1
|
Filippi M, Ghirelli A, Spinelli EG, Agosta F. A comprehensive update on neuroimaging endpoints in amyotrophic lateral sclerosis. Expert Rev Neurother 2025; 25:397-413. [PMID: 39985812 DOI: 10.1080/14737175.2025.2470324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION There are currently few treatments approved for amyotrophic lateral sclerosis (ALS). Additionally, there remains a significant unmet need for reliable, standardized biomarkers to assess endpoints in clinical trials. Magnetic resonance imaging (MRI)- and positron emission tomography (PET)-derived metrics could help in patient selection and stratification, shortening trial duration and reducing costs. AREAS COVERED This review focuses on the potential use of neuroimaging endpoints in the context of ALS therapeutic trials, providing insights on structural and functional neuroimaging, plexus and muscle alterations, glial involvement and neuroinflammation, envisioning how these surrogates of disease progression could be implemented in clinical trials. A PubMed search covering the past 15 years was performed. EXPERT OPINION Neuroimaging is essential in understanding ALS pathophysiology, aiding in disease progression tracking and evaluating therapeutic interventions. High costs, limited accessibility, lack of standardization, and patient tolerability limit their use in routine ALS care. Addressing these obstacles is essential for fully harnessing neuroimaging potential in improving diagnostics and treatment in ALS.
Collapse
Affiliation(s)
- Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alma Ghirelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Zeng JY, Huang HW, Zhuang SP, Wu Y, Chen S, Zou ZY, Chen HJ. Soma and neurite density imaging detects brain microstructural impairments in amyotrophic lateral sclerosis. Eur J Radiol 2025; 184:111981. [PMID: 39933303 DOI: 10.1016/j.ejrad.2025.111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVE To investigate whole-brain microstructural changes in amyotrophic lateral sclerosis (ALS) using soma and neurite density imaging (SANDI), a novel multicompartment model of diffusion-weighted imaging that estimates apparent soma and neurite density. METHODS This study consists of 41 healthy controls and 43 patients with ALS, whose diffusion-weighted data were acquired. The SANDI-derived (including signal fractions of soma (fsoma), neurite (fneurite), and extra-cellular space (fextra)) and diffusion tensor imaging (DTI)-derived metrics were obtained. Voxel-based analyses were performed to evaluate intergroup differences and the correlation of SANDI and DTI metrics with clinical parameters. RESULTS In ALS patients, fneurite reduction involved both gray matter (primarily the bilateral precentral gyri, supplementary motor area, medial frontal gyrus, anterior cingulate cortex, inferior frontal gyrus, orbital gyrus, paracentral lobule, postcentral gyrus, middle cingulate cortex, hippocampus and parahippocampal gyrus, and insula, and left anterior parts of the temporal lobe) and white matter (primarily the bilateral corticospinal tract, body of corpus callosum, and brainstem) (P <0.05 after false discovery rate correction). The fextra increment showed a similar spatial distribution in ALS patients. Interestingly, the decreased fsoma in ALS primarily located in gray matter; while, the increased fsoma primarily involved white matter. The spatial distribution of fneurite/fextra/fsoma changes was larger than that detected by conventional DTI metrics, and the fneurite/fextra/fsoma were correlated with disease severity. CONCLUSIONS SANDI may serve as a clinically relevant model, superior to conventional DTI, for characterizing microstructural impairments such as neurite degeneration and soma alteration in ALS.
Collapse
Affiliation(s)
- Jing-Yi Zeng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Hui-Wei Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Shao-Peng Zhuang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 China.
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001 China.
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001 China.
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001 China.
| |
Collapse
|
3
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
4
|
Irwin KE, Sheth U, Wong PC, Gendron TF. Fluid biomarkers for amyotrophic lateral sclerosis: a review. Mol Neurodegener 2024; 19:9. [PMID: 38267984 PMCID: PMC10809579 DOI: 10.1186/s13024-023-00685-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. Presently, three FDA-approved drugs are available to help slow functional decline for patients with ALS, but no cure yet exists. With an average life expectancy of only two to five years after diagnosis, there is a clear need for biomarkers to improve the care of patients with ALS and to expedite ALS treatment development. Here, we provide a review of the efforts made towards identifying diagnostic, prognostic, susceptibility/risk, and response fluid biomarkers with the intent to facilitate a more rapid and accurate ALS diagnosis, to better predict prognosis, to improve clinical trial design, and to inform interpretation of clinical trial results. Over the course of 20 + years, several promising fluid biomarker candidates for ALS have emerged. These will be discussed, as will the exciting new strategies being explored for ALS biomarker discovery and development.
Collapse
Affiliation(s)
- Katherine E Irwin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Udit Sheth
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
5
|
Ai Y, Li F, Hou Y, Li X, Li W, Qin K, Suo X, Lei D, Shang H, Gong Q. Differential cortical gray matter changes in early- and late-onset patients with amyotrophic lateral sclerosis. Cereb Cortex 2024; 34:bhad426. [PMID: 38061694 DOI: 10.1093/cercor/bhad426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 01/19/2024] Open
Abstract
Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.
Collapse
Affiliation(s)
- Yuan Ai
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Fei Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xiuli Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Wenbin Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Kun Qin
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Du Lei
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, Xiamen, Fujian 361021, China
| |
Collapse
|
6
|
Huang N, Qin W, Lin J, Dong Q, Chen H. Corticospinal fibers with different origins impair in amyotrophic lateral sclerosis: A neurite orientation dispersion and density imaging study. CNS Neurosci Ther 2023; 29:3406-3415. [PMID: 37208946 PMCID: PMC10580332 DOI: 10.1111/cns.14270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
AIMS To investigate microstructural impairments of corticospinal tracts (CSTs) with different origins in amyotrophic lateral sclerosis (ALS) using neurite orientation dispersion and density imaging (NODDI). METHODS Diffusion-weighted imaging data acquired from 39 patients with ALS and 50 controls were used to estimate NODDI and diffusion tensor imaging (DTI) models. Fine maps of CST subfibers originating from the primary motor area (M1), premotor cortex, primary sensory area, and supplementary motor area (SMA) were segmented. NODDI metrics (neurite density index [NDI] and orientation dispersion index [ODI]) and DTI metrics (fractional anisotropy [FA] and mean/axial/radial diffusivity [MD/AD/RD]) were computed. RESULTS The patients with ALS showed microstructural impairments (reflected by NDI, ODI, and FA reductions and MD, AD, and RD increases) in CST subfibers, especially in M1 fibers, which correlated with disease severity. Compared with other diffusion metrics, NDI yielded a higher effect size and detected the greatest extent of CST subfibers damage. Logistic regression analyses based on NDI in M1 subfiber yielded the best diagnostic performance compared with other subfibers and the whole CST. CONCLUSIONS Microstructural impairment of CST subfibers (especially those originating from M1) is the key feature of ALS. The combination of NODDI and CST subfibers analysis may improve diagnosing performance for ALS.
