1
|
Liang J, Li R, Liu C, Cai Y, Liu Y, Chen P, Zeng K, Li C. A novel heterozygous frameshift mutation in the KRT6A gene responsible for an uncommon phenotype of pachyonychia congenita: One case report and review of literature. Heliyon 2024; 10:e27195. [PMID: 38468954 PMCID: PMC10926126 DOI: 10.1016/j.heliyon.2024.e27195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Pachyonychia congenita is an uncommon autosomal dominant skin disorder characterized by hypertrophic nail dystrophy, palmoplantar keratoderma, oral leukokeratosis, and cutaneous cysts. And fissured tongue is rarely reported in patients with pachyonychia congenita. The disease is primarily associated with mutations in five keratin genes, namely KRT6A, KRT6B, KRT6C, KRT16 or KRT17. Herein we report a 9-year-old Chinese girl who has thickened nails, keratinized plaques, and fissured tongue since birth. To investigate the underlying genetic cause, whole-exome sequencing and Sanger sequencing were performed in this patient and her family members. We identified a candidate variant c.1460-2_1460del (p.S487Lfs*21) in the KRT6A gene (NM_005554.4) by whole-exome sequencing. Sanger sequencing revealed the absence of the mutation in both parents, indicating that it is a de novo variant. Thus, the novel heterozygous frameshift mutation c.1460-2_1460del (p.S487Lfs*21) within exon 9 of KRT6A was identified as the genetic cause of the patient. Our study identified a rare de novo heterozygous frameshift mutation in the KRT6A gene in a patient with pachyonychia congenita presenting fissured tongue. Our findings expand the KRT6A gene mutation spectrum of Pachyonychia congenita, and will contribute to the future genetic counseling and gene therapy for this disease.
Collapse
Affiliation(s)
- Jiali Liang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Ronghua Li
- Department of Dermatology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362002, China
| | - Chenmei Liu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yan Cai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yifei Liu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| |
Collapse
|
2
|
Zieman AG, Coulombe PA. Pathophysiology of pachyonychia congenita-associated palmoplantar keratoderma: new insights into skin epithelial homeostasis and avenues for treatment. Br J Dermatol 2020; 182:564-573. [PMID: 31021398 PMCID: PMC6814456 DOI: 10.1111/bjd.18033] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pachyonychia congenita (PC), a rare genodermatosis, primarily affects ectoderm-derived epithelial appendages and typically includes oral leukokeratosis, nail dystrophy and very painful palmoplantar keratoderma (PPK). PC dramatically impacts quality of life although it does not affect lifespan. PC can arise from mutations in any of the wound-repair-associated keratin genes KRT6A, KRT6B, KRT6C, KRT16 or KRT17. There is no cure for this condition, and current treatment options for PC symptoms are limited and palliative in nature. OBJECTIVES This review focuses on recent progress made towards understanding the pathophysiology of PPK lesions, the most prevalent and debilitating of all PC symptoms. METHODS We reviewed the relevant literature with a particular focus on the Krt16 null mouse, which spontaneously develops footpad lesions that mimic several aspects of PC-associated PPK. RESULTS There are three main stages of progression of PPK-like lesions in Krt16 null mice. Ahead of lesion onset, keratinocytes in the palmoplantar (footpad) skin exhibit specific defects in terminal differentiation, including loss of Krt9 expression. At the time of PPK onset, there is elevated oxidative stress and hypoactive Keap1-Nrf2 signalling. During active PPK, there is a profound defect in the ability of the epidermis to maintain or return to normal homeostasis. CONCLUSIONS The progress made suggests new avenues to explore for the treatment of PC-based PPK and deepens our understanding of the mechanisms controlling skin tissue homeostasis. What's already known about this topic? Pachyonychia congenita (PC) is a rare genodermatosis caused by mutations in KRT6A, KRT6B, KRT6C, KRT16 and KRT17, which are normally expressed in skin appendages and induced following injury. Individuals with PC present with multiple clinical symptoms that usually include thickened and dystrophic nails, palmoplantar keratoderma (PPK), glandular cysts and oral leukokeratosis. The study of PC pathophysiology is made challenging because of its low incidence and high complexity. There is no cure or effective treatment for PC. What does this study add? This text reviews recent progress made when studying the pathophysiology of PPK associated with PC. This recent progress points to new possibilities for devising effective therapeutics that may complement current palliative strategies.
Collapse
Affiliation(s)
- A. G. Zieman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - P. A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Weinberg R, Coulombe P, Polydefkis M, Caterina M. Pain mechanisms in hereditary palmoplantar keratodermas. Br J Dermatol 2019; 182:543-551. [DOI: 10.1111/bjd.17880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Affiliation(s)
- R.L. Weinberg
- Department of Neurosurgery Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Department of Biological Chemistry Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Solomon H. Snyder Department of Neuroscience Neurosurgery Pain Research Institute Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| | - P.A. Coulombe
- Department of Cell and Developmental Biology University of Michigan Medical School Ann Arbor MI 48109 U.S.A
- Department of Dermatology University of Michigan Medical School Ann Arbor MI 48109 U.S.A
| | - M. Polydefkis
- Department of Neurology Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| | - M.J. Caterina
- Department of Neurosurgery Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Department of Biological Chemistry Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Solomon H. Snyder Department of Neuroscience Neurosurgery Pain Research Institute Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| |
Collapse
|
4
|
Wilson NJ, O'Toole EA, Milstone LM, Hansen CD, Shepherd AA, Al-Asadi E, Schwartz ME, McLean WHI, Sprecher E, Smith FJD. The molecular genetic analysis of the expanding pachyonychia congenita case collection. Br J Dermatol 2014; 171:343-55. [PMID: 24611874 PMCID: PMC4282083 DOI: 10.1111/bjd.12958] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Pachyonychia congenita (PC) is a rare autosomal dominant keratinizing disorder characterized by severe, painful, palmoplantar keratoderma and nail dystrophy, often accompanied by oral leucokeratosis, cysts and follicular keratosis. It is caused by mutations in one of five keratin genes: KRT6A, KRT6B, KRT6C, KRT16 or KRT17. OBJECTIVES To identify mutations in 84 new families with a clinical diagnosis of PC, recruited by the International Pachyonychia Congenita Research Registry during the last few years. METHODS Genomic DNA isolated from saliva or peripheral blood leucocytes was amplified using primers specific for the PC-associated keratin genes and polymerase chain reaction products were directly sequenced. RESULTS Mutations were identified in 84 families in the PC-associated keratin genes, comprising 46 distinct keratin mutations. Fourteen were previously unreported mutations, bringing the total number of different keratin mutations associated with PC to 105. CONCLUSIONS By identifying mutations in KRT6A, KRT6B, KRT6C, KRT16 or KRT17, this study has confirmed, at the molecular level, the clinical diagnosis of PC in these families.
