1
|
Erichsen PA, Henriksen EE, Nielsen JE, Ejlerskov P, Simonsen AH, Toft A. Immunological Fluid Biomarkers in Frontotemporal Dementia: A Systematic Review. Biomolecules 2025; 15:473. [PMID: 40305176 PMCID: PMC12025258 DOI: 10.3390/biom15040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 05/02/2025] Open
Abstract
Dysregulated immune activation plays a key role in the pathogenesis of neurodegenerative diseases, including frontotemporal dementia (FTD). This study reviews immunological biomarkers associated with FTD and its subtypes. A systematic search of PubMed and Web of Science was conducted for studies published before 1 January 2025, focusing on immunological biomarkers in CSF or blood from FTD patients with comparisons to healthy or neurological controls. A total of 124 studies were included, involving 6686 FTD patients and 202 immune biomarkers. Key findings include elevated levels of GFAP and MCP1/CCL2 in both CSF and blood and consistently increased CHIT1 and YKL-40 in CSF. Complement proteins from the classical activation pathway emerged as promising targets. Distinct immune markers were found to differentiate FTD from Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), with GFAP, SPARC, and SPP1 varying between FTD and AD and IL-15, HERV-K, NOD2, and CHIT1 differing between FTD and ALS. A few markers, such as Galectin-3 and PGRN, distinguished FTD subtypes. Enrichment analysis highlighted IL-10 signaling and immune cell chemotaxis as potential pathways for further exploration. This study provides an overview of immunological biomarkers in FTD, emphasizing those most relevant for future research on immune dysregulation in FTD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Anders Toft
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Rigshospitalet, 2100 Copenhagen, Denmark; (P.A.E.); (E.E.H.); (J.E.N.); (P.E.); (A.H.S.)
| |
Collapse
|
2
|
Cao Y, Xu Y, Cao M, Chen N, Zeng Q, Lai MKP, Fan D, Sethi G, Cao Y. Fluid-based biomarkers for neurodegenerative diseases. Ageing Res Rev 2025; 108:102739. [PMID: 40122396 DOI: 10.1016/j.arr.2025.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Neurodegenerative diseases, such as Alzheimer's Disease (AD), Multiple Sclerosis (MS), Parkinson's Disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are increasingly prevalent as global populations age. Fluid biomarkers, derived from cerebrospinal fluid (CSF), blood, saliva, urine, and exosomes, offer a promising solution for early diagnosis, prognosis, and disease monitoring. These biomarkers can reflect critical pathological processes like amyloid-beta (Aβ) deposition, tau protein hyperphosphorylation, α-syn misfolding, TDP-43 mislocalization and aggregation, and neuronal damage, enabling detection long before clinical symptoms emerge. Recent advances in blood-based biomarkers, particularly plasma Aβ, phosphorylated tau, and TDP-43, have shown diagnostic accuracy equivalent to CSF biomarkers, offering more accessible testing options. This review discusses the current challenges in fluid biomarker research, including variability, standardization, and sensitivity issues, and explores how combining multiple biomarkers with clinical symptoms improves diagnostic reliability. Ethical considerations, future directions involving extracellular vehicles (EVs), and the integration of artificial intelligence (AI) are also highlighted. Continued research efforts will be key to overcoming these obstacles, enabling fluid biomarkers to become crucial tools in personalized medicine for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Yifei Xu
- Institute of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Nan Chen
- Institute of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Qingling Zeng
- Institute of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore
| | - Dahua Fan
- Institute of Maternal-Fetal Medicine,Shunde Women and Children's Hospital, Guangdong Medical University, Foshan 528300, China.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
| |
Collapse
|
3
|
Sheth U, Öijerstedt L, Heckman MG, White LJ, Heuer HW, Lario Lago A, Forsberg LK, Faber KM, Foroud TM, Rademakers R, Ramos EM, Appleby BS, Bozoki AC, Darby RR, Dickerson BC, Domoto-Reilly K, Galasko DR, Ghoshal N, Graff-Radford NR, Grant IM, Hales CM, Hsiung GYR, Huey ED, Irwin D, Kwan JY, Litvan I, Mackenzie IR, Masdeu JC, Mendez MF, Onyike CU, Pascual B, Pressman PS, Roberson ED, Snyder A, Tartaglia MC, Seeley WW, Dickson DW, Rosen HJ, Boeve BF, Boxer AL, Petrucelli L, Gendron TF. Comprehensive cross-sectional and longitudinal comparisons of plasma glial fibrillary acidic protein and neurofilament light across FTD spectrum disorders. Mol Neurodegener 2025; 20:30. [PMID: 40075459 PMCID: PMC11905702 DOI: 10.1186/s13024-025-00821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Therapeutic development for frontotemporal dementia (FTD) is hindered by the lack of biomarkers that inform susceptibility/risk, prognosis, and the underlying causative pathology. Blood glial fibrillary acidic protein (GFAP) has garnered attention as a FTD biomarker. However, investigations of GFAP in FTD have been hampered by symptomatic and histopathologic heterogeneity and small cohort sizes contributing to inconsistent findings. Therefore, we evaluated plasma GFAP as a FTD biomarker and compared its performance to that of neurofilament light (NfL) protein, a leading FTD biomarker. METHODS We availed ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study resources to conduct a comprehensive cross-sectional and longitudinal examination of the susceptibility/risk, prognostic, and predictive performance of GFAP and NfL in the largest series of well-characterized presymptomatic FTD mutation carriers and participants with sporadic or familial FTD syndromes. Utilizing single molecule array technology, we measured GFAP and NfL in plasma from 161 controls, 127 presymptomatic mutation carriers, 702 participants with a FTD syndrome, and 67 participants with mild behavioral and/or cognitive changes. We used multivariable linear regression and Cox proportional hazard models adjusted for co-variates to examine the biomarker utility of baseline GFAP and NfL concentrations or their rates of change. RESULTS Compared to controls, GFAP and NfL were elevated in each FTD syndrome but GFAP, unlike NfL, poorly discriminated controls from participants with mild symptoms. Similarly, both baseline GFAP and NfL were higher in presymptomatic mutation carriers who later phenoconverted, but NfL better distinguished non-converters from phenoconverters. We additionally observed that GFAP and NfL were associated with disease severity indicators and survival, but NfL far outperformed GFAP. Nevertheless, we validated findings that the GFAP/NfL ratio may discriminate frontotemporal lobar degeneration with tau versus TDP-43 pathology. CONCLUSIONS Our head-to-head comparison of plasma GFAP and NfL as biomarkers for FTD indicate that NfL consistently outmatched GFAP as a prognostic and predictive biomarker for participants with a FTD syndrome, and as a susceptibility/risk biomarker for people at genetic risk of FTD. Our findings underscore the need to include leading biomarkers in investigations evaluating new biomarkers if the field is to fully ascertain their performance and clinical value.