Collapse
Affiliation(s)
- Nao‐Xin Huang
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Jia‐Hui Lin
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Qiu‐Yi Dong
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Hua‐Jun Chen
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
7
|
El Mendili MM, Verschueren A, Ranjeva JP, Guye M, Attarian S, Zaaraoui W, Grapperon AM. Association between brain and upper cervical spinal cord atrophy assessed by MRI and disease aggressiveness in amyotrophic lateral sclerosis. Neuroradiology 2023; 65:1395-1403. [PMID: 37458788 DOI: 10.1007/s00234-023-03191-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE To study the relative contributions of brain and upper cervical spinal cord compartmental atrophy to disease aggressiveness in amyotrophic lateral sclerosis (ALS). METHODS Twenty-nine ALS patients and 24 age- and gender-matched healthy controls (HC) were recruited. Disease duration and the Revised-ALS Functional Rating Scale (ALSFRS-R) at baseline, 3- and 6-months follow-up were assessed. Patients were clinically differentiated into fast (n=13) and slow (n=16) progressors according to their ALSFRS-R progression rate. Brain grey (GM) and white matter, brainstem sub-structures volumes and spinal cord cross-sectional area (SC-CSA) at C1-C2 vertebral levels were measured from a 3D-T1-weighted MRI. RESULTS Fast progressors showed significant GM, medulla oblongata and SC atrophy compared to HC (p<0.001, p=0.013 and p=0.008) and significant GM atrophy compared to slow progressors (p=0.008). GM volume correlated with the ALSFRS-R progression rate (Rho/p=-0.487/0.007), the ALSFRS-R at 3-months (Rho/p=0.622/0.002), and ALSFRS-R at 6-months (Rho/p=0.407/0.039). Medulla oblongata volume and SC-CSA correlated with the ALSFRS-R at 3-months (Rho/p=0.510/0.015 and Rho/p=0.479/0.024). MRI measures showed high performance to discriminate between fast and slow progressors. CONCLUSION Our study suggests an association between compartmental atrophy and disease aggressiveness. This result is consistent with the combination of upper and lower motor neuron degeneration as the main driver of disease worsening and severity in ALS. Our study highlights the potential of brain and spinal cord atrophy measured by MRI as biomarker of disease aggressiveness signature.
Collapse
Affiliation(s)
- Mohamed Mounir El Mendili
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.
- Centre de Résonance Magnétique Biologique et Médicale, CRMBM-CEMEREM, UMR 7339 CNRS - Aix-Marseille Université, 27 Bd Jean Moulin, 13005, Marseille, France.
| | - Annie Verschueren
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| | - Shahram Attarian
- APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| | - Aude-Marie Grapperon
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| |
Collapse
|
8
|
Hsueh S, Chao C, Chen T, Chen Y, Hsueh H, Tsai L, Wu W, Hsieh S. Brain imaging signatures in amyotrophic lateral sclerosis: Correlation with peripheral motor degeneration. Ann Clin Transl Neurol 2023; 10:1456-1466. [PMID: 37340732 PMCID: PMC10424648 DOI: 10.1002/acn3.51835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE This study aimed to explore the clinical significance of brain imaging signatures in the context of clinical neurological deficits in association with upper and lower motor neuron degeneration in amyotrophic lateral sclerosis (ALS). METHODS We performed brain MRI examinations to quantitatively evaluate (1) gray matter volume and (2) white matter tract fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD). Image-derived indices were correlated with (1) global neurological deficits of MRC muscle strength sum score, revised amyotrophic lateral sclerosis functional rating scale (ALSFRS-R), and forced vital capacity (FVC), and (2) focal scores of University of Pennsylvania Upper motor neuron score (Penn score) and the summation of compound muscle action potential Z scores (CMAP Z sum score). RESULTS There were 39 ALS patients and 32 control subjects matched for age and gender. Compared to controls, ALS patients had a lower gray matter volume in the precentral gyrus of the primary motor cortex, which was correlated with FA of corticofugal tracts. The gray matter volume of the precentral gyrus was correlated with FVC, MRC sum score, and CMAP Z sum score, while the FA of the corticospinal tract was linearly associated with CMAP Z sum score and Penn score on multivariate linear regression model. INTERPRETATION This study indicated that clinical assessment of muscle strength and routine measurements on nerve conduction studies provided surrogate markers of brain structural changes for ALS. Furthermore, these findings suggested parallel involvement of both upper and lower motor neurons in ALS.
Collapse
Affiliation(s)
- Sung‐Ju Hsueh
- Department of NeurologyNational Taiwan University Hospital Yunlin BranchDouliu CityYunlin CountyTaiwan
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Chi‐Chao Chao
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Ta‐Fu Chen
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Ya‐Fang Chen
- Department of Medical ImagingNational Taiwan University HospitalTaipeiTaiwan
| | - Hsueh‐Wen Hsueh
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
- Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Li‐Kai Tsai
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
- Department of NeurologyNational Taiwan University Hospital Hsinchu BranchZhubei CityHsinchu CountyTaiwan
| | - Wen‐Chau Wu
- Department of Medical ImagingNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Medical Device and ImagingCollege of MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Sung‐Tsang Hsieh
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
- Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
- Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipeiTaiwan
- Center of Precision MedicineNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
9
|
Castelnovo V, Canu E, De Mattei F, Filippi M, Agosta F. Basal ganglia alterations in amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1133758. [PMID: 37090799 PMCID: PMC10113480 DOI: 10.3389/fnins.2023.1133758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been associated with brain damage involving the primary motor cortices and corticospinal tracts. In the recent decades, most of the research studies in ALS have focused on extra-motor and subcortical brain regions. The aim of these studies was to detect additional biomarkers able to support the diagnosis and to predict disease progression. The involvement of the frontal cortices, mainly in ALS cases who develop cognitive and/or behavioral impairment, is amply recognized in the field. A potential involvement of fronto-temporal and fronto-striatal connectivity changes in the disease evolution has also been reported. On this latter regard, there is still a shortage of studies which investigated basal ganglia (BG) alterations and their role in ALS clinical manifestation and progression. The present review aims to provide an overview on the magnetic resonance imaging studies reporting structural and/or functional BG alterations in patients with ALS, to clarify the role of BG damage in the disease clinical evolution and to propose potential future developments in this field.
Collapse
Affiliation(s)
- Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo De Mattei
- ALS Center, SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Federica Agosta,
| |
Collapse
|
10
|
Ohdake R, Watanabe H, Kawabata K, Ogura A, Sato M, Tanaka Y, Imai K, Masuda M, Kato T, Yokoi T, Hara K, Nakamura R, Atsuta N, Nakagawa M, Katsuno M, Sobue G. Convenient Auditory-Based Language and Executive Function Test for Patients With Amyotrophic Lateral Sclerosis: A Pilot Study. Arch Clin Neuropsychol 2023; 38:57-71. [PMID: 36003060 DOI: 10.1093/arclin/acac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVE About 30%-50% of patients with amyotrophic lateral sclerosis (ALS) show cognitive impairment ranging from mild dysexecutive syndrome to frontotemporal dementia. We aimed to develop a brief cognitive test, convenient auditory-based language and executive function test (CABLET), for rapid detection of cognitive impairment in ALS, with reduced load on motor function. METHOD The CABLET comprises two tests using auditory verbal stimuli: Test 1, assessing word repetition and lexical judgment, and Test 2, evaluating verbal short-term memory and semantics knowledge. The administration time of Test 1 and Test 2 was 1 and 3-5 min, respectively. Overall, 61 patients with ALS and 46 age-, sex-, and education-matched healthy controls participated in this study. All participants underwent existing neuropsychological tests and the CABLET. We investigated the applicability of the CABLET to detect ALS with cognitive impairment (ALSci) from normal cognition. RESULTS Receiver operating characteristic analyses showed that both the CABLET total and Test 2 had good diagnostic accuracy (area under the curve [AUC]: total = 0.894, Test 2 = 0.893). Test 2 had the highest sensitivity (100% sensitivity and 71.4% specificity). No significant difference existed in the AUC between the analyses with and without age, education, and disease severity as covariates. Correlations were observed between the CABLET and established neuropsychological tests, supporting its good convergent validity. CONCLUSIONS Our findings indicated that the CABLET could be useful in identifying ALSci quickly without adjusting for confounding factors. Further validation is required to evaluate it in larger groups and compare with ALS-specific cognitive screen.