Collapse
Affiliation(s)
- N J Wilson
- Centre for Dermatology and Genetic Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, DD1 5EH, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Eliason MJ, Leachman SA, Feng BJ, Schwartz ME, Hansen CD. A review of the clinical phenotype of 254 patients with genetically confirmed pachyonychia congenita. J Am Acad Dermatol 2012; 67:680-6. [DOI: 10.1016/j.jaad.2011.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
6
|
Pachyonychia congenita: Report of two cases and mutation analysis. DERMATOL SIN 2012. [DOI: 10.1016/j.dsi.2012.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
McLean WHI, Hansen CD, Eliason MJ, Smith FJD. The phenotypic and molecular genetic features of pachyonychia congenita. J Invest Dermatol 2011; 131:1015-7. [PMID: 21430705 DOI: 10.1038/jid.2011.59] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pachyonychia congenita (PC) is an autosomal dominant genodermatosis caused by heterozygous mutations in any one of the genes encoding the differentiation-specific keratins K6a, K6b, K16, or K17. The main clinical features of the condition include painful and highly debilitating plantar keratoderma, hypertrophic nail dystrophy, oral leukokeratosis, and a variety of epidermal cysts. Although the condition has previously been subdivided into PC-1 and PC-2 subtypes, the phenotypic characterization of 1,000 mutation-verified PC patients enrolled in the International PC Research Registry, coordinated by the patient advocacy group PC Project, shows that there is considerable overlap between these subtypes. Thus, a new genotypic nomenclature is proposed, in which PC-6a represents a patient carrying a mutation in the K6a gene, etc. Although a rare disorder, PC represents a good model for therapy development, and international efforts are ongoing to develop and deliver siRNA, gene, correction, small molecule, and other strategies to treat this painful, disabling skin condition. The special relationship between PC Project and the PC research community has greatly accelerated the development pathway from gene identification to clinical trials in only a few years and represents a paradigm of hope for other orphan diseases.
Collapse
Affiliation(s)
- W H Irwin McLean
- Division of Molecular Medicine, University of Dundee, Dundee, UK.
| | | | | | | |
Collapse
|
8
|
Abstract
The nail plate is the permanent product of the nail matrix. Its normal appearance and growth depend on the integrity of several components: the surrounding tissues or perionychium and the bony phalanx that are contributing to the nail apparatus or nail unit. The nail is inserted proximally in an invagination practically parallel to the upper surface of the skin and laterally in the lateral nail grooves. This pocket-like invagination has a roof, the proximal nail fold and a floor, the matrix from which the nail is derived. The germinal matrix forms the bulk of the nail plate. The proximal element forms the superficial third of the nail whereas the distal element provides its inferior two-thirds. The ventral surface of the proximal nail fold adheres closely to the nail for a short distance and forms a gradually desquamating tissue, the cuticle, made of the stratum corneum of both the dorsal and the ventral side of the proximal nail fold. The cuticle seals and therefore protects the ungual cul-de-sac. The nail plate is bordered by the proximal nail fold which is continuous with the similarly structured lateral nail fold on each side. The nail bed extends from the lunula to the hyponychium. It presents with parallel longitudinal rete ridges. This area, by contrast to the matrix has a firm attachment to the nail plate and nail avulsion produces a denudation of the nail bed. Colourless, but translucent, the highly vascular connective tissue containing glomus organs transmits a pink colour through the nail. Among its multiple functions, the nail provides counterpressure to the pulp that is essential to the tactile sensation involving the fingers and to the prevention of the hypertrophy of the distal wall tissue, produced after nail loss of the great toe nail.
Collapse
Affiliation(s)
- D A R de Berker
- Bristol Dermatology Centre, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | | | | |
Collapse
|
9
|
Leachman SA, Hickerson RP, Hull PR, Smith FJD, Milstone LM, Lane EB, Bale SJ, Roop DR, McLean WHI, Kaspar RL. Therapeutic siRNAs for dominant genetic skin disorders including pachyonychia congenita. J Dermatol Sci 2008; 51:151-7. [PMID: 18495438 DOI: 10.1016/j.jdermsci.2008.04.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 04/02/2008] [Indexed: 01/02/2023]
Abstract
The field of science and medicine has experienced a flood of data and technology associated with the human genome project. Over 10,000 human diseases have been genetically defined, but little progress has been made with respect to the clinical application of this knowledge. A notable exception to this exists for pachyonychia congenita (PC), a rare, dominant-negative keratin disorder. The establishment of a non-profit organization, PC Project, has led to an unprecedented coalescence of patients, scientists, and physicians with a unified vision of developing novel therapeutics for PC. Utilizing the technological by-products of the human genome project, such as RNA interference (RNAi) and quantitative RT-PCR (qRT-PCR), physicians and scientists have collaborated to create a candidate siRNA therapeutic that selectively inhibits a mutant allele of KRT6A, the most commonly affected PC keratin. In vitro investigation of this siRNA demonstrates potent inhibition of the mutant allele and reversal of the cellular aggregation phenotype. In parallel, an allele-specific quantitative real-time RT-PCR assay has been developed and validated on patient callus samples in preparation for clinical trials. If clinical efficacy is ultimately demonstrated, this "first-in-skin" siRNA may herald a paradigm shift in the treatment of dominant-negative genetic disorders.