Collapse
Affiliation(s)
- Udit Sheth
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Linn Öijerstedt
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Launia J White
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Hilary W Heuer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 91358, USA
| | - Argentina Lario Lago
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 91358, USA
| | - Leah K Forsberg
- Department of Neurology, Mayo Clinic, 200 First St, SW, Rochester, MN, 55905, USA
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, The National Centralized Repository for Alzheimer's Disease and Related Dementias, 351 W. 10Th St TK-217, Indianapolis, IN, 46202, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, The National Centralized Repository for Alzheimer's Disease and Related Dementias, 351 W. 10Th St TK-217, Indianapolis, IN, 46202, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- VIB Center for Molecular Neurology, VIB, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Reed Neurological Research Center, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Brian S Appleby
- Department of Neurology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - R Ryan Darby
- Department of Neurology, Vanderbilt University, 1161 21St Ave S, Nashville, TN, 37212, USA
| | - Bradford C Dickerson
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Boston, MA, 02129, USA
| | - Kimiko Domoto-Reilly
- Department of Neurology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195-6465, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California, 9500 Gilman Drive, La Jolla, CA, 92037-0948, USA
| | - Nupur Ghoshal
- Departments of Neurology and Psychiatry, Washington University School of Medicine, Washington University, 660 South Euclid, St. Louis, MO, 63110, USA
| | - Neill R Graff-Radford
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Ian M Grant
- Department of Neurology, Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern Feinberg School of Medicine, 300 E. Superior, Tarry 8-715, Chicago, IL, 60610, USA
| | - Chadwick M Hales
- Center for Neurodegenerative Disease, Department of Neurology, Emory University School of Medicine and Emory, 12 Executive Park Drive, Atlanta, GA, 30329, USA
| | - Ging-Yuek Robin Hsiung
- Division of Neurology, University of British Columbia, S151-2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Edward D Huey
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - David Irwin
- Department of Neurology and Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Justin Y Kwan
- Disorders and Stroke, National Institute of Neurological, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| | - Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Joseph C Masdeu
- Department of Neurology, Houston Methodist Neurological Institute, Weill Cornell Medicine, 6560 Fannin St, Houston, TX, 77030, USA
| | - Mario F Mendez
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Reed Neurological Research Center, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Belen Pascual
- Department of Neurology, Houston Methodist Neurological Institute, Weill Cornell Medicine, 6560 Fannin St, Houston, TX, 77030, USA
| | - Peter S Pressman
- Department of Neurology, University of Colorado School of Medicine, 12631 East 17Th Avenue, Aurora, CO, 80045, USA
- Layton Aging and Alzheimer's Disease Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35233, USA
| | - Allison Snyder
- Disorders and Stroke, National Institute of Neurological, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - M Carmela Tartaglia
- Division of Neurology, Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 6 Queen's Park Crescent West, Third Floor, Toronto, ON, M5S 3H2, Canada
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 91358, USA
- Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 91358, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, 200 First St, SW, Rochester, MN, 55905, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 91358, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
4
|
Khorshidi Z, Adibi I, Ghasemi M. Association between cerebrospinal fluid chitotriosidase level and amyotrophic lateral sclerosis: a systematic review. Horm Mol Biol Clin Investig 2025; 46:13-19. [PMID: 39344189 DOI: 10.1515/hmbci-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION One of the fatal and debilitating neurodegenerative diseases is amyotrophic lateral sclerosis (ALS). Increasing age is one of the risk factors of ALS. Considering that the elderly population in the world is increasing, it is very important to identify useful and effective diagnostic and treatment methods. The purpose of this systematic review is to determine the relationship between chitotriosidase (CHIT1) level and ALS disorder. CONTENT Keywords "Amyotrophic Lateral Sclerosis", "Gehrig* Disease", "Charcot Disease", "Guam Disease", ALS, CHIT1 and chitotriosidase were searched in PubMed, Scopus, Web of Science and Science Direct databases without time limit on September 2023. Hundred twenty studies were obtained by searching, and finally, 14 studies were included in this study using the inclusion and exclusion criteria. In all 14 selected studies, the level of biomarker CHIT1 in the CSF of ALS patients was significantly higher than that of healthy control and disease control groups. But, in 8 studies that included 3 groups, no significant difference was observed between the CHIT1 levels in the two control groups. Six studies have reported the amount of CHIT1 level quantitatively. Among these 6 studies, in 5 studies CHIT1 level in disease control was higher than healthy control (not significant) and in only one study CHIT1 level was higher in healthy control compared to disease control (not significant). SUMMARY AND OUTLOOK In all 14 studies, a multifold increase in CHIT1 levels has been observed in patients compared to healthy and disease control groups. Therefore, based on the findings of the studies, this study confirms the relationship between CHIT1 increase and ALS disorder.
