1
|
Zhang X, Jiang S, Zhang R, Guo S, Sheng Q, Wang K, Shan Y, Liao L, Dong J. Review of published 467 achondroplasia patients: clinical and mutational spectrum. Orphanet J Rare Dis 2024; 19:29. [PMID: 38281003 PMCID: PMC10822181 DOI: 10.1186/s13023-024-03031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/19/2024] [Indexed: 01/29/2024] Open
Abstract
AIM Achondroplasia is the most common of the skeletal dysplasias that cause fatal and disabling growth and developmental disorders in children, and is caused by a mutation in the fibroblast growth factor receptor, type 3 gene(FGFR3). This study aims to analyse the clinical characteristics and gene mutations of ACH to accurately determine whether a patient has ACH and to raise public awareness of the disease. METHODS The database of Pubmed, Cochrane Library, Wanfang and CNKI were searched with terms of "Achondroplasias" or "Skeleton-Skin-Brain Syndrome" or "Skeleton Skin Brain Syndrome" or "ACH" and "Receptor, Fibroblast Growth Factor, Type 3" or "FGFR3". RESULTS Finally, four hundred and sixty-seven patients with different FGFR3 mutations were enrolled. Of the 138 patients with available gender information, 55(55/138, 40%) were female and 83(83/138, 60%) were male. Among the patients with available family history, 47(47/385, 12%) had a family history and 338(338/385, 88%) patients were sporadic. The age of the patients ranged from newborn babies to 36 years old. The mean age of their fathers was 37 ± 7 years (range 31-53 years). Patients came from 12 countries and 2 continents, with the majority being Asian (383/432, 89%), followed by European (49/432, 11%). Short stature with shortened arms and legs was found in 112(112/112) patients, the abnormalities of macrocephaly in 94(94/112) patients, frontal bossing in 89(89/112) patients, genu valgum in 64(64/112) patients and trident hand were found in 51(51/112) patients. The most common mutation was p.Gly380Arg of the FGFR3 gene, which contained two different base changes, c.1138G > A and c.1138G > C. Ten rare pathogenic mutations were found, including c.831A > C, c.1031C > G, c.1043C > G, c.375G > T, c.1133A > G, c.1130T > G, c.833A > G, c.649A > T, c.1180A > T and c.970_971insTCTCCT. CONCLUSION ACH was caused by FGFR3 gene mutation, and c.1138G > A was the most common mutation type. This study demonstrates the feasibility of molecular genetic testing for the early detection of ACH in adolescents with short stature, trident hand, frontal bossing, macrocephaly and genu valgum.
Collapse
Affiliation(s)
- XinZhong Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shan Jiang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Rui Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Siyi Guo
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiqi Sheng
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Kaili Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuanyuan Shan
- Department of Endocrinology and Metabology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China.
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Almutiry A, Alotaibi F, Almutiry B, Aldowsari MK, Alotaibi M, Boucelham A. Craniofacial and Dental Manifestations in Pediatric Patients with Achondroplasia: A Case Report and Clinical View. Int J Clin Pediatr Dent 2023; 16:409-415. [PMID: 37519965 PMCID: PMC10373753 DOI: 10.5005/jp-journals-10005-2589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Aim The aim of this case report is to describe the dentofacial manifestations of achondroplasia and highlight concerns associated with dental management of pediatric patients with achondroplasia. Background Achondroplasia is the most common form of skeletal dysplasia (dwarfism) with clinical manifestations including disproportionate limb shortening and stunted stature. The craniofacial characteristics of achondroplasia are relative macrocephaly, depression of the nasal bridge, and maxillary hypoplasia. Special precautions are necessary during dental management of pediatric patients with achondroplasia due to a large head size, implanted shunts, airway obstruction, and difficulty in head control. Case description A 6 years and 7 months male, the patient was diagnosed with achondroplasia, currently receiving vitamin D, no known drug allergy, and a mixed dentition stage with multiple caries, mouth breather, and a high risk of further caries based on a caries risk assessment due to poor oral hygiene. As the patient was uncooperative and required extensive dental care, dental rehabilitation was conducted under general anesthesia using oral intubation due to nasal obstruction. Future examinations were planned for every 3 months. Conclusion The current case demonstrated that the characteristics of achondroplasia might cause respiratory, neurological, skeletal, orthodontic, and psychological difficulties. Pediatric dentists who treat these patients must be able to detect these characteristics and difficulties, as dental treatment is limited by practical issues associated with this condition. Clinical significance The characteristic features of achondroplasia are attributed to skeletal, respiratory, neurologic, orthodontic, and psychosocial issues. The dentist should be aware of the features of achondroplasia, which can potentially restrict dental management. How to cite this article Almutiry A, Alotaibi F, Almutiry B, et al. Craniofacial and Dental Manifestations in Pediatric Patients with Achondroplasia: A Case Report and Clinical View. Int J Clin Pediatr Dent 2023;16(2):409-415.