Collapse
Affiliation(s)
- Sancy A Leachman
- Department of Dermatology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pradeep A, Nagaraja C. Pachyonychia congenita with unusual dental findings: a case report. ACTA ACUST UNITED AC 2007; 104:89-93. [DOI: 10.1016/j.tripleo.2006.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 05/05/2006] [Accepted: 05/17/2006] [Indexed: 11/29/2022]
|
11
|
Smith FJD, Liao H, Cassidy AJ, Stewart A, Hamill KJ, Wood P, Joval I, van Steensel MAM, Björck E, Callif-Daley F, Pals G, Collins P, Leachman SA, Munro CS, McLean WHI. The genetic basis of pachyonychia congenita. J Investig Dermatol Symp Proc 2005; 10:21-30. [PMID: 16250206 DOI: 10.1111/j.1087-0024.2005.10204.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 1994, the molecular basis of pachyonychia congenita (PC) was elucidated. Four keratin genes are associated with the major subtypes of PC: K6a or K16 defects cause PC-1; and mutations in K6b or K17 cause PC-2. Mutations in keratins, the epithelial-specific intermediate filament proteins, result in aberrant cytoskeletal networks which present clinically as a variety of epithelial fragility phenotypes. To date, mutations in 20 keratin genes are associated with human disorders. Here, we review the genetic basis of PC and report 30 new PC mutations. Of these, 25 mutations were found in PC-1 families and five mutations were identified in PC-2 kindreds. All mutations identified were heterozygous amino acid substitutions or small in-frame deletion mutations with the exception of an unusual mutation in a sporadic case of PC-1. The latter carried a 117 bp duplication resulting in a 39 amino acid insertion in the 2B domain of K6a. Also of note was mutation L388P in K17, which is the first genetic defect identified in the helix termination motif of this protein. Understanding the genetic basis of these disorders allows better counseling for patients and paves the way for therapy development.
Collapse
Affiliation(s)
- Frances J D Smith
- Epithelial Genetics Group, Human Genetics Unit, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Leachman SA, Kaspar RL, Fleckman P, Florell SR, Smith FJD, McLean WHI, Lunny DP, Milstone LM, van Steensel MAM, Munro CS, O'Toole EA, Celebi JT, Kansky A, Lane EB. Clinical and Pathological Features of Pachyonychia Congenita. J Investig Dermatol Symp Proc 2005; 10:3-17. [PMID: 16250204 DOI: 10.1111/j.1087-0024.2005.10202.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pachyonychia congenita (PC) is a rare genodermatosis affecting the nails, skin, oral mucosae, larynx, hair, and teeth. Pathogenic mutations in keratins K6a or K16 are associated with the PC-1 phenotype whereas K6b and K17 mutations are associated with the PC-2 phenotype. Analysis of clinical, pathological, and genetic data from the literature and two research registries reveal that >97% of PC cases exhibit fingernail and toenail thickening, and painful plantar keratoderma. Prospective evaluation of 57 PC patients from 41 families revealed variable clinical findings: hyperhidrosis (79%), oral leukokeratosis (75%), follicular keratosis (65%), palmar keratoderma (60%), cutaneous cysts (35%), hoarseness or laryngeal involvement (16%), coarse or twisted hair (26%), early primary tooth loss (14%), and presence of natal or prenatal teeth (2%). Stratification of these data by keratin mutation confirmed the increased incidence of cyst formation and natal teeth among PC-2 patients, although cysts were more commonly seen in PC-1 than previously reported (25%-33%). Previously unreported clinical features of PC include development of painful oral and nipple lesions during breastfeeding, copious production of waxy material in ears, and inability to walk without an ambulatory aid (50%). Possible pathogenic mechanisms are discussed with respect to the clinicopathologic and genetic correlations observed.
Collapse
Affiliation(s)
- Sancy A Leachman
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112-5550, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sjoberg SA. Genetics of Corneal Disease for the Ocular Surface Clinician. Ocul Surf 2005; 3:155-66. [PMID: 17131020 DOI: 10.1016/s1542-0124(12)70197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advances in the understanding of inherited corneal and external diseases may allow interventions that prevent the substantial vision impairment currently caused by these diseases. The observant clinician may first recognize inherited corneal and external diseases based on clinical examination and a careful family history. Researchers using positional cloning and candidate gene techniques have identified several disease-causing genes. Identification of the genes responsible for inherited corneal and external diseases will lead to more definitive diagnoses and represent the first step in development of effective therapies. Future endeavors are directed toward identifying additional inherited corneal and external diseases, the genes that cause them, and possible gene therapies to improve visual outcomes.
Collapse
Affiliation(s)
- Stacy A Sjoberg
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
14
|
Martinez-Mir A, Zlotogorski A, Londono D, Gordon D, Grunn A, Uribe E, Horev L, Ruiz IM, Davalos NO, Alayan O, Liu J, Gilliam TC, Salas-Alanis JC, Christiano AM. Identification of a locus for type I punctate palmoplantar keratoderma on chromosome 15q22-q24. J Med Genet 2004; 40:872-8. [PMID: 14684683 PMCID: PMC1735333 DOI: 10.1136/jmg.40.12.872] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The identification of the molecular basis of disorders of keratinisation has significantly advanced our understanding of skin biology, revealing new information on key structures in the skin, such as the intermediate filaments, desmosomes, and gap junctions. Among these disorders, there is an extraordinarily heterogeneous group known as palmoplantar keratodermas (PPK), for which only a few molecular defects have been described. A particular form of PPK, known as punctate PPK, has been described in a few large autosomal dominant pedigrees, but its genetic basis has yet to be identified. AIM Identification of the gene for punctate PPK. METHODS Clinical examination and linkage analysis in three families with punctate PPK. RESULTS A genomewide scan was performed on an extended autosomal dominant pedigree, and linkage to chromosome 15q22-q24 was identified. With the addition of two new families with the same phenotype, we confirmed the mapping of the locus for punctate PPK to a 9.98 cM interval, flanked by markers D15S534 and D15S818 (maximum two point lod score of 4.93 at theta = 0 for marker D15S988). CONCLUSIONS We report the clinical and genetic findings in three pedigrees with the punctate form of PPK. We have mapped a genetic locus for this phenotype to chromosome 15q22-q24, which indicates the identification of a new gene involved in skin integrity.