Collapse
Affiliation(s)
- Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maki Sato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Tanaka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazunori Imai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takamasa Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Aichi Medical University, Nagakute, Japan
| |
Collapse
|
11
|
Sensory Involvement in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms232415521. [PMID: 36555161 PMCID: PMC9779879 DOI: 10.3390/ijms232415521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) is pre-eminently a motor disease, the existence of non-motor manifestations, including sensory involvement, has been described in the last few years. Although from a clinical perspective, sensory symptoms are overshadowed by their motor manifestations, this does not mean that their pathological significance is not relevant. In this review, we have made an extensive description of the involvement of sensory and autonomic systems described to date in ALS, from clinical, neurophysiological, neuroimaging, neuropathological, functional, and molecular perspectives.
Collapse
|
12
|
Cortical and subcortical grey matter atrophy in Amyotrophic Lateral Sclerosis correlates with measures of disease accumulation independent of disease aggressiveness. Neuroimage Clin 2022; 36:103162. [PMID: 36067613 PMCID: PMC9460837 DOI: 10.1016/j.nicl.2022.103162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
There is a growing demand for reliable biomarkers to monitor disease progression in Amyotrophic Lateral Sclerosis (ALS) that also take the heterogeneity of ALS into account. In this study, we explored the association between Magnetic Resonance Imaging (MRI)-derived measures of cortical thickness (CT) and subcortical grey matter (GM) volume with D50 model parameters. T1-weighted MRI images of 72 Healthy Controls (HC) and 100 patients with ALS were analyzed using Surface-based Morphometry for cortical structures and Voxel-based Morphometry for subcortical Region-Of-Interest analyses using the Computational Anatomy Toolbox (CAT12). In Inter-group contrasts, these parameters were compared between patients and HC. Further, the D50 model was used to conduct subgroup-analyses, dividing patients by a) Phase of disease covered at the time of MRI-scan and b) individual overall disease aggressiveness. Finally, correlations between GM and D50 model-derived parameters were examined. Inter-group analyses revealed ALS-related cortical thinning compared to HC located mainly in frontotemporal regions and a decrease in GM volume in the left hippocampus and amygdala. A comparison of patients in different phases showed further cortical and subcortical GM atrophy along with disease progression. Correspondingly, regression analyses identified negative correlations between cortical thickness and individual disease covered. However, there were no differences in CT and subcortical GM between patients with low and high disease aggressiveness. By application of the D50 model, we identified correlations between cortical and subcortical GM atrophy and ALS-related functional disability, but not with disease aggressiveness. This qualifies CT and subcortical GM volume as biomarkers representing individual disease covered to monitor therapeutic interventions in ALS.
Collapse
|
13
|
Liu YF, Zou ZY, Cai LM, Lin JH, Zhou MX, Huang NX, Zhan C, Chen HJ. Characterizing Sensorimotor-Related Area Abnormalities in Amyotrophic Lateral Sclerosis: An Intravoxel Incoherent Motion Magnetic Resonance Imaging Study. Acad Radiol 2022; 29 Suppl 3:S141-S146. [PMID: 34481706 DOI: 10.1016/j.acra.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the microperfusion and water molecule diffusion alterations in sensorimotor-related areas in amyotrophic lateral sclerosis (ALS) using intravoxel incoherent motion (IVIM) magnetic resonance imaging. MATERIALS AND METHODS IVIM data were obtained from 43 ALS patients and 31 controls. This study employed the revised ALS Functional Rating Scale (ALSFRS-R) in evaluating disease severity. IVIM-derived metrics were calculated, including diffusion coefficient (D), pseudo-diffusion coefficient, and perfusion fraction. Conventional apparent diffusion coefficient was also computed. Atlas-based analysis was conducted to detect between-group difference in these metrics in sensorimotor-related gray/white matter areas. Spearman correlation analysis was employed to establish correlation between various metrics and ALSFRS-R. RESULTS ALS patients had perfusion fraction (× 10-3) reduction in the left presupplementary motor area (60.72 ± 16.15 vs. 71.15 ± 12.98, p = 0.016), right presupplementary motor area (61.35 ± 17.02 vs. 72.18 ± 14.22, p = 0.016), left supplementary motor area (55.73 ± 12.29 vs. 64.12 ± 9.17, p = 0.015), and right supplementary motor area (56.53 ± 11.93 vs. 63.67 ± 10.03, p = 0.020). Patients showed D (× 10-6 mm2/s) increase in a white matter tract projecting to the right ventral premotor cortex (714.20 ± 39.75 vs. 691.01 ± 24.53, p = 0.034). A negative correlation between D of right ventral premotor cortex tract and ALSFRS-R score was observed (r = -0.316, p = 0.039). CONCLUSION These findings suggest aberrant microperfusion and water molecule diffusion in the sensorimotor-related areas in ALS patients, which are associated with motor impairment in ALS.
Collapse
Affiliation(s)
- Yuan-Fen Liu
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li-Min Cai
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jia-Hui Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Min-Xiong Zhou
- College of Medical Imaging, Shang Hai University of Medicine & Health Sciences, Shanghai, China
| | - Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chuanyin Zhan
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
14
|
Riku Y, Yoshida M, Tamura T, Kamijo M, Yasui K, Kameyama T, Katsuno M, Sobue G, Iwasaki Y. Unexpected postmortem diagnoses in cases of clinically diagnosed amyotrophic lateral sclerosis. Neuropathology 2021; 41:457-467. [PMID: 34783101 DOI: 10.1111/neup.12744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 01/04/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease that is clinically and pathologically characterized by impairment of the upper and lower motor neurons. The clinical diagnosis of ALS is not always straightforward because of the lack of specific biomarkers and clinical heterogeneity. This review presents the clinical and pathological findings of four autopsied cases that had been diagnosed with ALS before death. These cases had demonstrated definite and progressive motor neuron signs and symptoms, whereas postmortem assessment revealed miscellaneous disorders, including fungal infection, paraneoplastic syndrome, and amyloidosis. Importantly, nonmotor neuron signs and symptoms, including seizures, extra-pyramidal signs, ocular movement disorders, sensory disturbance, and dysautonomia, had also been documented during the disease course of the cases in the present study. The ALS-unlike symptoms were indicative of the "true" diagnosis in each case when those symptoms were isolated from motor neuron signs/symptoms.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University, Nagoya, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Takuya Tamura
- Department of Neurology, Higashi Nagoya National Hospital, Nagoya, Japan
| | - Mikiko Kamijo
- Department of Neurology, Chubu Rosai Hospital, Nagoya, Japan
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
| | | | | | - Gen Sobue
- Aichi Medical University, Nagakute, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
15
|
Kocar TD, Müller HP, Ludolph AC, Kassubek J. Feature selection from magnetic resonance imaging data in ALS: a systematic review. Ther Adv Chronic Dis 2021; 12:20406223211051002. [PMID: 34729157 PMCID: PMC8521429 DOI: 10.1177/20406223211051002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background: With the advances in neuroimaging in amyotrophic lateral sclerosis (ALS), it has been speculated that multiparametric magnetic resonance imaging (MRI) is capable to contribute to early diagnosis. Machine learning (ML) can be regarded as the missing piece that allows for the useful integration of multiparametric MRI data into a diagnostic classifier. The major challenges in developing ML classifiers for ALS are limited data quantity and a suboptimal sample to feature ratio which can be addressed by sound feature selection. Methods: We conducted a systematic review to collect MRI biomarkers that could be used as features by searching the online database PubMed for entries in the recent 4 years that contained cross-sectional neuroimaging data of subjects with ALS and an adequate control group. In addition to the qualitative synthesis, a semi-quantitative analysis was conducted for each MRI modality that indicated which brain regions were most commonly reported. Results: Our search resulted in 151 studies with a total of 221 datasets. In summary, our findings highly resembled generally accepted neuropathological patterns of ALS, with degeneration of the motor cortex and the corticospinal tract, but also in frontal, temporal, and subcortical structures, consistent with the neuropathological four-stage model of the propagation of pTDP-43 in ALS. Conclusions: These insights are discussed with respect to their potential for MRI feature selection for future ML-based neuroimaging classifiers in ALS. The integration of multiparametric MRI including DTI, volumetric, and texture data using ML may be the best approach to generate a diagnostic neuroimaging tool for ALS.