Collapse
Affiliation(s)
- Zeinab Khorshidi
- Department of Neurology, School of Medicine, 48455 Isfahan University of Medical Sciences , Isfahan, Iran
| | - Iman Adibi
- Department of Neurology, School of Medicine, 48455 Isfahan University of Medical Sciences , Isfahan, Iran
- Isfahan Neurosciences Research Center, 48455 Isfahan University of Medical Sciences , Isfahan, Iran
| | - Majid Ghasemi
- Department of Neurology, School of Medicine, 48455 Isfahan University of Medical Sciences , Isfahan, Iran
- Isfahan Neurosciences Research Center, 48455 Isfahan University of Medical Sciences , Isfahan, Iran
| |
Collapse
|
5
|
Antonioni A, Raho EM, Granieri E, Koch G. Frontotemporal dementia. How to deal with its diagnostic complexity? Expert Rev Neurother 2025:1-35. [PMID: 39911129 DOI: 10.1080/14737175.2025.2461758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) encompasses a group of heterogeneous neurodegenerative disorders. Aside from genetic cases, its diagnosis is challenging, particularly in the early stages when symptoms are ambiguous, and structural neuroimaging does not reveal characteristic patterns. AREAS COVERED The authors performed a comprehensive literature search through MEDLINE, Scopus, and Web of Science databases to gather evidence to aid the diagnostic process for suspected FTD patients, particularly in early phases, even in sporadic cases, ranging from established to promising tools. Blood-based biomarkers might help identify very early neuropathological stages and guide further evaluations. Subsequently, neurophysiological measures reflecting functional changes in cortical excitatory/inhibitory circuits, along with functional neuroimaging assessing brain network, connectivity, metabolism, and perfusion alterations, could detect specific changes associated to FTD even decades before symptom onset. As the neuropathological process advances, cognitive-behavioral profiles and atrophy patterns emerge, distinguishing specific FTD subtypes. EXPERT OPINION Emerging disease-modifying therapies require early patient enrollment. Therefore, a diagnostic paradigm shift is needed - from relying on typical cognitive and neuroimaging profiles of advanced cases to widely applicable biomarkers, primarily fluid biomarkers, and, subsequently, neurophysiological and functional neuroimaging biomarkers where appropriate. Additionally, exploring subjective complaints and behavioral changes detected by home-based technologies might be crucial for early diagnosis.
Collapse
Affiliation(s)
- Annibale Antonioni
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara, FE, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, FE, Italy
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Roma, RM, Italy
| |
Collapse
|
6
|
Foerster L, Scholle L, Mayer T, Schneider I, Stoltenburg-Didinger G, Delank KS, Kraya T, Hahn A, Strube D, Koelsch AK, Naegel S, Barba L, Volk AE, Otto M, Mensch A. Serum chitotriosidase-1 (CHIT1) as candidate biomarker for mitochondriopathies. J Neurol 2025; 272:180. [PMID: 39891741 PMCID: PMC11787199 DOI: 10.1007/s00415-025-12916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Neuromuscular diseases (NMDs) and mitochondriopathies are rare and heterogeneous disorders. Diagnosis is often difficult and delayed, partly due to the lack of reliable biomarkers. Chitotriosidase (CHIT1) as a candidate marker for lysosomal storage diseases is elevated in Niemann pick disease type C as a prototype of this group of diseases. Most recently, a relevant role of the lysosomal pathway in mitochondriopathies has been discussed, but markers of lysosomal involvement have not been investigated. Therefore, the aim of this study was to evaluate CHIT1 concentrations in a broad spectrum of NMDs and mitochondriopathies. METHODS CHIT1 serum concentration of 151 patients with NMD or primary mitochondriopathy was determined by enzyme-linked immunosorbent assay, and compared to 38 healthy controls and 8 patients with Niemann pick disease type C. Results were controlled for age, sex, CRP and CHIT1 polymorphism, and compared to several established markers (CK, FGF21, GDF15). RESULTS CHIT1 levels were not altered in NMDs, but significantly increased in mitochondriopathies, within the range of Niemann-Pick patients. Compared to the established biomarkers, CHIT1 and FGF21 showed a similar diagnostic performance, while better results were found for GDF15. However, there was a tendency for higher CHIT1 concentrations in patients with central nervous system involvement (MELAS syndrome), while FGF21 and GDF15 were not relevantly altered in these patients. Consequently, a combination of biomarkers including CHIT1 provided the best overall diagnostic performance. CONCLUSIONS Serum CHIT1 concentration is significantly elevated in mitochondriopathies compared to healthy controls and other NMD, identifying CHIT1 as potential complementary biomarker in mitochondriopathies.
Collapse
Affiliation(s)
- Laura Foerster
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Leila Scholle
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Tobias Mayer
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Ilka Schneider
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Department of Neurology, St. Georg Hospital Leipzig, Leipzig, Germany
| | - Gisela Stoltenburg-Didinger
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Institute of Cell and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
| | - Karl-Stefan Delank
- Department of Orthopedic and Trauma Surgery, University Medicine Halle, Halle (Saale), Germany
| | - Torsten Kraya
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Department of Neurology, St. Georg Hospital Leipzig, Leipzig, Germany
| | - Andreas Hahn
- Department of Pediatric Neurology, Justus-Liebig-University Gießen, Gießen, Germany
| | - David Strube
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Anna Katharina Koelsch
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Steffen Naegel
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Department of Neurology, Alfried Krupp Krankenhaus Rüttenscheid, Essen, Germany
| | - Lorenzo Barba
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Alexander E Volk
- Institute for Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Otto
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Alexander Mensch
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
7
|
De Marchi F, Spinelli EG, Bendotti C. Neuroglia in neurodegeneration: Amyotrophic lateral sclerosis and frontotemporal dementia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:45-67. [PMID: 40148057 DOI: 10.1016/b978-0-443-19102-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases sharing significant pathologic and genetic overlap, leading to consider these diseases as a continuum in the spectrum of their pathologic features. Although FTD compromises only specific brain districts, while ALS involves both the nervous system and the skeletal muscles, several neurocentric mechanisms are in common between ALS and FTD. Also, recent research has revealed the significant involvement of nonneuronal cells, particularly glial cells such as astrocytes, oligodendrocytes, microglia, and peripheral immune cells, in disease pathology. This chapter aims to provide an extensive overview of the current understanding of the role of glia in the onset and advancement of ALS and FTD, highlighting the recent implications in terms of prognosis and future treatment options.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, Department of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Caterina Bendotti
- Laboratory of Neurobiology and Preclinical Therapeutics, ALS Center, Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy.