Collapse
Affiliation(s)
- A Martinez-Mir
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Keratins are the type I and II intermediate filament proteins which form a cytoskeletal network within all epithelial cells. They are expressed in pairs in a tissue- and differentiation-specific fashion. Epidermolysis bullosa simplex (EBS) was the first human disorder to be associated with keratin mutations. The abnormal keratin filament aggregates observed in basal cell keratinocytes of some EBS patients are composed of keratins K5 and K14. Dominant mutations in the genes encoding these proteins were shown to disrupt the keratin filament cytoskeleton resulting in cells that are less resilient and blister with mild physical trauma. Identification of mutations in other keratin genes soon followed with attention focussed on disorders showing abnormal clumping of keratin filaments in specific cells. For example, in bullous congenital ichthyosiform erythroderma, clumping of filaments in the suprabasal cells led to the identification of mutations in the suprabasal keratins, K1 and K10. Mutations have now been identified in 18 keratins, all of which produce a fragile cell phenotype. These include ichthyosis bullosa of Siemens (K2e), epidermolytic palmoplantar keratoderma (K1, K9), pachyonychia congenita (K6a, K6b, K16, K17), white sponge nevus (K4, K13), Meesmann's corneal dystrophy (K3, K12), cryptogenic cirrhosis (K8, K18) and monilethrix (hHb6, hHb1).In general, these disorders are inherited as autosomal dominant traits and the mutations act in a dominant-negative manner. Therefore, treatment in the form of gene therapy is difficult, as the mutant gene needs to be inactivated. Ways of achieving this are actively being studied. Reliable mutation detection methods from genomic DNA are now available. This enables rapid screening of patients for keratin mutations. For some of the more severe phenotypes, prenatal diagnosis may be requested and this can now be performed from chorionic villus samples at an early stage of the pregnancy. This review article describes the discovery of, to date, mutations in 18 keratin genes associated with inherited human diseases.
Collapse
Affiliation(s)
- Frances Smith
- Epithelial Genetics Group, Human Genetics Unit, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| |
Collapse
|
16
|
Terrinoni A, Smith FJ, Didona B, Canzona F, Paradisi M, Huber M, Hohl D, David A, Verloes A, Leigh IM, Munro CS, Melino G, McLean WH. Novel and recurrent mutations in the genes encoding keratins K6a, K16 and K17 in 13 cases of pachyonychia congenita. J Invest Dermatol 2001; 117:1391-6. [PMID: 11886499 DOI: 10.1046/j.0022-202x.2001.01565.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thirteen patients with pachyonychia congenita types 1 and 2 were studied, two of which had a family history of pachyonychia and 11 of which were sporadic cases. Heterozygous mis-sense or small in-frame insertion/deletion mutations were detected in the genes encoding keratins K6a, K16, and K17 in all cases. Three novel mutations, F174V, E472K, and L469R were found in the K6a gene. Two novel mutations, M121T and L128Q were detected in K16. Similarly, three novel mutations, L95P, S97del, and L99P were found in K17. In addition, we identified recurrent mutations N171del (three instances) and F174S in K6a and R94H in K17. Analysis of both phenotype and genotype data led to the following conclusions: (i) K6a or K16 mutations produce the pachyonychia congenita type 1 phenotype, whereas K17 (or K6b) mutations cause pachyonychia congenita type 2; (ii) the presence of pilosebaceous cysts following puberty is the best indicator of pachyonychia congenita type 2; (iii) prepubescent patients are more difficult to classify due to the lack of cysts; and (iv) natal teeth are indicative of pachyonychia congenita type 2, although their absence does not preclude the pachyonychia congenita type 2 phenotype. This study establishes useful diagnostic criteria for pachyonychia congenita types 1 and 2, which will help limit unnecessary DNA analysis in the diagnosis and management of this genetically heterogeneous group of genodermatoses.
Collapse
Affiliation(s)
- A Terrinoni
- Epithelial Genetics Group, Human Genetics Unit, Department of Molecular and Cellular Pathology, Ninewells Medical School, Dundee, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Smith FJ, Coleman CM, Bayoumy NM, Tenconi R, Nelson J, David A, McLean WH. Novel Keratin 17 Mutations in Pachyonychia Congenita Type 2. J Invest Dermatol 2001; 116:806-8. [PMID: 11348474 DOI: 10.1046/j.1523-1747.2001.01335.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pachyonychia congenita type 2 is an inherited ectodermal dysplasia characterized by hypertrophic nail dystrophy and multiple pilosebaceous cysts. Focal nonepidermolytic palmoplantar keratoderma, natal teeth, and pili torti may also be present. Epithelial tissues affected in pachyonychia congenita type 2 express the keratin pair K6b/K17. Here, we report three novel heterozygous mutations in the K17 gene (KRT17A) in patients presenting with pachyonychia congenita type 2. These mutations, R94-98del (deletion of the peptide sequence RLASY) and missense mutations R94P and L95Q, are all within the 1A domain hotspot for pathogenic keratin mutations.
Collapse
Affiliation(s)
- F J Smith
- Epithelial Genetics Group, Human Genetics Unit, Department of Molecular and Cellular Pathology, Ninewells Medical School, Dundee, UK.