Collapse
Affiliation(s)
- Thomas D Kocar
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| |
Collapse
|
16
|
Ogura A, Kawabata K, Watanabe H, Choy SW, Bagarinao E, Kato T, Imai K, Masuda M, Ohdake R, Hara K, Nakamura R, Atsuta N, Nakamura T, Katsuno M, Sobue G. Fiber-specific white matter analysis reflects upper motor neuron impairment in amyotrophic lateral sclerosis. Eur J Neurol 2021; 29:432-440. [PMID: 34632672 DOI: 10.1111/ene.15136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE To clarify the relationship between fiber-specific white matter changes in amyotrophic lateral sclerosis (ALS) and clinical signs of upper motor neuron (UMN) involvement, we performed a fixel-based analysis (FBA), a novel framework for diffusion-weighted imaging analysis. METHODS We enrolled 96 participants, including 48 nonfamilial ALS patients and 48 age- and sex-matched healthy controls (HCs), in this study and conducted whole-brain FBA and voxel-based morphometry analysis. We compared the fiber density (FD), fiber morphology (fiber cross-section [FC]), and a combined index of FD and FC (FDC) between the ALS and HC groups. We performed a tract-of-interest analysis to extract FD values across the significant regions in the whole-brain analysis. Then, we evaluated the associations between FD values and clinical variables. RESULTS The bilateral corticospinal tracts (CSTs) and the corpus callosum (CC) showed reduced FD and FDC in ALS patients compared with HCs (p < 0.05, familywise error-corrected), and the comparison of FCs revealed no region that was significantly different from another. Voxel-based morphometry showed cortical volume reduction in the regions, including the primary motor area. Clinical scores showed correlations with FD values in the CSTs (UMN score: rho = -0.530, p < 0.001; central motor conduction time [CMCT] in the upper limb: rho = -0.474, p = 0.008; disease duration: rho = -0.383, p = 0.007; ALS Functional Rating Scale-Revised: rho = 0.340, p = 0.018). In addition, patients whose CMCT was not calculated due to unevoked waves also showed FD reduction in the CSTs. CONCLUSIONS Our findings suggest that FD values in the CST estimated via FBA can be potentially used in evaluating UMN impairments.
Collapse
Affiliation(s)
- Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Shao Wei Choy
- Center for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Epifanio Bagarinao
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazunori Imai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Aichi Medical University, Nagakute, Japan
| |
Collapse
|
17
|
Bologna M, Truong D, Jankovic J. The etiopathogenetic and pathophysiological spectrum of parkinsonism. J Neurol Sci 2021; 433:120012. [PMID: 34642022 DOI: 10.1016/j.jns.2021.120012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/05/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Parkinsonism is a syndrome characterized by bradykinesia, rigidity, and tremor. Parkinsonism is a common manifestation of Parkinson's disease and other neurodegenerative diseases referred to as atypical parkinsonism. However, a growing body of clinical and scientific evidence indicates that parkinsonism may be part of the phenomenological spectrum of various neurological conditions to a greater degree than expected by chance. These include neurodegenerative conditions not traditionally classified as movement disorders, e.g., dementia and motor neuron diseases. In addition, parkinsonism may characterize a wide range of central nervous system diseases, e.g., autoimmune diseases, infectious diseases, cerebrospinal fluid disorders (e.g., normal pressure hydrocephalus), cerebrovascular diseases, and other conditions. Several pathophysiological mechanisms have been identified in Parkinson's disease and atypical parkinsonism. Conversely, it is not entirely clear to what extent the same mechanisms and key brain areas are also involved in parkinsonism due to a broader etiopathogenetic spectrum. We aimed to provide a comprehensive and up-to-date overview of the various etiopathogenetic and pathophysiological mechanisms of parkinsonism in a wide spectrum of neurological conditions, with a particular focus on the role of the basal ganglia involvement. The paper also highlights potential implications in the diagnostic approach and therapeutic management of patients. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Daniel Truong
- Truong Neuroscience Institute, Orange Coast Memorial Medical Center, Fountain Valley, CA, USA; Department of Neurosciences, UC Riverside, Riverside, CA, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Li H, Zhang Q, Duan Q, Jin J, Hu F, Dang J, Zhang M. Brainstem Involvement in Amyotrophic Lateral Sclerosis: A Combined Structural and Diffusion Tensor MRI Analysis. Front Neurosci 2021; 15:675444. [PMID: 34149349 PMCID: PMC8206526 DOI: 10.3389/fnins.2021.675444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction The brainstem is an important component in the pathology of amyotrophic lateral sclerosis (ALS). Although neuroimaging studies have shown multiple structural changes in ALS patients, few studies have investigated structural alterations in the brainstem. Herein, we compared the brainstem structure between patients with ALS and healthy controls. Methods A total of 33 patients with ALS and 33 healthy controls were recruited in this study. T1-weighted and diffusion tensor imaging (DTI) were acquired on a 3 Tesla magnetic resonance imaging (3T MRI) scanner. Volumetric and vertex-wised approaches were implemented to assess the differences in the brainstem’s morphological features between the two groups. An atlas-based region of interest (ROI) analysis was performed to compare the white matter integrity of the brainstem between the two groups. Additionally, a correlation analysis was used to evaluate the relationship between ALS clinical characteristics and structural features. Results Volumetric analyses showed no significant difference in the subregion volume of the brainstem between ALS patients and healthy controls. In the shape analyses, ALS patients had a local abnormal surface contraction in the ventral medulla oblongata and ventral pons. Compared with healthy controls, ALS patients showed significantly lower fractional anisotropy (FA) in the left corticospinal tract (CST) and bilateral frontopontine tracts (FPT) at the brainstem level, and higher radial diffusivity (RD) in bilateral CST and left FPT at the brainstem level by ROI analysis in DTI. Correlation analysis showed that disease severity was positively associated with FA in left CST and left FPT. Conclusion These findings suggest that the brainstem in ALS suffers atrophy, and degenerative processes in the brainstem may reflect disease severity in ALS. These findings may be helpful for further understanding of potential neural mechanisms in ALS.
Collapse
Affiliation(s)
- Haining Li
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiuli Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qianqian Duan
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaoting Jin
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fangfang Hu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingxia Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Ferraro PM, Cabona C, Meo G, Rolla-Bigliani C, Castellan L, Pardini M, Inglese M, Caponnetto C, Roccatagliata L. Age at symptom onset influences cortical thinning distribution and survival in amyotrophic lateral sclerosis. Neuroradiology 2021; 63:1481-1487. [PMID: 33660067 DOI: 10.1007/s00234-021-02681-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE The lifetime risk of developing amyotrophic lateral sclerosis (ALS) increases in the elderly, and greater age at symptom onset has been identified as a negative prognostic factor in the disease. However, the underlying neurobiological mechanisms are still poorly investigated. We hypothesized that older age at symptom onset would have been associated with greater extra-motor cortical damage contributing to worse prognosis, so we explored the relationship between age at symptom onset, cortical thinning (CT) distribution, and clinical markers of disease progression. METHODS We included 26 ALS patients and 29 healthy controls with T1-weighted magnetic resonance imaging (MRI). FreeSurfer 6.0 was used to identify regions of cortical atrophy (CA) in ALS, and to relate age at symptom onset to CT distribution. Linear regression analyses were then used to investigate whether MRI metrics of age-related damage were predictive of clinical progression. MRI results were corrected using the Monte Carlo simulation method, and regression analyses were further corrected for disease duration. RESULTS ALS patients exhibited significant CA mainly encompassing motor regions, but also involving the cuneus bilaterally and the right superior parietal cortex (p < 0.05). Older age at symptom onset was selectively associated with greater extra-motor (frontotemporal) CT, including pars opercularis bilaterally, left middle temporal, and parahippocampal cortices (p < 0.05), and CT of these regions was predictive of shorter survival (p = 0.004, p = 0.03). CONCLUSION More severe frontotemporal CT contributes to shorter survival in older ALS patients. These findings have the potential to unravel the neurobiological mechanisms linking older age at symptom onset to worse prognosis in ALS.