| |
Collapse
|
8
|
Gagliardi D, Rizzuti M, Masrori P, Saccomanno D, Del Bo R, Sali L, Meneri M, Scarcella S, Milone I, Hersmus N, Ratti A, Ticozzi N, Silani V, Poesen K, Van Damme P, Comi GP, Corti S, Verde F. Exploiting the role of CSF NfL, CHIT1, and miR-181b as potential diagnostic and prognostic biomarkers for ALS. J Neurol 2024; 271:7557-7571. [PMID: 39340541 PMCID: PMC11588799 DOI: 10.1007/s00415-024-12699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder characterized by relentless and progressive loss of motor neurons. A molecular diagnosis, supported by the identification of specific biomarkers, might promote the definition of multiple biological subtypes of ALS, improving patient stratification and providing prognostic information. Here, we investigated the levels of neurofilament light chain (NfL), chitotriosidase (CHIT1) and microRNA-181b (miR-181b) in the cerebrospinal fluid (CSF) of ALS subjects (N = 210) as well as neurologically healthy and neurological disease controls (N = 218, including N = 74 with other neurodegenerative diseases) from a large European multicentric cohort, evaluating their specific or combined utility as diagnostic and prognostic biomarkers. NfL, CHIT1 and miR-181b all showed significantly higher levels in ALS subjects compared to controls, with NfL showing the most effective diagnostic performance. Importantly, all three biomarkers were increased compared to neurodegenerative disease controls and, specifically, to patients with Alzheimer's disease (AD; N = 44), with NfL and CHIT1 being also higher in ALS than in alpha-synucleinopathies (N = 22). Notably, ALS patients displayed increased CHIT1 levels despite having, compared to controls, a higher prevalence of a polymorphism lowering CHIT1 expression. While no relationship was found between CSF miR-181b and clinical measures in ALS (disease duration, functional disability, and disease progression rate), CSF NfL was the best independent predictor of disease progression and survival. This study deepens our knowledge of ALS biomarkers, highlighting the relative specificity of CHIT1 for ALS among neurodegenerative diseases and appraising the potential diagnostic utility of CSF miR-181b.
Collapse
Affiliation(s)
- Delia Gagliardi
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pegah Masrori
- Department of Neurosciences, Laboratory of Neurobiology, University of Leuven (KU Leuven), Louvain, Belgium
- Neurology Department, University Hospitals Leuven, Louvain, Belgium
| | - Domenica Saccomanno
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Megi Meneri
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Scarcella
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Ilaria Milone
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nicole Hersmus
- Neurology Department, University Hospitals Leuven, Louvain, Belgium
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Vincenzo Silani
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Koen Poesen
- Laboratory for Molecular Neurobiomarker Research, KU Leuven, Louvain, Belgium
- Department of Laboratory Medicine, KU Leuven University Hospitals Leuven Gasthuisberg Campus, Louvain, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Laboratory of Neurobiology, University of Leuven (KU Leuven), Louvain, Belgium
- Neurology Department, University Hospitals Leuven, Louvain, Belgium
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federico Verde
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
9
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
10
|
Pase MP, Himali JJ, Puerta R, Beiser AS, Gonzales MM, Satizabal CL, Yang Q, Aparicio HJ, Kojis DJ, Decarli CS, Lopez OL, Longstreth W, Gudnason V, Mosley TH, Bis JC, Fohner A, Psaty BM, Boada M, García-González P, Valero S, Marquié M, Tracy R, Launer LJ, Ruiz A, Fornage M, Seshadri S. Association of Plasma YKL-40 With MRI, CSF, and Cognitive Markers of Brain Health and Dementia. Neurology 2024; 102:e208075. [PMID: 38290090 PMCID: PMC11383876 DOI: 10.1212/wnl.0000000000208075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Higher YKL-40 levels in the CSF are a known biomarker of brain inflammation. We explored the utility of plasma YKL-40 as a biomarker for accelerated brain aging and dementia risk. METHODS We performed cross-sectional and prospective analyses of 4 community-based cohorts in the United States or Europe: the Age, Gene/Environment Susceptibility-Reykjavik Study, Atherosclerosis Risk in the Communities study, Coronary Artery Risk Development in Young Adults study, and Framingham Heart Study (FHS). YKL-40 was measured from stored plasma by a single laboratory using Mesoscale Discovery with levels log transformed and standardized within each cohort. Outcomes included MRI total brain volume, hippocampal volume, and white matter hyperintensity volume (WMHV) as a percentage of intracranial volume, a general cognitive composite derived from neuropsychological testing (SD units [SDU]), and the risk of incident dementia. We sought to replicate associations with dementia in the clinic-based ACE csf cohort, which also had YKL-40 measured from the CSF. RESULTS Meta-analyses of MRI outcomes included 6,558 dementia-free participants, and for analysis of cognition, 6,670. The blood draw preceded MRI/cognitive assessment by up to 10.6 years across cohorts. The mean ages ranged from 50 to 76 years, with 39%-48% male individuals. In random-effects meta-analysis of study estimates, each SDU increase in log-transformed YKL-40 levels was associated with smaller total brain volume (β = -0.33; 95% CI -0.45 to -0.22; p < 0.0001) and poorer cognition (β = -0.04; 95% CI -0.07 to -0.02; p < 0.01), following adjustments for demographic variables. YKL-40 levels did not associate with hippocampal volume or WMHV. In the FHS, each SDU increase in log YKL-40 levels was associated with a 64% increase in incident dementia risk over a median of 5.8 years of follow-up, following adjustments for demographic variables (hazard ratio 1.64; 95% CI 1.25-2.16; p < 0.001). In the ACE csf cohort, plasma and CSF YKL-40 were correlated (r = 0.31), and both were associated with conversion from mild cognitive impairment to dementia, independent of amyloid, tau, and neurodegeneration status. DISCUSSION Higher plasma YKL-40 levels were associated with lower brain volume, poorer cognition, and incident dementia. Plasma YKL-40 may be useful for studying the association of inflammation and its treatment on dementia risk.