Collapse
Affiliation(s)
- Amal Almutiry
- Department of Pediatric Dentistry, King Saud Medical City, Riyadh, Saudi Arabia
| | - Fares Alotaibi
- Department of Pediatric Dentistry, King Saud Medical City, Riyadh, Saudi Arabia
| | - Bashayer Almutiry
- Department of Pediatric Dentistry, King Saud Medical City, Riyadh, Saudi Arabia
| | - Mannaa K Aldowsari
- Department of Pediatric Dentistry and Orthodontics, college of dentistry King Saud University, Riyadh, Saudi Arabia
| | - Maha Alotaibi
- Department of Clinic Genetic and Metabolic, King Saud Medical City, Riyadh, Saudi Arabia
| | - Aboubekri Boucelham
- Department of Pediatric Dentistry, King Saud Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Abstract
Achondroplasia is the most common short-stature skeletal dysplasia, additionally marked by rhizomelia, macrocephaly, midface hypoplasia, and normal cognition. Potential medical complications associated with achondroplasia include lower extremity long bone bowing, middle-ear dysfunction, obstructive sleep apnea, and, more rarely, cervicomedullary compression, hydrocephalus, thoracolumbar kyphosis, and central sleep apnea. This is the second revision to the original 1995 health supervision guidance from the American Academy of Pediatrics for caring for patients with achondroplasia. Although many of the previously published recommendations remain appropriate for contemporary medical care, this document highlights interval advancements in the clinical methods available to monitor for complications associated with achondroplasia. This document is intended to provide guidance for health care providers to help identify individual patients at high risk of developing serious sequelae and to enable intervention before complications develop.
Collapse
Affiliation(s)
- Julie Hoover-Fong
- Greenberg Center for Skeletal Dysplasias, McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Charles I Scott
- Nemours/Alfred I. duPont Hospital for Children and Sidney Kimmel Medical College, Thomas Jefferson University, Wilmington, Delaware; and
| | - Marilyn C Jones
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, California
| |
Collapse
|
4
|
Abstract
Achondroplasia is the most common of the skeletal dysplasias that result in marked short stature (dwarfism). Although its clinical and radiologic phenotype has been described for more than 50 years, there is still a great deal to be learned about the medical issues that arise secondary to this diagnosis, the manner in which these are best diagnosed and addressed, and whether preventive strategies can ameliorate the problems that can compromise the health and well being of affected individuals. This review provides both an updated discussion of the care needs of those with achondroplasia and an exploration of the limits of evidence that is available regarding care recommendations, controversies that are currently present, and the many areas of ignorance that remain.