Collapse
Affiliation(s)
- Pilar M Ferraro
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Corrado Cabona
- Department of Neurophysiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giuseppe Meo
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Lucio Castellan
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Claudia Caponnetto
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Roccatagliata
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
20
|
Liu MY, Chen ZY, Li JF, Xiao HF, Ma L. Quantitative susceptibility-weighted imaging in amyotrophic lateral sclerosis with 3.0 T magnetic resonance imaging. J Int Med Res 2021; 49:300060521992222. [PMID: 33583226 PMCID: PMC7890729 DOI: 10.1177/0300060521992222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate alterations in phase-shift values in the gray matter of patients with amyotrophic lateral sclerosis (ALS) using susceptibility-weighted imaging (SWI). METHODS Twenty patients with definite or probable ALS and 19 age- and sex-matched healthy controls were enrolled. SWI was performed using a 3.0 T magnetic resonance imaging scanner. Phase-shift values were measured in corrected phase images using regions of interest, which were placed on the bilateral precentral gyrus, frontal cortex, caudate nucleus, globus pallidus, and putamen. RESULTS Phase-shift values of the precentral gyrus were significantly lower in ALS patients (-0.176 ± 0.050) than in the control group (-0.119 ± 0.016) on SWI. The average phase-shift values of the frontal cortex, caudate nucleus, globus pallidus, and putamen in ALS patients (-0.089 ± 0.023, -0.065 ± 0.016, -0.336 ± 0.191, and -0.227 ± 0.101, respectively) were not significantly different from those in the healthy controls (-0.885 ± 0.015, -0.079 ± 0.018, -0.329 ± 0.136, and -0.229 ± 0.083, respectively). CONCLUSIONS Compared with healthy controls, ALS patients had a lower phase-shift value in the precentral gyrus, which may be related to abnormal iron overload. Thus, SWI is a potential method for identifying ALS patients.
Collapse
Affiliation(s)
- Meng-Yu Liu
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhi-Ye Chen
- Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Jin-Feng Li
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hua-Feng Xiao
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Steinbach R, Gaur N, Roediger A, Mayer TE, Witte OW, Prell T, Grosskreutz J. Disease aggressiveness signatures of amyotrophic lateral sclerosis in white matter tracts revealed by the D50 disease progression model. Hum Brain Mapp 2021; 42:737-752. [PMID: 33103324 PMCID: PMC7814763 DOI: 10.1002/hbm.25258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous neuroimaging studies in amyotrophic lateral sclerosis (ALS) have reported links between structural changes and clinical data; however phenotypic and disease course heterogeneity have occluded robust associations. The present study used the novel D50 model, which distinguishes between disease accumulation and aggressiveness, to probe correlations with measures of diffusion tensor imaging (DTI). DTI scans of 145 ALS patients and 69 controls were analyzed using tract-based-spatial-statistics of fractional anisotropy (FA), mean- (MD), radial (RD), and axial diffusivity (AD) maps. Intergroup contrasts were calculated between patients and controls, and between ALS subgroups: based on (a) the individual disease covered (Phase I vs. II) or b) patients' disease aggressiveness (D50 value). Regression analyses were used to probe correlations with model-derived parameters. Case-control comparisons revealed widespread ALS-related white matter pathology with decreased FA and increased MD/RD. These affected pathways showed also correlations with the accumulated disease for increased MD/RD, driven by the subgroup of Phase I patients. No significant differences were noted between patients in Phase I and II for any of the contrasts. Patients with high disease aggressiveness (D50 < 30 months) displayed increased AD/MD in bifrontal and biparietal pathways, which was corroborated by significant voxel-wise regressions with D50. Application of the D50 model revealed associations between DTI measures and ALS pathology in Phase I, representing individual disease accumulation early in disease. Patients' overall disease aggressiveness correlated robustly with the extent of DTI changes. We recommend the D50 model for studies developing/validating neuroimaging or other biomarkers for ALS.
Collapse
Affiliation(s)
- Robert Steinbach
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Nayana Gaur
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | | | - Thomas E. Mayer
- Department of NeuroradiologyJena University HospitalJenaGermany
| | - Otto W. Witte
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Center for Healthy AgeingJena University HospitalJenaGermany
| | - Tino Prell
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Center for Healthy AgeingJena University HospitalJenaGermany
| | - Julian Grosskreutz
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Center for Healthy AgeingJena University HospitalJenaGermany
| |
Collapse
|
22
|
Brain Cortical Complexity Alteration in Amyotrophic Lateral Sclerosis: A Preliminary Fractal Dimensionality Study. BIOMED RESEARCH INTERNATIONAL 2021; 2020:1521679. [PMID: 32280675 PMCID: PMC7115147 DOI: 10.1155/2020/1521679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Objective Fractal dimensionality (FD) analysis provides a quantitative description of brain structural complexity. The application of FD analysis has provided evidence of amyotrophic lateral sclerosis- (ALS-) related white matter degeneration. This study is aimed at evaluating, for the first time, FD alterations in a gray matter in ALS and determining its association with clinical parameters. Materials and Methods. This study included 22 patients diagnosed with ALS and 20 healthy subjects who underwent high-resolution T1-weighted imaging scanning. Disease severity was assessed using the revised ALS Functional Rating Scale (ALSFRS-R). The duration of symptoms and rate of disease progression were also assessed. The regional FD value was calculated by a computational anatomy toolbox and compared among groups. The relationship between cortical FD values and clinical parameters was evaluated by Spearman correlation analysis. Results ALS patients showed decreased FD values in the left precentral gyrus and central sulcus, left circular sulcus of insula (superior segment), left cingulate gyrus and sulcus (middle-posterior part), right precentral gyrus, and right postcentral gyrus. The FD values in the right precentral gyrus were positively correlated to ALSFRS-R scores (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression ( Conclusions Our results suggest an ALS-related reduction in structural complexity involving the gray matter. FD analysis may shed more light on the pathophysiology of ALS.