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Paine CT, Paine ML, Snead ML. Identification of tuftelin- and amelogenin-interacting proteins using the yeast two-hybrid system. Connect Tissue Res 2001; 38:257-67;discussion 295-303. [PMID: 11063033 DOI: 10.3109/03008209809017046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biomineralization of enamel is a complex process that involves the eventual replacement of an extracellular protein matrix by hydroxyapatite crystallites. To date four different enamel matrix proteins have been identified; the amelogenins, tuftelin, enamelin and ameloblastin. Assembly of the enamel extracellular matrix from these component proteins is believed to be critical in producing a matrix competent to undergo mineral replacement. Enamel formation is a complex process and additional proteins are likely to have a role in the assembly of the extracellular matrix. In order to identify additional proteins involved in the assembly process, the yeast two-hybrid system developed by Fields and Song (1989) has been implemented. This system allows for the identification of unknown proteins that interact with proteins of interest. Typically a known protein is used as "bait" to screen a cDNA expression library of interest. In our studies, tuftelin or amelogenin have been used to screen a mouse tooth library produced from one day old pups. A library screening of six million clones with amelogenin as bait resulted in eleven positive clones all of which show high homology to the human leukocyte antigen-B (HLA-B) associated transcript (BAT) family of genes. A library screening of one million clones using tuftelin as the bait identified twenty-one tuftelin-interacting proteins. Ten of these proteins are either keratin K5 or keratin K6, four are constitutively expressed and the remaining seven are novel. Further characterization of the proteins shown to interact with amelogenin or tuftelin may shed additional light on this complex process of enamel matrix assembly.
Collapse
Affiliation(s)
- C T Paine
- University of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, Los Angeles 90033, USA
| | | | | |
Collapse
|
20
|
Celebi JT, Tanzi EL, Yao YJ, Michael EJ, Peacocke M. Mutation report: identification of a germline mutation in keratin 17 in a family with pachyonychia congenita type 2. J Invest Dermatol 1999; 113:848-50. [PMID: 10571744 DOI: 10.1046/j.1523-1747.1999.00762.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pachyonychia congenita type 2 (PC-2), also known as Jackson-Lawler type PC, is an autosomal dominant disorder characterized by hypertrophic nail dystrophy associated with focal keratoderma and multiple pilosebaceous cysts. It has been demonstrated that PC-2 is associated with germline mutations in the keratin 17 (K17) gene and in its expression partner keratin 6b. In this report, we describe a novel germline mutation in K17, M88T, in a family with PC-2.
Collapse
Affiliation(s)
- J T Celebi
- Department of Dermatology, Columbia University, College of Physicians & Surgeon, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Pachyonchia congenita (PC) is an uncommon autosomal dominant genodermatosis affecting the nails and other ectodermal tissues. The most striking features are symmetrically thickened dysmorphic nails and hyperkeratotic skin lesions. We report a case of pachyonychia congenita in a 30-year-old male patient who had thickening and gray-brown discoloration of all nails and many nodules on his back and neck. He also had hyperkeratotic skin lesions on both feet. His tongue had irregularly-shaped, whitish plaques. Histology of these nodules revealed the characteristic features of steatocystoma multiplex. After treatment with oral retinoic acid, his hyperkeratotic skin lesions improved.
Collapse
Affiliation(s)
- T W Lim
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Korea
| | | | | |
Collapse
|
22
|
Peritz AE, Gasparro FP. Psoriasis, PUVA, and skin cancer--molecular epidemiology: the curious question of T-->A transversions. J Investig Dermatol Symp Proc 1999; 4:11-6. [PMID: 10537001 DOI: 10.1038/sj.jidsp.5640174] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photochemotherapy with 8-methoxypsoralen and long wavelength ultraviolet radiation (PUVA) is commonly used to treat psoriasis and vitiligo. These vastly different diseases respond to the therapy by different mechanisms even though the immediate effects of the therapy - photoadduct formation - is the same for both. Because psoriasis is not cured by PUVA, patients receive many treatments over their lifetime and develop a significant risk for the development of skin cancers (primarily squamous cell carcinomas). In this review the basic aspects of psoralen photobiology are reviewed briefly. In addition the impact of the analysis of mutations in the tumor suppressor gene, p53, are summarized. An unexpected mutation spectrum (very few T-->A transversions and frequent UVB signature C-->T transitions) suggest that effects other than direct DNA photoadduct formation may be at play. The roles of reactive oxygen species-induced base changes as well as other clastogenic factors are discussed. This analysis suggests that it may be possible to improve the therapeutic efficacy of PUVA by a careful evaluation of the mode of delivery.
Collapse
Affiliation(s)
- A E Peritz
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
23
|
Abstract
Cells that have been irradiated with ultraviolet light (UV) suffer damage to their DNA, primarily in the form of covalent linkage between adjacent pyrimidines. Such photoproducts represent blocks to RNA and DNA polymerases and are potentially mutagenic. Blockage of RNA polymerase II by a photoproduct in the transcribed strand of an active gene leads to induction of the p53 protein, which induces pleiotropic responses that may include apoptotic cell death. If a cell survives, the blocked polymerase targets the nucleotide excision repair machinery to the site of the lesion, which is repaired in an error-free manner. Repair coupled to transcription in this manner strongly influences the mutation spectrum induced by UV, reducing the proportion of base substitutions that arise from photoproducts on the transcribed strand. If the damage persists when the DNA is replicated in S-phase, either because the cell is unable to repair the damage or because there is insufficient time between the induction of damage and the onset of S-phase. To do so, the replicative DNA polymerase complex may be blocked. In this situation, lesion bypass can be accomplished using an error-free mechanism, or using an error-prone mechanism that involves the newly described, non-processive DNA polymerase zeta encoded by the human homolog of the yeast REV3 gene.