Collapse
Affiliation(s)
- Matthew P Pase
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Jayandra J Himali
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Raquel Puerta
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Alexa S Beiser
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Mitzi M Gonzales
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Claudia L Satizabal
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Qiong Yang
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Hugo J Aparicio
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Daniel J Kojis
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Charles S Decarli
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Oscar L Lopez
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Will Longstreth
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Vilmundur Gudnason
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Thomas H Mosley
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Joshua C Bis
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Alison Fohner
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Bruce M Psaty
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Mercè Boada
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Pablo García-González
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Sergi Valero
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Marta Marquié
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Russell Tracy
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Lenore J Launer
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Agustín Ruiz
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Myriam Fornage
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Sudha Seshadri
- From the Turner Institute for Brain and Mental Health (M.P.P.), Monash University, Australia; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (J.J.H., M.M.G.), University of Texas Health Sciences Center, San Antonio; ACE Alzheimer Center (R.P., M.B., P.G.-G., S.V., M.M., A.R.), Barcelona, Spain; Boston University School of Public Health (A.S.B., D.J.K.), MA; University of Texas Health Sciences Center (C.L.S., S.S.), San Antonio; Department of Neurology (Q.Y., H.J.A.), Boston University School of Medicine, MA; Department of Neurology (C.S.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California at Davis; Department of Neurology (O.L.L.), School of Medicine, University of Pittsburgh, PA; University of Washington (W.L., B.M.P.), Seattle; Faculty of Medicine (V.G.), University of Iceland, Reykjavík; University of Mississippi Medical Center (T.H.M.), The MIND Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, and Department of Epidemiology (A.F.), University of Washington, Seattle; University of Vermont (R.T.), Burlington; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, NIH, Bethesda, MD; and University of Texas Health Science Center (M.F.), Houston. Matthew P. Pase is currently at the School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Australia
| |
Collapse
|
11
|
Kläppe U, Sennfält S, Lovik A, Finn A, Bofaisal U, Zetterberg H, Blennow K, Piehl F, Kmezic I, Press R, Samuelsson K, Månberg A, Fang F, Ingre C. Neurodegenerative biomarkers outperform neuroinflammatory biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:150-161. [PMID: 37789557 DOI: 10.1080/21678421.2023.2263874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE To describe the diagnostic and prognostic performance, and longitudinal trajectories, of potential biomarkers of neuroaxonal degeneration and neuroinflammation in amyotrophic lateral sclerosis (ALS). METHODS This case-control study included 192 incident ALS patients, 42 ALS mimics, 114 neurological controls, and 117 healthy controls from Stockholm, Sweden. Forty-four ALS patients provided repeated measurements. We assessed biomarkers of (1)neuroaxonal degeneration: neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in cerebrospinal fluid (CSF) and NfL in serum, and (2)neuroinflammation: chitotriosidase-1 (CHIT1) and monocyte chemoattractant protein 1 (MCP-1) in CSF. To evaluate diagnostic performance, we calculated the area under the curve (AUC). To estimate prognostic performance, we applied quantile regression and Cox regression. We used linear regression models with robust standard errors to assess temporal changes over time. RESULTS Neurofilaments performed better at differentiating ALS patients from mimics (AUC: pNfH 0.92, CSF NfL 0.86, serum NfL 0.91) than neuroinflammatory biomarkers (AUC: CHIT1 0.71, MCP-1 0.56). Combining biomarkers did not improve diagnostic performance. Similarly, neurofilaments performed better than neuroinflammatory biomarkers at predicting functional decline and survival. The stratified analysis revealed differences according to the site of onset: in bulbar patients, neurofilaments and CHIT1 performed worse at predicting survival and correlations were lower between biomarkers. Finally, in bulbar patients, neurofilaments and CHIT1 increased longitudinally but were stable in spinal patients. CONCLUSIONS Biomarkers of neuroaxonal degeneration displayed better diagnostic and prognostic value compared with neuroinflammatory biomarkers. However, in contrast to spinal patients, in bulbar patients neurofilaments and CHIT1 performed worse at predicting survival and seemed to increase over time.
Collapse
Affiliation(s)
- Ulf Kläppe
- Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Sennfält
- Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Anikó Lovik
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Methodology and Statistics Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Anja Finn
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrika Bofaisal
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Psychology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA, and
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Psychology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Fredrik Piehl
- Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Ivan Kmezic
- Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Rayomand Press
- Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Kristin Samuelsson
- Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ingre
- Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Donini L, Tanel R, Zuccarino R, Basso M. Protein biomarkers for the diagnosis and prognosis of Amyotrophic Lateral Sclerosis. Neurosci Res 2023; 197:31-41. [PMID: 37689321 DOI: 10.1016/j.neures.2023.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disease, still incurable. The disease is highly heterogenous both genetically and phenotypically. Therefore, developing efficacious treatments is challenging in many aspects because it is difficult to predict the rate of disease progression and stratify the patients to minimize statistical variability in clinical studies. Moreover, there is a lack of sensitive measures of therapeutic effect to assess whether a pharmacological intervention ameliorates the disease. There is also urgency of markers that reflect a molecular mechanism dysregulated by ALS pathology and can be rescued when a treatment relieves the condition. Here, we summarize and discuss biomarkers tested in multicentered studies and across different laboratories like neurofilaments, the most used marker in ALS clinical studies, neuroinflammatory-related proteins, p75ECD, p-Tau/t-Tau, and UCHL1. We also explore the applicability of muscle proteins and extracellular vesicles as potential biomarkers.