Collapse
|
23
|
Canosa A, Moglia C, Manera U, Vasta R, Torrieri MC, Arena V, D'Ovidio F, Palumbo F, Zucchetti JP, Iazzolino B, Peotta L, Calvo A, Pagani M, Chiò A. Metabolic brain changes across different levels of cognitive impairment in ALS: a 18F-FDG-PET study. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-323876. [PMID: 33229451 DOI: 10.1136/jnnp-2020-323876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To identify the metabolic changes related to the various levels of cognitive deficits in amyotrophic lateral sclerosis (ALS) using 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG-PET) imaging. METHODS 274 ALS patients underwent neuropsychological assessment and brain 18F-FDG-PET at diagnosis. According to the criteria published in 2017, cognitive status was classified as ALS with normal cognition (ALS-Cn, n=132), ALS with behavioural impairment (ALS-Bi, n=66), ALS with cognitive impairment (ALS-Ci, n=30), ALS with cognitive and behavioural impairment (ALS-Cbi, n=26), ALS with frontotemporal dementia (ALS-FTD, n=20). We compared each group displaying some degree of cognitive and/or behavioural impairment to ALS-Cn patients, including age at PET, sex and ALS Functional Rating Scale-Revised as covariates. RESULTS We identified frontal lobe relative hypometabolism in cognitively impaired patients that resulted more extensive and significant across the continuum from ALS-Ci, through ALS-Cbi, to ALS-FTD. ALS-FTD patients also showed cerebellar relative hypermetabolism. ALS-Bi patients did not show any difference compared with ALS-Cn. CONCLUSIONS These data support the concept that patients with cognitive impairment have a more widespread neurodegenerative process compared with patients with a pure motor disease: the more severe the cognitive impairment, the more diffuse the metabolic changes. Otherwise, metabolic changes related to pure behavioural impairment need further characterisation.
Collapse
Affiliation(s)
- Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
- SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Cristina Moglia
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
- SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
| | - Rosario Vasta
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
| | - Maria Claudia Torrieri
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
| | - Vincenzo Arena
- Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A, Turin, Italy
| | - Fabrizio D'Ovidio
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
| | - Francesca Palumbo
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
| | - Jean Pierre Zucchetti
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
| | - Barbara Iazzolino
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
| | - Laura Peotta
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
| | - Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
- SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, ALS Centre, Turin, Italy
- SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy
| |
Collapse
|
24
|
Trojsi F, Di Nardo F, Siciliano M, Caiazzo G, Passaniti C, D'Alvano G, Ricciardi D, Russo A, Bisecco A, Lavorgna L, Bonavita S, Cirillo M, Esposito F, Tedeschi G. Resting state functional MRI brain signatures of fast disease progression in amyotrophic lateral sclerosis: a retrospective study. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:117-126. [PMID: 32885698 DOI: 10.1080/21678421.2020.1813306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Advanced neuroimaging techniques may offer the potential to monitor disease spreading in amyotrophic lateral sclerosis (ALS). We aim to investigate brain functional and structural magnetic resonance imaging (MRI) changes in a cohort of ALS patients, examined at diagnosis and clinically monitored over 18 months, in order to early discriminate fast progressors (FPs) from slow progressors (SPs). Methods: Resting state functional MRI (RS-fMRI), diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) analyses were performed at baseline in 54 patients with ALS and 22 HCs. ALS patients were classified a posteriori into FPs (n = 25) and SPs (n = 29) based on changes in Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised score from baseline to the 18-month assessment (ΔALSFRS-R), applying a k-means clustering algorithm. Results: At diagnosis, when compared to HCs, ALS patients showed reduced functional connectivity in both motor and extra-motor networks. When compared to SPs, at baseline, FPs showed decreased function connectivity in paracentral lobule (sensorimotor network), precuneus (in the default mode network), middle frontal gyri (frontoparietal networks) and increased functional connectivity in insular cortices (salience network). Structural analyses did not reveal significant differences in gray and white matter damage by comparing FPs to SPs. Receiver operating characteristic (ROC) curve analysis showed that functional connectivity increase in the left insula at baseline best discriminated FPs and SPs (area under the curve 78%). Conclusions: Impairment of extra-motor networks may appear early in ALS patients with faster disease progression, suggesting that a more widespread functional connectivity damage may be an indicator of poorer prognosis.
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.,Department of Psychology, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy, and
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carla Passaniti
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.,Department of Psychology, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy, and
| | - Giulia D'Alvano
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Dario Ricciardi
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Lavorgna
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences; MRI Research Center SUN-FISM, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
25
|
Steinbach R, Batyrbekova M, Gaur N, Voss A, Stubendorff B, Mayer TE, Gaser C, Witte OW, Prell T, Grosskreutz J. Applying the D50 disease progression model to gray and white matter pathology in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2019; 25:102094. [PMID: 31896467 PMCID: PMC6940701 DOI: 10.1016/j.nicl.2019.102094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/07/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Abstract
The D50 disease progression model well characterized a cross-sectional ALS cohort. VBM reveled ALS-related widespread gray and white matter density decreases. A spread of structural alterations occurs along with D50 model derived disease phases. White-matter alterations were associated with higher disease aggressiveness.
Therapeutic management and research in Amyotrophic Laterals Sclerosis (ALS) have been limited by the substantial heterogeneity in progression and anatomical spread that are endemic of the disease. Neuroimaging biomarkers represent powerful additions to the current monitoring repertoire but have yielded inconsistent associations with clinical scores like the ALS functional rating scale. The D50 disease progression model was developed to address limitations with clinical indices and the difficulty obtaining longitudinal data in ALS. It yields overall disease aggressiveness as time taken to reach halved functionality (D50); individual disease covered in distinct phases; and calculated functional state and calculated functional loss as acute descriptors of local disease activity. It greatly reduces the noise of the ALS functional rating scale and allows the comparison of highly heterogeneous disease and progression subtypes. In this study, we performed Voxel-Based Morphometry for 85 patients with ALS (60.1 ± 11.5 years, 36 female) and 62 healthy controls. Group-wise comparisons were performed separately for gray matter and white matter using ANCOVA testing with threshold-free cluster enhancement. ALS-related widespread gray and white matter density decreases were observed in the bilateral frontal and temporal lobes (p < 0.001, family-wise error corrected). We observed a progressive spread of structural alterations along the D50-derived phases, that were primarily located in frontal, temporal and occipital gray matter areas, as well as in supratentorial neuronal projections (p < 0.001 family-wise error corrected). ALS patients with higher overall disease aggressiveness (D50 < 30 months) showed a distinct pattern of supratentorial white matter density decreases relative to patients with lower aggressiveness; no significant differences were observed for gray matter density (p < 0.001 family-wise error corrected). The application of the D50 disease progression model separates measures of disease aggressiveness from disease accumulation. It revealed a strong correlation between disease phases and in-vivo measures of cerebral structural integrity. This study underscores the proposed corticofugal spread of cerebral pathology in ALS. We recommend application of the D50 model in studies linking clinical data with neuroimaging correlates.
Collapse
Affiliation(s)
- Robert Steinbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Meerim Batyrbekova
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nayana Gaur
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Annika Voss
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Thomas E Mayer
- Department of Neuroradiology, Jena University Hospital, Jena, Germany
| | - Christian Gaser
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Tino Prell
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| |
Collapse
|
26
|
Vázquez-Costa JF, Carratalà-Boscà S, Tembl JI, Fornés-Ferrer V, Pérez-Tur J, Martí-Bonmatí L, Sevilla T. The width of the third ventricle associates with cognition and behaviour in motor neuron disease. Acta Neurol Scand 2019; 139:118-127. [PMID: 30183086 DOI: 10.1111/ane.13022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES An enlarged width of the third ventricle (WTV) has been described in amyotrophic lateral sclerosis (ALS) patients, although its clinical meaning is unknown. The aims of this study were to evaluate the contribution of demographical, clinical and genetic factors to the WTV in different motor neuron disease (MND) phenotypes and to assess its brain structural correlates. MATERIALS AND METHODS The WTV was measured by transcranial ultrasound in 107 MND patients (82 diagnosed with classical ALS, 16 with progressive muscular atrophy and 9 with primary lateral sclerosis) and 25 controls. Genetic analysis, and neurological and neuropsychological examinations were performed in patients. Brain volumetric analysis of MR images was obtained in 85 patients. The association of WTV with demographical, clinical, genetic and neuropsychological variables as well as with brain volumes was assessed by multivariable models. RESULTS Eighteen patients were diagnosed with genetic MND and 42.3% of patients showed executive or behavioural impairment (EBI). MND patients showed larger WTV than controls. The WTV was significantly associated with age, spinal onset and the presence of EBI, but not with the genetic background, the phenotype or disability. Greater WTV was also associated with reduced subcortical grey matter volume, but not with the cortical or the white matter volume. CONCLUSIONS The enlargement of the WTV found in the different MND phenotypes is attributable to the subcortical grey matter atrophy and is associated with cognitive and behavioural impairment. Larger longitudinal studies are needed to determine its role as biomarker in MND patients with frontotemporal dementia.