Collapse
Affiliation(s)
- W G McGregor
- Carcinogenesis Laboratory, Michigan State University, East Lansing 48824-1302, USA.
| |
Collapse
|
24
|
Irvine AD, McLean WH. Human keratin diseases: the increasing spectrum of disease and subtlety of the phenotype-genotype correlation. Br J Dermatol 1999; 140:815-28. [PMID: 10354017 DOI: 10.1046/j.1365-2133.1999.02810.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Keratins are obligate heterodimer proteins that form the intermediate filament cytoskeleton of all epithelial cells. Keratins are tissue and differentiation specific and are expressed in pairs of types I and II proteins. The spectrum of inherited human keratin diseases has steadily increased since the causative role of mutations in the basal keratinocyte keratins 5 and 14 in epidermolysis bullosa simplex (EBS) was first reported in 1991. At the time of writing, mutations in 15 epithelial keratins and two trichocyte keratins have been associated with human diseases which include EBS, bullous congenital ichthyosiform erythroderma, epidermolytic palmoplantar keratoderma, ichthyosis bullosa of Siemens, diffuse and focal non-epidermolytic palmoplantar keratoderma, pachyonychia congenita and monilethrix. Mutations in extracutaneous keratins have been reported in oral white sponge naevus and Meesmann's corneal dystrophy. New subtleties of phenotype-genotype correlation are emerging within the keratin diseases with widely varying clinical presentations attributable to similar mutations within the same keratin. Mutations in keratin-associated proteins have recently been reported for the first time. This article reviews clinical, ultrastructural and molecular aspects of all the keratin diseases described to date and delineates potential future areas of research in this field.
Collapse
Affiliation(s)
- A D Irvine
- Department of Dermatology, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, U.K.
| | | |
Collapse
|
25
|
McGowan KM, Coulombe PA. Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J Cell Biol 1998; 143:469-86. [PMID: 9786956 PMCID: PMC2132846 DOI: 10.1083/jcb.143.2.469] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Revised: 09/04/1998] [Indexed: 11/22/2022] Open
Abstract
The type I keratin 17 (K17) shows a peculiar localization in human epithelial appendages including hair follicles, which undergo a growth cycle throughout adult life. Additionally K17 is induced, along with K6 and K16, early after acute injury to human skin. To gain further insights into its potential function(s), we cloned the mouse K17 gene and investigated its expression during skin development. Synthesis of K17 protein first occurs in a subset of epithelial cells within the single-layered, undifferentiated ectoderm of embryonic day 10.5 mouse fetuses. In the ensuing 48 h, K17-expressing cells give rise to placodes, the precursors of ectoderm-derived appendages (hair, glands, and tooth), and to periderm. During early development, there is a spatial correspondence in the distribution of K17 and that of lymphoid-enhancer factor (lef-1), a DNA-bending protein involved in inductive epithelial-mesenchymal interactions. We demonstrate that ectopic lef-1 expression induces K17 protein in the skin of adult transgenic mice. The pattern of K17 gene expression during development has direct implications for the morphogenesis of skin epithelia, and points to the existence of a molecular relationship between development and wound repair.
Collapse
Affiliation(s)
- K M McGowan
- Department of Biological Chemistry and Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
26
|
Covello SP, Smith FJ, Sillevis Smitt JH, Paller AS, Munro CS, Jonkman MF, Uitto J, McLean WH. Keratin 17 mutations cause either steatocystoma multiplex or pachyonychia congenita type 2. Br J Dermatol 1998; 139:475-80. [PMID: 9767294 DOI: 10.1046/j.1365-2133.1998.02413.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pachyonychia congenita type 2 (PC-2; Jackson-Lawler syndrome) is an autosomal dominant disorder characterized by hypertrophic nail dystrophy, mild focal keratoderma, multiple pilosebaceous cysts and other features of ectodermal dysplasia. Keratin 17 (K17) is a differentiation-specific keratin expressed in the nail bed, hair follicle, sebaceous gland and other epidermal appendages. Previously, we have demonstrated that PC-2 is caused by mutations in K17 and that similar mutations in this gene can present as steatocystoma multiplex with little or no nail dystrophy. Here, we describe three unrelated kindreds carrying K17 mutations. Two of these families have identical missense mutations (R94C) in the 1A domain of K17. However, while affected members of one kindred have the classical features of PC-2, affected persons in the other family have the steatocystoma multiplex phenotype. In a third family with PC-2, mutation N92S was detected, bringing the total number of distinct mutations reported in K17 thus far to 11. These results demonstrate that K17 mutations commonly underlie both PC-2 and steatocystoma multiplex and that the alternate phenotypes which arise from these genetic lesions in K17 are independent of the specific mutation involved.
Collapse
Affiliation(s)
- S P Covello
- Epithelial Genetics Group, Department of Dermatology and Cutaneous Biology, Jefferson Medical College, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- M A Carroll
- Department of Dermatology, University of North Carolina at Chapel Hill, 27599, USA
| | | | | |
Collapse
|
28
|
Abstract
The inherited palmoplantar keratodermas (PPK) constitute a complex heterogeneous group of genodermatoses, which are difficult to classify clinically. The application of modern molecular biology techniques are leading to an increased understanding of the genetic bases of these disorders and are paving the way towards a classification based upon molecular pathology. We review the recent research advances in this field and the implications for development of novel approaches to disease management.
Collapse
Affiliation(s)
- R C Ratnavel
- St. John's Institute of Dermatology, St Thomas' Hospital, London, UK
| | | |
Collapse
|
29
|
Templeton SF, Wiegand SE. Pachyonychia congenita-associated alopecia. A microscopic analysis using transverse section technique. Am J Dermatopathol 1997; 19:180-4. [PMID: 9129704 DOI: 10.1097/00000372-199704000-00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pachyonychia congenita (PC) is a rare genodermatosis with characteristic nail abnormalities and occasional palmoplantar keratoderma and leukokeratosis oris; alopecia may occur (10% of patients). This report is the first microscopic description of a patient with PC-associated alopecia. Transverse section histologic features include diminished follicular density with preservation of follicular units, prominent miniaturization of follicles, dyskeratosis of outer root sheath keratinocytes, and moderate parakeratotic and orthokeratotic follicular hyperkeratosis. These microscopic features may be seen individually in other nonscarring alopecias, but the combination may be unique to PC-associated alopecia. Differential diagnoses include alopecia areata, androgenetic alopecia and traction alopecia/ trichotillomania.