Collapse
Affiliation(s)
- Luisa Donini
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| | - Raffaella Tanel
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy.
| | - Riccardo Zuccarino
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| |
Collapse
|
13
|
Rifai OM, O’Shaughnessy J, Dando OR, Munro AF, Sewell MDE, Abrahams S, Waldron FM, Sibley CR, Gregory JM. Distinct neuroinflammatory signatures exist across genetic and sporadic amyotrophic lateral sclerosis cohorts. Brain 2023; 146:5124-5138. [PMID: 37450566 PMCID: PMC10690026 DOI: 10.1093/brain/awad243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/31/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. ALS is on a pathogenetic disease spectrum with frontotemporal dementia, referred to as ALS-frontotemporal spectrum disorder (ALS-FTSD). For mutations associated with ALS-FTSD, such as the C9orf72 hexanucleotide repeat expansion, the molecular factors associated with heterogeneity along this spectrum require further characterization. Here, using a targeted NanoString molecular barcoding approach, we interrogate neuroinflammatory dysregulation and heterogeneity at the level of gene expression in post-mortem motor cortex tissue from a cohort of clinically heterogeneous C9-ALS-FTSD cases. We identified 20 dysregulated genes in C9-ALS-FTSD, with enrichment of microglial and inflammatory response gene sets. Two genes with significant correlations to available clinical metrics were selected for validation: FKBP5, a correlate of cognitive function, and brain-derived neurotrophic factor (BDNF), a correlate of disease duration. FKBP5 and its signalling partner, NF-κB, appeared to have a cell type-specific staining distribution, with activated (i.e. nuclear) NF-κB immunoreactivity in C9-ALS-FTSD. Expression of BDNF, a correlate of disease duration, was confirmed to be higher in individuals with long compared to short disease duration using BaseScope™ in situ hybridization. Our analyses also revealed two distinct neuroinflammatory panel signatures (NPS), NPS1 and NPS2, delineated by the direction of expression of proinflammatory, axonal transport and synaptic signalling pathways. We compared NPS between C9-ALS-FTSD cases and those from sporadic ALS and SOD1-ALS cohorts and identified NPS1 and NPS2 across all cohorts. Moreover, a subset of NPS was also able to separate publicly available RNA sequencing data from independent C9-ALS and sporadic ALS cohorts into two inflammatory subgroups. Importantly, NPS subgroups did not clearly segregate with available demographic, genetic, clinical or pathological features, highlighting the value of molecular stratification in clinical trials for inflammatory subgroup identification. Our findings thus underscore the importance of tailoring therapeutic approaches based on distinct molecular signatures that exist between and within ALS-FTSD cohorts.
Collapse
Affiliation(s)
- Olivia M Rifai
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Judi O’Shaughnessy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Owen R Dando
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XF, UK
| | - Alison F Munro
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael D E Sewell
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Sharon Abrahams
- Human Cognitive Neuroscience-Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Fergal M Waldron
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Christopher R Sibley
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XF, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FF, UK
| | - Jenna M Gregory
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
14
|
Rogers ML, Schultz DW, Karnaros V, Shepheard SR. Urinary biomarkers for amyotrophic lateral sclerosis: candidates, opportunities and considerations. Brain Commun 2023; 5:fcad287. [PMID: 37946793 PMCID: PMC10631861 DOI: 10.1093/braincomms/fcad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Amyotrophic lateral sclerosis is a relentless neurodegenerative disease that is mostly fatal within 3-5 years and is diagnosed on evidence of progressive upper and lower motor neuron degeneration. Around 15% of those with amyotrophic lateral sclerosis also have frontotemporal degeneration, and gene mutations account for ∼10%. Amyotrophic lateral sclerosis is a variable heterogeneous disease, and it is becoming increasingly clear that numerous different disease processes culminate in the final degeneration of motor neurons. There is a profound need to clearly articulate and measure pathological process that occurs. Such information is needed to tailor treatments to individuals with amyotrophic lateral sclerosis according to an individual's pathological fingerprint. For new candidate therapies, there is also a need for methods to select patients according to expected treatment outcomes and measure the success, or not, of treatments. Biomarkers are essential tools to fulfil these needs, and urine is a rich source for candidate biofluid biomarkers. This review will describe promising candidate urinary biomarkers of amyotrophic lateral sclerosis and other possible urinary candidates in future areas of investigation as well as the limitations of urinary biomarkers.
Collapse
Affiliation(s)
- Mary-Louise Rogers
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| | - David W Schultz
- Neurology Department and MND Clinic, Flinders Medical Centre, Adelaide 5042, South Australia, Australia
| | - Vassilios Karnaros
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| | - Stephanie R Shepheard
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| |
Collapse
|
15
|
Vinceti G, Carbone C, Gallingani C, Fiondella L, Salemme S, Zucchi E, Martinelli I, Gianferrari G, Tondelli M, Mandrioli J, Chiari A, Zamboni G. The association between lifelong personality and clinical phenotype in the FTD-ALS spectrum. Front Neurosci 2023; 17:1248622. [PMID: 37859765 PMCID: PMC10582748 DOI: 10.3389/fnins.2023.1248622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two phenotypes of the same neurodegenerative disease, the FTD-ALS spectrum. What determines the development of one rather than the other phenotype is still unknown. Based on the clinical observation that patients' personality seems to differ between the two phenotypes, i.e., ALS patients tend to display kind, prosocial behaviors whereas FTD patients tend to present anti-social behaviors, and that these traits are often reported as pre-existing the disease onset by caregivers, we set up to study experimentally patients' personality in their premorbid life. Methods We first tested for differences between groups, then tested the association between premorbid personality and current functional organization of the brain. Premorbid personality of a cohort of forty patients, 27 FTD and 13 ALS, was explored through the NEO Personality Inventory 3 (NEO-PI-3), which analyses the five main personality factors, completed by the caregiver with reference to patient's personality 20 years before symptoms onset (premorbid). A subgroup of patients underwent a brain MRI including structural and resting-state functional MRI (rsfMRI). Results A significant difference between FTD and ALS in premorbid personality emerged in the Openness (133.92 FTD vs. 149.84 ALS, p = 0.01) and Extraversion (136.55 FTD vs. 150.53 ALS, p = 0.04) factors. This suggests that ALS patients had been, in their premorbid life, more open to new experiences, more sociable and optimistic than FTD patients. They also showed greater functional connectivity than both FTD and a control group in the Salience resting state network, over and above differences in gray matter atrophy. Finally, there was a positive correlation between premorbid Openness and functional connectivity in the Salience network across all patients, suggesting a possible association between premorbid personality and current functional organization of the brain, irrespective of the degree of atrophy. Discussion Our proof-of-concept results suggest that premorbid personality may eventually predispose to the development of one, rather than the other, phenotype in the FTD-ALS spectrum.