Collapse
Affiliation(s)
- Juan F. Vázquez-Costa
- Neuromuscular Research Unit; Instituto de Investigación Sanitaria la Fe (IIS La Fe); Valencia Spain
- ALS Unit, Department of Neurology; Hospital Universitario y Politécnico La Fe; Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Valencia Spain
| | - Sara Carratalà-Boscà
- Department of Radiology and Biomedical Imaging Research Group GIBI230; Hospital Universitario y Politécnico La Fe and Instituto de Investigación Sanitaria la Fe; Valencia Spain
- Multiple Sclerosis and Neural Regeneration Research Group; Hospital Universitario y Politécnico La Fe; Valencia Spain
| | - José I. Tembl
- Neurosonology Laboratory, Department of Neurology; Hospital Universitario y Politécnico La Fe; Valencia Spain
| | - Victoria Fornés-Ferrer
- Biostatistics Unit; Instituto de Investigación Sanitaria la Fe (IIS La Fe); Valencia Spain
| | - Jordi Pérez-Tur
- Laboratory of Molecular Genetics; Institut de Biomedicina de València-CSIC; Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED); Valencia Spain
- Unidad mixta de Neurología y Genética; Instituto de Investigación Sanitaria la Fe (IIS La Fe); Valencia Spain
| | - Luis Martí-Bonmatí
- Department of Radiology and Biomedical Imaging Research Group GIBI230; Hospital Universitario y Politécnico La Fe and Instituto de Investigación Sanitaria la Fe; Valencia Spain
| | - Teresa Sevilla
- Neuromuscular Research Unit; Instituto de Investigación Sanitaria la Fe (IIS La Fe); Valencia Spain
- ALS Unit, Department of Neurology; Hospital Universitario y Politécnico La Fe; Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Valencia Spain
- Department of Medicine; University of Valencia; Valencia Spain
| |
Collapse
|
27
|
Radakovic R, Puthusseryppady V, Flanagan E, Kiernan MC, Mioshi E, Hornberger M. Frontostriatal grey matter atrophy in amyotrophic lateral sclerosis A visual rating study. Dement Neuropsychol 2018; 12:388-393. [PMID: 30546849 PMCID: PMC6289478 DOI: 10.1590/1980-57642018dn12-040008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterised by frontostriatal grey matter changes similar to those in frontotemporal dementia (FTD). However, these changes are usually detected at a group level, and simple visual magnetic resonance imaging (MRI) cortical atrophy scales may further elucidate frontostriatal changes in ALS.
Collapse
Affiliation(s)
- Ratko Radakovic
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK.,Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | | | - Emma Flanagan
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | | | - Eneida Mioshi
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Michael Hornberger
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
28
|
Zhang Y, Qiu T, Yuan X, Zhang J, Wang Y, Zhang N, Zhou C, Luo C, Zhang J. Abnormal topological organization of structural covariance networks in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2018; 21:101619. [PMID: 30528369 PMCID: PMC6411656 DOI: 10.1016/j.nicl.2018.101619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/03/2018] [Accepted: 11/29/2018] [Indexed: 01/12/2023]
Abstract
Neuroimaging studies of patients with amyotrophic lateral sclerosis (ALS) have shown widespread alterations in structure, function, and connectivity in both motor and non-motor brain regions, suggesting multi-systemic neurobiological abnormalities that might impact large-scale brain networks. Here, we examined the alterations in the topological organization of structural covariance networks of ALS patients (N = 60) compared with normal controls (N = 60). We found that structural covariance networks of ALS patients showed a consistent rearrangement towards a regularized architecture evidenced by increased path length, clustering coefficient, small-world index, and modularity, as well as decreased global efficiency, suggesting inefficient global integration and increased local segregation. Locally, ALS patients showed decreased nodal degree and betweenness in the gyrus rectus and/or Heschl's gyrus, and increased betweenness in the supplementary motor area, triangular part of the inferior frontal gyrus, supramarginal gyrus and posterior cingulate cortex. In addition, we identified a different number and distribution of hubs in ALS patients, showing more frontal and subcortical hubs than in normal controls. In conclusion, we reveal abnormal topological organization of structural covariance networks in ALS patients, and provide network-level evidence for the concept that ALS is a multisystem disorder with a cerebral involvement extending beyond the motor areas.
Collapse
Affiliation(s)
- Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Ting Qiu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xinru Yuan
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jinlei Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yue Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Na Zhang
- School of Mathematical Sciences, University of Jinan, Jinan 250022, Shandong Province, PR China
| | - Chaoyang Zhou
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Chunxia Luo
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400030, PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400044, PR China.
| |
Collapse
|
29
|
Masuda M, Watanabe H, Tanaka Y, Ohdake R, Ogura A, Yokoi T, Imai K, Kawabata K, Riku Y, Hara K, Nakamura R, Atsuta N, Katsuno M, Sobue G. Age-related impairment in Addenbrooke's cognitive examination revised scores in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:578-584. [PMID: 30379106 DOI: 10.1080/21678421.2018.1510009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Older age is thought to be a risk factor for cognitive impairment in amyotrophic lateral sclerosis (ALS). However, very few clinical studies have investigated this relationship using sufficient numbers of healthy controls that correspond to each generation. The purpose of this study was to determine the age-related changes of Addenbrooke's Cognitive Examination-Revised (ACE-R) score in ALS patients by comparing healthy controls of various ages. METHODS 131 ALS patients (86 males, 45 females; mean age: 64.8 ± 10.2; mean education: 12.5 ± 2.7) and 151 age-, gender-, and education-matched healthy controls were enrolled. We applied ACE-R, which could evaluate not only global cognition but five cognitive subdomains that included orientation/attention, memory, verbal fluency, language, and visuospatial ability. RESULTS ALS patients had significantly lower total and subdomain scores of ACE-R than healthy controls. Multiple regression analysis suggested that age at examination and age at onset had significant influence on ACE-R scores. When we divided ALS patients and healthy controls into 4 groups according to age at examination for ALS, total and each subdomain scores were significantly lower with age, particularly in the older-middle and the oldest group (66.31 years or more) of ALS compared with healthy controls. Locally weighted scatterplot smoothing analysis supported that these reductions of ACE-R total and subdomain scores in ALS patients were more accelerated by approximately 60 years as compared with healthy controls. CONCLUSION ALS patients showed accelerated age-related ACE-R score reduction beyond normal ageing processes.
