Dyskeratosis congenita is a group of rare genetic bone marrow failure syndromes. Revesz syndrome, a variant disorder, is characterized by retinopathy, aplastic anemia, nail dystrophy, and cerebellar hypoplasia. We report the case of an 11-month-old boy with bilateral cicatricial retinal detachments associated with fibrovascular proliferation. Genetic testing ultimately confirmed a diagnosis of Revesz syndrome, which can mimic cicatricial retinopathy of prematurity. Prompt referral to a hematologist expedites diagnosis and treatment.
Collapse
|
47
|
Sinha S, Trivedi V, Krishna A, Rao N. Dyskeratosis congenita- management and review of complications: a case report. Oman Med J 2013; 28:281-4. [PMID: 23904924 DOI: 10.5001/omj.2013.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/28/2013] [Indexed: 11/03/2022] Open
Abstract
Among the inherited bone marrow failure disorders, dyskeratosis congenita is an X-linked inherited disorder arising as a consequence of short telomere and mutations in telomere biology. Production of the altered protein dyskerin, leads to vulnerable skin, nails, and teeth which lead to higher permeability for noxious agents which can induce carcinogenesis accounting for the classical triad of skin pigmentation, nail dystrophy and oral leukoplakia. This condition is fatal and patients succumb to aplastic anemia, malignancy or immunocompromised state. We present a young male with the classic clinical triad and avascular necrosis of both femoral heads, with no evidence of hematologic anomaly or any malignancy. He was managed for osteonecrosis with uncemented total hip arthroplasty for the symptomatic left hip. Our case represents a benign form of such a fatal and rare condition, which if detected and managed early can result in improved quality of life for the patient suffering from this disorder. This patient is under our meticulous follow-up for the last 2 years in order to determine any late development of complications before being labelled as a variant of this syndrome.
Collapse
Affiliation(s)
- Shivam Sinha
- Assistant Professor, Department of Orthopedics, Subharti Medical College NH-58, Delhi Haridwar Byepass, Subhartipuram, Meerut-250002, UP, India
| | | | | | | |
Collapse
|
48
|
Bohn OL, Whitten J, Spitzer B, Kobos R, Prockop S, Boulad F, Arcila M, Wang L, Teruya-Feldstein J. Posttransplant Lymphoproliferative Disorder Complicating Hematopoietic Stem Cell Transplantation in a Patient With Dyskeratosis Congenita. Int J Surg Pathol 2012; 21:520-5. [DOI: 10.1177/1066896912468214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dyskeratosis congenita (DC) is a rare inherited disorder characterized by bone marrow failure and cancer predisposition. We present a case of a 28-year-old woman with DC who was admitted for hematopoietic stem cell transplantation (HSCT) for aplastic anemia and who developed acute myeloid leukemia with complex genetic karyotype abnormalities including the MLL (11q23) gene, 1q25, and chromosome 8. After transplantation, a monomorphic Epstein–Barr virus (EBV) negative posttransplant-associated lymphoproliferative disorder (PTLD) diffuse large B-cell lymphoma was discovered involving the liver, omental tissue, and peritoneal fluid samples showing additional MLL (11q23) gene abnormalities by fluorescence in situ hybridization. Despite treatment, the patient died of complications associated with transplantation and invasive fungal infection. This case represents the first bona fide documented case of EBV-negative monomorphic PTLD host derived, with MLL gene abnormalities in a patient with DC, and shows another possible mechanism for the development of a therapy-related lymphoid neoplasm after transplantation.
Collapse
Affiliation(s)
- Olga L. Bohn
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Joseph Whitten
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Rachel Kobos
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Susan Prockop
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Farid Boulad
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Maria Arcila
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Lu Wang
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
49
|
Asai D, Osone S, Imamura T, Sakaguchi H, Nishio N, Kuroda H, Kojima S, Hosoi H. Response to the article by Linnankivi et al., entitled 'Cerebroretinal microangiopathy with calcifications and cyst, Revesz syndrome and aplastic anemia'. Bone Marrow Transplant 2012; 48:154. [PMID: 22705803 DOI: 10.1038/bmt.2012.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D Asai
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cerebroretinal microangiopathy with calcifications and cysts, Revesz syndrome and aplastic anemia. Bone Marrow Transplant 2012; 48:153. [PMID: 22705805 DOI: 10.1038/bmt.2012.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|