Collapse
Affiliation(s)
- Giulia Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Chiara Carbone
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Gallingani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Luigi Fiondella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Simone Salemme
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Ilaria Martinelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Primary Care, Azienda Unità Sanitaria Locale di Modena, Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| |
Collapse
|
16
|
Mastrangelo A, Vacchiano V, Zenesini C, Ruggeri E, Baiardi S, Cherici A, Avoni P, Polischi B, Santoro F, Capellari S, Liguori R, Parchi P. Amyloid-Beta Co-Pathology Is a Major Determinant of the Elevated Plasma GFAP Values in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:13976. [PMID: 37762278 PMCID: PMC10531493 DOI: 10.3390/ijms241813976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies reported increased plasma glial acidic fibrillary protein (GFAP) levels in amyotrophic lateral sclerosis (ALS) patients compared to controls. We expanded these findings in a larger cohort, including 156 ALS patients and 48 controls, and investigated the associations of plasma GFAP with clinical variables and other biofluid biomarkers. Plasma GFAP and Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers were assessed by the single molecule array and the Lumipulse platforms, respectively. In ALS patients, plasma GFAP was higher than in controls (p < 0.001) and associated with measures of cognitive decline. Twenty ALS patients (12.8%) showed a positive amyloid status (A+), of which nine also exhibited tau pathology (A+T+, namely ALS-AD). ALS-AD patients showed higher plasma GFAP than A- ALS participants (p < 0.001) and controls (p < 0.001), whereas the comparison between A- ALS and controls missed statistical significance (p = 0.07). Plasma GFAP distinguished ALS-AD subjects more accurately (area under the curve (AUC) 0.932 ± 0.027) than plasma p-tau181 (AUC 0.692 ± 0.058, p < 0.0001) and plasma neurofilament light chain protein (AUC, 0.548 ± 0.088, p < 0.0001). Cognitive measures differed between ALS-AD and other ALS patients. AD co-pathology deeply affects plasma GFAP values in ALS patients. Plasma GFAP is an accurate biomarker for identifying AD co-pathology in ALS, which can influence the cognitive phenotype.
Collapse
Affiliation(s)
- Andrea Mastrangelo
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
| | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Edoardo Ruggeri
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Simone Baiardi
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
| | - Arianna Cherici
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Patrizia Avoni
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Barbara Polischi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Francesca Santoro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Sabina Capellari
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Rocco Liguori
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Piero Parchi
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| |
Collapse
|
17
|
De Marchi F, Tondo G, Corrado L, Menegon F, Aprile D, Anselmi M, D’Alfonso S, Comi C, Mazzini L. Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants. Genes (Basel) 2023; 14:1658. [PMID: 37628709 PMCID: PMC10454262 DOI: 10.3390/genes14081658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FDT) are progressive neurodegenerative disorders that, in several cases, overlap in clinical presentation, and genetic and pathological disease mechanisms. About 10-15% of ALS cases and up to 40% of FTD are familial, usually with dominant traits. ALS and FTD, in several cases, share common gene mutations, such as in C9ORF72, TARDBP, SQSTM-1, FUS, VCP, CHCHD10, and TBK-1. Also, several mechanisms are involved in ALS and FTD pathogenesis, such as protein misfolding, oxidative stress, and impaired axonal transport. In addition, neuroinflammation and neuroinflammatory cells, such as astrocytes, oligodendrocytes, microglia, and lymphocytes and, overall, the cellular microenvironment, have been proposed as pivotal players in the pathogenesis the ALS-FTD spectrum disorders. This review overviews the current evidence regarding neuroinflammatory markers in the ALS/FTD continuum, focusing on the neuroinflammatory pathways involved in the genetic cases, moving from post-mortem reports to in vivo biofluid and neuroimaging data. We further discuss the potential link between genetic and autoimmune disorders and potential therapeutic implications.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Sandra D’Alfonso
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
18
|
Xu L, Wang D, Zhao L, Yang Z, Liu X, Li X, Yuan T, Wang Y, Huang T, Bian N, He Y, Chen X, Tian B, Liu Z, Luo F, Si W, Gao G, Ji W, Niu Y, Wei J. C9orf72 poly(PR) aggregation in nucleus induces ALS/FTD-related neurodegeneration in cynomolgus monkeys. Neurobiol Dis 2023; 184:106197. [PMID: 37328037 DOI: 10.1016/j.nbd.2023.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Poly(PR) is a dipeptide repeat protein comprising proline and arginine residues. It is one of the translational product of expanded G4C2 repeats in the C9orf72 gene, and its accumulation is contributing to the neuropathogenesis of C9orf72-associated amyotrophic lateral sclerosis and/or frontotemporal dementia (C9-ALS/FTD). In this study, we demonstrate that poly(PR) protein alone is sufficient to induce neurodegeneration related to ALS/FTD in cynomolgus monkeys. By delivering poly(PR) via AAV, we observed that the PR proteins were located within the nucleus of infected cells. The expression of (PR)50 protein, consisting of 50 PR repeats, led to increased loss of cortical neurons, cytoplasmic lipofuscin, and gliosis in the brain, as well as demyelination and loss of ChAT positive neurons in the spinal cord of monkeys. While, these pathologies were not observed in monkeys expressing (PR)5, a protein comprising only 5 PR repeats. Furthermore, the (PR)50-expressing monkeys exhibited progressive motor deficits, cognitive impairment, muscle atrophy, and abnormal electromyography (EMG) potentials, which closely resemble clinical symptoms seen in C9-ALS/FTD patients. By longitudinally tracking these monkeys, we found that changes in cystatin