Collapse
Affiliation(s)
- Michihito Masuda
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Hirohisa Watanabe
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan.,b Brain and Mind Research Center, Nagoya University , Nagoya , Japan
| | - Yasuhiro Tanaka
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan.,b Brain and Mind Research Center, Nagoya University , Nagoya , Japan
| | - Reiko Ohdake
- b Brain and Mind Research Center, Nagoya University , Nagoya , Japan
| | - Aya Ogura
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Takamasa Yokoi
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Kazunori Imai
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Kazuya Kawabata
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yuichi Riku
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Kazuhiro Hara
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Ryoichi Nakamura
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Naoki Atsuta
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Masahisa Katsuno
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Gen Sobue
- b Brain and Mind Research Center, Nagoya University , Nagoya , Japan
| |
Collapse
|
30
|
Mazón M, Vázquez Costa JF, Ten-Esteve A, Martí-Bonmatí L. Imaging Biomarkers for the Diagnosis and Prognosis of Neurodegenerative Diseases. The Example of Amyotrophic Lateral Sclerosis. Front Neurosci 2018; 12:784. [PMID: 30410433 PMCID: PMC6209630 DOI: 10.3389/fnins.2018.00784] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
The term amyotrophic lateral sclerosis (ALS) comprises a heterogeneous group of fatal neurodegenerative disorders of largely unknown etiology characterized by the upper motor neurons (UMN) and/or lower motor neurons (LMN) degeneration. The development of brain imaging biomarkers is essential to advance in the diagnosis, stratification and monitoring of ALS, both in the clinical practice and clinical trials. In this review, the characteristics of an optimal imaging biomarker and common pitfalls in biomarkers evaluation will be discussed. Moreover, the development and application of the most promising brain magnetic resonance (MR) imaging biomarkers will be reviewed. Finally, the integration of both qualitative and quantitative multimodal brain MR biomarkers in a structured report will be proposed as a support tool for ALS diagnosis and stratification.
Collapse
Affiliation(s)
- Miguel Mazón
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Juan Francisco Vázquez Costa
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
- ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Amadeo Ten-Esteve
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Luis Martí-Bonmatí
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| |
Collapse
|
31
|
Bao Y, Yang L, Chen Y, Zhang B, Li H, Tang W, Geng D, Li Y. Radial diffusivity as an imaging biomarker for early diagnosis of non-demented amyotrophic lateral sclerosis. Eur Radiol 2018; 28:4940-4948. [PMID: 29948064 DOI: 10.1007/s00330-018-5506-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To explore the sensitivity of potential DTI-based biomarkers in detecting microstructural changes for whole-brain white matter in early stage amyotrophic lateral sclerosis (ALS), analyze the relationship between the DTI indices and disease status, and further clarify potential brain regions for disease monitoring and clinical assessment. METHODS Thirty-three non-demented ALS patients and 32 age- and gender-matched subjects participated in this study. DTI data were acquired via 3.0T MRI scanner. Maps of diffusion-related indices including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were obtained. Tract-based spatial statistics (TBSS) were used to investigate whole-brain white matter changes of each index. Correlation analyses between both brain-wide and volume-of-interest (VOI)-wide white matter alterations and clinical factors including ALSFRS-R scores, disease duration, and progression rate were performed. RESULTS Compared to healthy subjects, ALS patients showed significantly increased RD, MD and reduced FA, mainly along the corticospinal tract (CST) and the body of corpus callosum (CC). Increases in RD were broader than decreases in FA, in CST of both hemispheres. Meanwhile, involvement of several extra-motor regions was also revealed by RD. Significant positive correlation between ALSFRS-R scores and FA, negative correlation between ALSFRS-R and RD were found in left CST. CONCLUSIONS RD may be the most sensitive biomarker for the detection of early demyelination of white matter. Both RD and FA may serve as objective biomarkers for disease severity assessment. CST may be the most affected brain region in non-demented ALS. KEY POINTS • Changes in RD were broader than those in FA in bilateral CST. • Involvement of extra-motor regions was uncovered by RD. • FA and RD in CST were related to ALSFRS-R scores.
Collapse
Affiliation(s)
- Yifang Bao
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Liqin Yang
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Yan Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Biyun Zhang
- Department of Radiotherapy, Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China. .,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China. .,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Revisiting the concept of amyotrophic lateral sclerosis as a multisystems disorder of limited phenotypic expression. Curr Opin Neurol 2018; 30:599-607. [PMID: 28914734 DOI: 10.1097/wco.0000000000000488] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The current review will examine the contemporary evidence that amyotrophic lateral sclerosis (ALS) is a syndrome in which the unifying feature is a progressive loss of upper and lower motor neuron function. RECENT FINDINGS Although ALS is traditionally viewed as a neurodegenerative disorder affecting the motor neurons, there is considerable phenotypic heterogeneity and widespread involvement of the central nervous system. A broad range of both causative and disease modifying genetic variants are associated with both sporadic and familial forms of ALS. A significant proportion of ALS patients have an associated frontotemporal dysfunction which can be a harbinger of a significantly shorter survival and for which there is increasing evidence of a fundamental disruption of tau metabolism in those affected individuals. Although the traditional neuropathology of the degenerating motor neurons in ALS is that of neuronal cytoplasmic inclusions composed neuronal intermediate filaments, the presence of neuronal cytoplasmic inclusions composed of RNA binding proteins suggests a key role for RNA dysmetabolism in the pathogenesis of ALS. SUMMARY ALS is a complex multisystem neurodegenerative syndrome with marked heterogeneity at not only the level of clinical expression, but also etiologically.
Collapse
|
33
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic serum biomarkers for neuromuscular diseases. Expert Rev Proteomics 2018; 15:277-291. [DOI: 10.1080/14789450.2018.1429923] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn, Germany
| | | | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
34
|
Grosskreutz J. 'It's the progression, doctor': what patients with motor neurone disease really are interested in. J Neurol Neurosurg Psychiatry 2017; 88:897. [PMID: 28754667 PMCID: PMC5740535 DOI: 10.1136/jnnp-2017-316001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 02/09/2017] [Accepted: 05/17/2017] [Indexed: 11/06/2022]
|
35
|
Haulcomb MM, Meadows RM, Miller WM, McMillan KP, Hilsmeyer MJ, Wang X, Beaulieu WT, Dickinson SL, Brown TJ, Sanders VM, Jones KJ. Locomotor analysis identifies early compensatory changes during disease progression and subgroup classification in a mouse model of amyotrophic lateral sclerosis. Neural Regen Res 2017; 12:1664-1679. [PMID: 29171432 PMCID: PMC5696848 DOI: 10.4103/1673-5374.217346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis is a motoneuron degenerative disease that is challenging to diagnose and presents with considerable variability in survival. Early identification and enhanced understanding of symptomatic patterns could aid in diagnosis and provide an avenue for monitoring disease progression. Use of the mSOD1G93A mouse model provides control of the confounding environmental factors and genetic heterogeneity seen in amyotrophic lateral sclerosis patients, while investigating underlying disease-induced changes. In the present study, we performed a longitudinal behavioral assessment paradigm and identified an early hindlimb symptom, resembling the common gait abnormality foot drop, along with an accompanying forelimb compensatory mechanism in the mSOD1G93A mouse. Following these initial changes, mSOD1 mice displayed a temporary hindlimb compensatory mechanism resembling an exaggerated steppage gait. As the disease progressed, these compensatory mechanisms were not sufficient to sustain fundamental locomotor parameters and more severe deficits appeared. We next applied these initial findings to investigate the inherent variability in B6SJL mSOD1G93A survival. We identified four behavioral variables that, when combined in a cluster analysis, identified two subpopulations with different disease progression rates: a fast progression group and a slow progression group. This behavioral assessment paradigm, with its analytical approaches, provides a method for monitoring disease progression and detecting mSOD1 subgroups with different disease severities. This affords researchers an opportunity to search for genetic modifiers or other factors that likely enhance or slow disease progression. Such factors are possible therapeutic targets with the potential to slow disease progression and provide insight into the underlying pathology and disease mechanisms.
Collapse
Affiliation(s)
- Melissa M Haulcomb
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Rena M Meadows
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN; Program in Medical Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Whitney M Miller
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Kathryn P McMillan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - MeKenzie J Hilsmeyer
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xuefu Wang
- Department of Statistics, Indiana University, Bloomington, IN, USA
| | | | - Stephanie L Dickinson
- Department of Statistics, Indiana University, Bloomington, IN; Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Todd J Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Virginia M Sanders
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kathryn J Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|