Collapse
Affiliation(s)
- S F Templeton
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
30
|
Smith FJ, Corden LD, Rugg EL, Ratnavel R, Leigh IM, Moss C, Tidman MJ, Hohl D, Huber M, Kunkeler L, Munro CS, Lane EB, McLean WH. Missense mutations in keratin 17 cause either pachyonychia congenita type 2 or a phenotype resembling steatocystoma multiplex. J Invest Dermatol 1997; 108:220-3. [PMID: 9008238 DOI: 10.1111/1523-1747.ep12335315] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pachyonychia congenita (PC) is a group of autosomal dominant ectodermal dysplasias in which the main phenotypic characteristic is hypertrophic nail dystrophy. In the Jackson-Lawler form (PC-2), pachyonychia is accompanied by multiple pilosebaceous cysts, natal teeth, and hair abnormalities. By direct sequencing of genomic PCR products, we report heterozygous K17 missense mutations in the same conserved protein motif in a further five PC-2 families (K17 N92S in one familial and three sporadic cases; K17 Y98D in one familial case) confirming that mutations in this gene are a common cause of PC-2. We also show heterozygous missense mutations in K17 (N92H and R94H) in two families diagnosed as steatocystoma multiplex. Mild nail defects were observed in some but not all of these patients on clinical re-evaluation of these families. All the K17 mutations reported here were shown to co-segregate with the disease in the pedigrees analyzed and were excluded from 100 unaffected, unrelated chromosomes by restriction enzyme analysis of K17 genomic PCR products. We conclude that phenotypic variation is observed with K17 mutations, as is the case with other keratin disorders.
Collapse
Affiliation(s)
- F J Smith
- Department of Anatomy & Physiology, Medical Sciences Institute, University of Dundee, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fuchs E. JSID Tanioku Memorial Lecture 1996. Genetic disorders of keratins and their associated proteins. J Dermatol Sci 1996; 13:181-92. [PMID: 9023700 DOI: 10.1016/s0923-1811(96)00568-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has recently been demonstrated that genetic defects in keratin genes cause a number of different skin disorders, including epidermolysis bullosa simplex (EBS), epidermolytic hyperkeratosis (EH), the EH form of epidermal nevi, epidermolytic and non-epidermolytic forms of palmoplantar keratoderma (EPPK and PPK) and pachyonychia congenita (PC). In this review, I describe the research that led to this discovery.
Collapse
Affiliation(s)
- E Fuchs
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA
| |
Collapse
|
32
|
Abstract
Specialized cytoskeletons play many fascinating roles, including mechanical integrity and wound-healing in epidermal cells, cell polarity in simple epithelia, contraction in muscle cells, hearing and balance in the inner ear cells, axonal transport in neurons, and neuromuscular junction formation between muscle cells and motor neurons. These varied functions are dependent upon cytoplasmic networks of actin microfilaments (6 nm), intermediate filaments (10 nm) and microtubules (23 nm), and their many associated proteins. In this chapter, I review what is known about the cytoskeletons of intermediate filaments and their associated proteins. I focus largely on epidermal cells, which devote most of their protein-synthesizing machinery to producing an extensive intermediate filament network composed of keratin. Recent studies have shown that many of the devastating human disorders that arise from degeneration of this cell type have as their underlying basis either defects in the genes encoding keratins or abnormalities in keratin IF networks. I discuss what we know about the functions of IFs, and how the link to genetic disease has enhanced this understanding.
Collapse
Affiliation(s)
- E Fuchs
- Howard Hughes Medical Institute, University of Chicago, Illinois 60637, USA
| |
Collapse
|
33
|
Abstract
Keratins are heteropolymeric proteins which form the intermediate filament cytoskeleton in epithelial cells. Since 1991, mutations in several keratin genes have been found to cause a variety of human diseases affecting the epidermis and other epithelial structures. Epidermolysis bullosa simplex (EBS) was the first mechanobullous disease for which the underlying genetic lesion was found, with mutations in both the K5 and K14 genes rendering basal epidermal keratinocytes less resilient to trauma, resulting in skin fragility. The site of mutation in the keratin protein correlates with phenotypic severity in this disorder. Since mutations were identified in the basal cell keratins, the total number of keratin genes associated with diseases has risen to eleven. The rod domains of suprabasal keratins K1 and K10 are mutated in bullous congenital ichthyosiform erythroderma (BCIE; also called epidermolytic hyperkeratosis, EH) and mosaicism for K1/K10 mutations results in a nevoid distribution of EH. An unusual mutation in the VI domain of K1 has also been found to cause diffuse non-epidermolytic palmoplantar keratoderma (DNEPPK). Mutations in palmoplantar specific keratin K9 cause epidermolytic palmoplantar keratoderma (EPPK) and mutations in the late differentiation suprabasal keratin K2e cause ichthyosis bullosa of Siemens (IBS). In the last year or so, mutations were discovered in differentiation specific keratins K6a and K16 causing pachyonychia congenita type 1 and K17 mutations occur in pachyonychia congenita type 2. K16 and K17 mutations have also been reported to produce phenotypes with little or no nail changes: K16 mutations can present as focal non-epidermolytic palmoplantar keratoderma (NEPPK) and K17 mutations can result in a phenotype resembling steatocystoma multiplex. Recently, mutation of mucosal keratin pair K4 and K13 has been shown to underlie white sponge nevus (WSN). This year, the first mutations in a keratin-associated protein, plectin, were shown to cause a variant of epidermolysis bullosa associated with late-onset muscular dystrophy (MD-EBS). An unusual mutation has been identified in K5 which is responsible for EBS with mottled pigmentation and genetic linkage analysis suggests that the hair disorder monilethrix is likely to be due to a mutation in a hair keratin. The study of keratin diseases has led to a better understanding of the importance of the intermediate filament cytoskeleton and associated connector molecules in maintaining the structural integrity of the epidermis and other high stress epithelial tissues, as well as allowing diagnosis at the molecular level thus facilitating prenatal testing for this heterogeneous group of genodermatoses.