Collapse
Affiliation(s)
- Richard M Pauli
- Midwest Regional Bone Dysplasia Clinic, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1500 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
5
|
Wilkie AOM, Goriely A. Gonadal mosaicism and non-invasive prenatal diagnosis for 'reassurance' in sporadic paternal age effect (PAE) disorders. Prenat Diagn 2017; 37:946-948. [PMID: 28686291 PMCID: PMC5638092 DOI: 10.1002/pd.5108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/25/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Andrew O M Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Anne Goriely
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Yuan H, Huang L, Hu X, Li Q, Sun X, Xie Y, Kong S, Wang X. FGFR3 gene mutation plus GRB10 gene duplication in a patient with achondroplasia plus growth delay with prenatal onset. Orphanet J Rare Dis 2016; 11:89. [PMID: 27370225 PMCID: PMC4930580 DOI: 10.1186/s13023-016-0465-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022] Open
Abstract
Background Achondroplasia is a well-defined and common bone dysplasia. Genotype- and phenotype-level correlations have been found between the clinical symptoms of achondroplasia and achondroplasia-specific FGFR3 mutations. Result A 2-year-old boy with clinical features consistent with achondroplasia and Silver-Russell syndrome-like symptoms was found to carry a mutation in the fibroblast growth factor receptor-3 (FGFR3) gene at c.1138G > A (p.Gly380Arg) and a de novo 574 kb duplication at chromosome 7p12.1 that involved the entire growth-factor receptor bound protein 10 (GRB10) gene. Using quantitative real-time PCR analysis, GRB10 was over-expressed, and, using enzyme-linked immunosorbent assays for IGF1 and IGF-binding protein-3 (IGFBP3), we found that IGF1 and IGFBP3 were low-expressed in this patient. Conclusions We demonstrate that a combination of uncommon, rare and exceptional molecular defects related to the molecular bases of particular birth defects can be analyzed and diagnosed to potentially explain the observed variability in the combination of molecular defects. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0465-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiming Yuan
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, 510330, Guangdong, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, Guangdong, China
| | - Linhuan Huang
- Fetal Medicine Centre, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong, 510080, China
| | - Xizi Hu
- Fairmont Preparatory Academy, Anaheim, CA, 92801, USA
| | - Qian Li
- Affymetrix Biotech Shanghai Ltd., Shanghai, 200020, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China.
| | - Shu Kong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| | - Xiaoman Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| |
Collapse
|
7
|
Rohilla S, Kaushik A, Vinod V, Tanwar R, Kumar M. Orofacial manifestations of achondroplasia. EXCLI JOURNAL 2012; 11:538-42. [PMID: 27298609 PMCID: PMC4897656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/23/2012] [Indexed: 11/01/2022]
Abstract
Achondroplasia (Online Mendelian Inheritance in Man [OMIM] 100800), is considered as a form of skeletal dysplasia dwarfism that manifests with stunted stature and disproportionate limb shortening. Achondroplasia is of special interest in the field of dentistry because of its characteristic craniofacial features which include relative macrocephaly, depressed nasal bridge and maxillary hypoplasia. Presence of large head, implanted shunt, airway obstruction and difficulty in head control requires special precautions during dental management. The current case report highlights the orofacial manifestations of Achondroplasia in a young pediatric patient, along with the multidisciplinary treatment (including the dental treatment) done for the patient which also might help the general practitioners in better understanding of the condition.
Collapse
Affiliation(s)
- Smriti Rohilla
- Department of Oral Medicine & Radiology, S.G.T Dental College Hospital and Research Institute, Gurgaon, Haryana, India,*To whom correspondence should be addressed: Smriti Rohilla, S.G.T Dental College Hospital and Research Institute, Gurgaon, Haryana, India, E-mail:
| | - Atul Kaushik
- Department of Oral Medicine & Radiology, S.G.T Dental College Hospital and Research Institute, Gurgaon, Haryana, India
| | - V.C. Vinod
- Department of Oral Medicine & Radiology, S.G.T Dental College Hospital and Research Institute, Gurgaon, Haryana, India
| | - Renu Tanwar
- Department of Oral Medicine & Radiology, S.G.T Dental College Hospital and Research Institute, Gurgaon, Haryana, India
| | - Munish Kumar
- Department of Oral Medicine & Radiology, S.G.T Dental College Hospital and Research Institute, Gurgaon, Haryana, India
| |
Collapse
|
8
|