Collapse
Affiliation(s)
- L D Corden
- Department of Anatomy and Physiology, University of Dundee, UK
| | | |
Collapse
|
34
|
Abstract
In the past 5 years enormous progress have been made in our understanding of the molecular basis for a number of inherited skin diseases characterized by easy blistering of the skin and the mucous membranes after minor physical trauma. This increased fragility of the skin or its appendages is due to molecular defects in genes coding for different intra- and extracellular structural proteins which are responsible for mechanical strength at their sites of expression. These diseases encompass the group of epidermolysis bullosa and disorders of cornification such as bullous forms of ichthyosis, palmoplantar keratoderma, and pachyonychia congenita. On the basis of clinical, morphological, and ultrastructural observations the epidermolysis bullosa group has been divided into three major categories. In epidermolysis bullosa simplex blister formation appears within the basal cell layer of the epidermis, and many mutations have been found in the genes of keratin 5 and 14 which are both expressed in basal keratinocytes. Epidermolytic hyperkeratosis leads to an epidermal separation in the suprabasal cell layers. In these patients numerous point mutations have now been described in the suprabasally expressed genes of keratin 1 and 10. In ichthyosis bullosa of Siemens blisters occur in the more upper suprabasal epidermis coincidental with the expression of keratin 2e, and mutations have been detected in the corresponding gene. In epidermolytic palmoplantar hyperkeratosis the suprabasal epidermal splitting is restricted to palms and soles of the patient. In keratin 9, which reveals such an exclusive expression pattern, molecular defects have indeed been recognized. Most recently in two different clinical subtypes of pachyonychia congenita, which is characterized by defective nails and focal palmoplantar hyperkeratosis, point mutations have been found in the genes coding for keratins 6, 16, and 17. In junctional epidermolysis bullosa the separation takes place within the dermal-epidermal basement membrane at the level of the lamina lucida, and mutations have been found in three genes coding for different laminin chains, in the beta4 gene of alpha6beta4 integrin, and in the gene of collagen XVII. In dystrophic epidermolysis bullosa the tissue separation occurs beneath the basement membrane within the papillary dermis at the level of the anchoring fibrils, and several mutations have been identified in the collagen VII gene. The rapid unraveling of molecular defects in these disabling or even lethal inherited skin diseases makes possible a more precise and earlier prenatal diagnosis, creates new options for suitable therapeutic regimens, and even offers the hope of curing these diseases by means of somatic cell gene therapy.
Collapse
Affiliation(s)
- B P Korge
- Klinik und Poliklinik fur Dermatologie und Venerologie, Universitat Koln, Germany
| | | |
Collapse
|
35
|
Bowden PE, Haley JL, Kansky A, Rothnagel JA, Jones DO, Turner RJ. Mutation of a type II keratin gene (K6a) in pachyonychia congenita. Nat Genet 1995; 10:363-5. [PMID: 7545493 DOI: 10.1038/ng0795-363] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pachyonychia congenita (PC) is a rare autosomal dominant condition characterized by multiple ectodermal abnormalities. Patients with Jadassohn-Lewandowsky Syndrome (MIM #167200; PC-1) have nail defects (onchyogryposis), palmoplantar hyperkeratosis, follicular hyperkeratosis and oral leukokeratosis. Those with the rarer Jackson-Lawler Syndrome (MIM #167210; PC-2) lack oral involvement but have natal teeth and cutaneous cysts. Ultra-structural studies have identified abnormal keratin tonofilaments and linkage to the keratin gene cluster on chromosome 17 has been found in PC families. Keratins are the major structural proteins of the epidermis and associated appendages and the nail, hair follicle, palm, sole and tongue are the main sites of constitutive K6, K16 and K17 expression. Furthermore, mutations in K16 and K17 have recently been identified in some PC patients. Although we did not detect K16 or K17 mutations in PC families from Slovenia, we have found a heterozygous deletion in a K6 isoform (K6a) in the affected members of one family. This 3 bp deletion (AAC) in exon 1 of K6a removes a highly conserved asparagine residue (delta N170) from position 8 of the 1A helical domain (delta N8). This is the first K6a mutation to be described and this heterozygous K6a deletion is sufficient to explain the pathology observed in this PC-1 family.
Collapse
Affiliation(s)
- P E Bowden
- Department of Dermatology, University of Wales College of Medicine, Cardiff. UK
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
McLean WH, Rugg EL, Lunny DP, Morley SM, Lane EB, Swensson O, Dopping-Hepenstal PJ, Griffiths WA, Eady RA, Higgins C. Keratin 16 and keratin 17 mutations cause pachyonychia congenita. Nat Genet 1995; 9:273-8. [PMID: 7539673 DOI: 10.1038/ng0395-273] [Citation(s) in RCA: 233] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pachyonychia congenita (PC) is a group of autosomal dominant disorders characterized by dystrophic nails and other ectodermal aberrations. A gene for Jackson-Lawler PC was recently mapped to the type I keratin cluster on 17q. Here, we show that a heterozygous missense mutation in the helix initiation motif of K17 (Asn92Asp) co-segregates with the disease in this kindred. We also show that Jadassohn-Lewandowsky PC is caused by a heterozygous missense mutation in the helix initiation peptide of K16 (Leu130Pro). The known expression patterns of these keratins in epidermal structures correlates with the specific abnormalities observed in each form of PC.
Collapse
Affiliation(s)
- W H McLean
- Dept of Anatomy Physiology, University of Dundee, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Intermediate filaments are major structural proteins encoded by a large multigene family. Their tissue-specific expression makes them important in studies of development, differentiation and pathology. Most intermediate filaments are keratins; recent discoveries of keratin mutations in a range of genetic skin disorders have clarified their role as providing essential structural support for cells in different physical settings.
Collapse
Affiliation(s)
- W H McLean
- Department of Anatomy and Physiology, University of Dundee, UK
| | | |
Collapse
|