Tammachote R, Kingsuwannapong N, Tongkobpetch S, Srichomthong C, Yeetong P, Kingwatanakul P, Monico CG, Suphapeetiporn K, Shotelersuk V. Primary hyperoxaluria type 1 and brachydactyly mental retardation syndrome caused by a novel mutation in AGXT and a terminal deletion of chromosome 2. Am J Med Genet A 2012; 158A:2124-30. [PMID: 22821680 DOI: 10.1002/ajmg.a.35495] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 05/07/2012] [Indexed: 12/12/2022]
Abstract
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder caused by mutations in the alanine:glyoxylate aminotransferase (AGXT) gene, located on chromosome 2q37. Mutant AGXT leads to excess production and excretion of oxalate, resulting in accumulation of calcium oxalate in the kidney, and progressive loss of renal function. Brachydactyly mental retardation syndrome (BDMR) is an autosomal dominant disorder, caused by haploinsufficiency of histone deacetylase 4 (HDAC4), also on chromosome 2q37. It is characterized by skeletal abnormalities and developmental delay. Here, we report on a girl who had phenotypes of both PH1 and BDMR. PCR-sequencing of the coding regions of AGXT showed a novel missense mutation, c.32C>G (p.Pro11Arg) inherited from her mother. Functional analyses demonstrated that it reduced the enzymatic activity to 31% of the wild-type and redirected some percentage of the enzyme away from the peroxisome. Microsatellite and array-CGH analyses indicated that the proband had a paternal de novo telomeric deletion of chromosome 2q, which included HDAC4. To our knowledge, this is the first report of PH1 and BDMR, with a novel AGXT mutation and a de novo telomeric deletion of chromosome 2q.
Collapse
Affiliation(s)
- Rachaneekorn Tammachote
- Faculty of Science, Human Genetics Research, Department of Botany, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Natacci F, Baffico M, Cavallari U, Bedeschi MF, Mura I, Paffoni A, Setti PL, Baldi M, Lalatta F. Germline mosaicism in achondroplasia detected in sperm DNA of the father of three affected sibs. Am J Med Genet A 2008; 146A:784-6. [PMID: 18266238 DOI: 10.1002/ajmg.a.32228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a sib recurrence for achondroplasia with parents of average stature. The three sibs shared the paternal allele and all carried the same causal mutation in the fibroblast growth factor receptor 3 gene (FGFR3): G > A nt1138 (Gly380Arg). We were able to identify this mutation on sperm DNA confirming paternal germinal mosaicism. Our family shows that a more precise definition of the recurrence risk is feasible using this approach, based on a single DNA test, which could be offered in selected cases.
Collapse
Affiliation(s)
- Federica Natacci
- Clinical Genetic Unit, Department of Obstetrics and Pediatrics, Fondazione Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Oji GS, Gomez P, Kurriger G, Stevens J, Morcuende JA. Indian hedgehog signaling pathway differences between swarm rat chondrosarcoma and native rat chondrocytes. THE IOWA ORTHOPAEDIC JOURNAL 2007; 27:9-16. [PMID: 17907424 PMCID: PMC2151203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Indian Hedgehog (Ihh)--Parathyroid related protein (PTHrP) and Fibroblast Growth Factor 3 (FGFR3) signaling pathways are important in regulating endochondral bone formation. In the growth plate, Ihh and PTHrP are involved in a feedback loop to increase proliferation and delay differentiation of chondrocytes. Fibroblast Growth Factor Receptor 3 (FGFR3) conversely decreases proliferation and hastens differentiation with an agonist. Since proliferation is the hallmark of chondrosarcoma cells, we hypothesized that Ihh/PTHrP and FGF3R pathways may be dysfunctional on these cells. Therefore, we sought to investigate the role of these signaling pathways in the Swarm rat chondrosarcoma cells utilizing expression and functional studies. Semiquantitative RT-PCR analysis demonstrated difference in expression between normal growth plate chondrocytes and chondrosarcoma cells (JWS). JWS had an increased mRNA expression of FGF2 and FGFR3 suggesting a mechanism to reverse the proliferative rate of the cells. Immunohistochemical analysis showed increased staining for FGFR3 and patched-1 (Ihh receptor) in JWS compared to the rat tibia growth plate (p = 0.O004 and 0.02 respectively). In vitro functional experiments demonstrated that the use of FGF2, a FGFR3 receptor agonist, dramatically decreased the proliferative rate of Swarm chondrosarcoma cells (LTC). Cyclopamine, a hedgehog inhibitor, did not have a significant effect on their proliferative rate. However, when cyclopamine was used on normal chondrocytes, it effectively decreased the proliferative rate of these cells, suggesting abnormalities in this pathway in the chondrosarcoma cells. In conclusion, our investigation describes dissimilarity in the Indian Hedgehog and FGFR3 signaling pathways between the rat chondrosarcoma cells and native rat chondrocytes. Understanding the underlying mechanisms may provide a target for future therapy for chondrosarcoma.
Collapse
Affiliation(s)
- George S Oji
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Achondroplasia is the most common condition associated with disproportionate short stature. Substantial information is available concerning the natural history and anticipatory health supervision needs in children with this dwarfing disorder. Most children with achondroplasia have delayed motor milestones, problems with persistent or recurrent middle-ear dysfunction, and bowing of the lower legs. Less often, infants and children may have serious health consequences related to hydrocephalus, craniocervical junction compression, upper-airway obstruction, or thoracolumbar kyphosis. Anticipatory care should be directed at identifying children who are at high risk and intervening to prevent serious sequelae. This report is designed to help the pediatrician care for children with achondroplasia and their families.
Collapse
|
12
|
Wilkie AOM. Bad bones, absent smell, selfish testes: The pleiotropic consequences of human FGF receptor mutations. Cytokine Growth Factor Rev 2005; 16:187-203. [PMID: 15863034 DOI: 10.1016/j.cytogfr.2005.03.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The discovery in 1994 that highly specific mutations of fibroblast growth factor (FGF) receptor 3 caused the most common form of human short-limbed dwarfism, achondroplasia, heralded a new era in FGF receptor (FGFR) biology. A decade later, the purpose of this review is to survey how the study of humans with FGFR mutations continues to provide insights into FGFR function in health and disease, and the clinical applications of these findings. Amongst the most interesting recent discoveries have been the description of novel phenotypes associated with FGFR1 and FGFR3 mutations; identification of fundamental differences in the cellular mechanisms of mutant FGFR2 and FGFR3 action; and the direct identification of FGFR2 and FGFR3 mutations in sperm. These clinical observations illustrate the pleiotropism of FGFR action and fuel ongoing efforts to understand the rich biology and pathophysiology of the FGF signalling system.
Collapse
Affiliation(s)
- Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, NDCLS, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
13
|
Rannan-Eliya SV, Taylor IB, De Heer IM, Van Den Ouweland AMW, Wall SA, Wilkie AOM. Paternal origin of FGFR3 mutations in Muenke-type craniosynostosis. Hum Genet 2004; 115:200-7. [PMID: 15241680 DOI: 10.1007/s00439-004-1151-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 05/11/2004] [Indexed: 11/29/2022]
Abstract
Muenke syndrome, also known as FGFR3-associated coronal synostosis, is defined molecularly by the presence of a heterozygous nucleotide transversion, c.749C>G, encoding the amino acid substitution Pro250Arg, in the fibroblast growth factor receptor type 3 gene (FGFR3). This frequently occurs as a new mutation, manifesting one of the highest documented rates for any transversion in the human genome. To understand the biology of this mutation, we have investigated its parental origin, and the ages of the parents, in 19 families with de novo c.749C>G mutations. All ten informative cases originated from the paternal allele (95% confidence interval 74-100% paternal); the average paternal age at birth overall was 34.7 years. An exclusive paternal origin of mutations, and increased paternal age, were previously described for a different mutation (c.1138G>A) of the FGFR3 gene causing achondroplasia, as well as for mutations of the related FGFR2 gene causing Apert, Crouzon and Pfeiffer syndromes. We conclude that similar biological processes are likely to shape the occurrence of this c.749C>G mutation as for other mutations of FGFR3 as well as FGFR2.
Collapse
Affiliation(s)
- Sahan V Rannan-Eliya
- NDCLS, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Headington, Oxford, UK
| | | | | | | | | | | |
Collapse
|