C and chitinase-1 (CHIT1) levels in the cerebrospinal fluid (CSF) corresponded to the phenotypic progression of (PR)50-induced disease. Proteomic analysis revealed that the major clusters of dysregulated proteins were nuclear-localized, and downregulation of the MECP2 protein was implicated in the toxic process of poly(PR). This research indicates that poly(PR) expression alone induces neurodegeneration and core phenotypes associated with C9-ALS/FTD in monkeys, which may provide insights into the mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Lizhu Xu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhengsheng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Xu Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xinyue Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tingli Yuan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ye Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tianzhuang Huang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yuqun He
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Baohong Tian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
19
|
Russo C, Valle MS, Casabona A, Malaguarnera L. Chitinase Signature in the Plasticity of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24076301. [PMID: 37047273 PMCID: PMC10094409 DOI: 10.3390/ijms24076301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Several reports have pointed out that Chitinases are expressed and secreted by various cell types of central nervous system (CNS), including activated microglia and astrocytes. These cells play a key role in neuroinflammation and in the pathogenesis of many neurodegenerative disorders. Increased levels of Chitinases, in particular Chitotriosidase (CHIT-1) and chitinase-3-like protein 1 (CHI3L1), have been found increased in several neurodegenerative disorders. Although having important biological roles in inflammation, to date, the molecular mechanisms of Chitinase involvement in the pathogenesis of neurodegenerative disorders is not well-elucidated. Several studies showed that some Chitinases could be assumed as markers for diagnosis, prognosis, activity, and severity of a disease and therefore can be helpful in the choice of treatment. However, some studies showed controversial results. This review will discuss the potential of Chitinases in the pathogenesis of some neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, to understand their role as distinctive biomarkers of neuronal cell activity during neuroinflammatory processes. Knowledge of the role of Chitinases in neuronal cell activation could allow for the development of new methodologies for downregulating neuroinflammation and consequently for diminishing negative neurological disease outcomes.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
20
|
Chu M, Wen L, Jiang D, Liu L, Nan H, Yue A, Wang Y, Wang Y, Qu M, Wang N, Wu L. Peripheral inflammation in behavioural variant frontotemporal dementia: associations with central degeneration and clinical measures. J Neuroinflammation 2023; 20:65. [PMID: 36890594 PMCID: PMC9996857 DOI: 10.1186/s12974-023-02746-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Neuroinflammation plays a significant role in the progression of frontotemporal dementia (FTD). However, the association between peripheral inflammatory factors and brain neurodegeneration is poorly understood. We aimed to examine changes in peripheral inflammatory markers in patients with behavioural variant FTD (bvFTD) and explore the potential association between peripheral inflammation and brain structure, metabolism, and clinical parameters. METHODS Thirty-nine bvFTD patients and 40 healthy controls were enrolled and underwent assessment of plasma inflammatory factors, positron emission tomography/magnetic resonance imaging, and neuropsychological assessments. Group differences were tested using Student's t test, Mann‒Whitney U test, or ANOVA. Partial correlation analysis and multivariable regression analysis were implemented using age and sex as covariates to explore the association between peripheral inflammatory markers, neuroimaging, and clinical measures. The false discovery rate was used to correct for the multiple correlation test. RESULTS Plasma levels of six factors, including interleukin (IL)-2, IL-12p70, IL-17A, tumour necrosis superfamily member 13B (TNFSF/BAFF), TNFSF12 (TWEAK), and TNFRSF8 (sCD30), were increased in the bvFTD group. Five factors were significantly associated with central degeneration, including IL-2, IL-12p70, IL-17A, sCD30/TNFRSF8, and tumour necrosis factor (TNF)-α; the association between inflammation and brain atrophy was mainly distributed in frontal-limbic-striatal brain regions, whereas the association with brain metabolism was mainly in the frontal-temporal-limbic-striatal regions. BAFF/TNFSF13B, IL-4, IL-6, IL-17A and TNF-α were found to correlate with clinical measures. CONCLUSION Peripheral inflammation disturbance in patients with bvFTD participates in disease-specific pathophysiological mechanisms, which could be a promising target for diagnosis, treatment, and monitoring therapeutic efficacy.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ailing Yue
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingtao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ningqun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
21
|
TDP-43 Proteinopathy Specific Biomarker Development. Cells 2023; 12:cells12040597. [PMID: 36831264 PMCID: PMC9954136 DOI: 10.3390/cells12040597] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
TDP-43 is the primary or secondary pathological hallmark of neurodegenerative diseases, such as amyotrophic lateral sclerosis, half of frontotemporal dementia cases, and limbic age-related TDP-43 encephalopathy, which clinically resembles Alzheimer's dementia. In such diseases, a biomarker that can detect TDP-43 proteinopathy in life would help to stratify patients according to their definite diagnosis of pathology, rather than in clinical subgroups of uncertain pathology. For therapies developed to target pathological proteins that cause the disease a biomarker to detect and track the underlying pathology would greatly enhance such undertakings. This article reviews the latest developments and outlooks of deriving TDP-43-specific biomarkers from the pathophysiological processes involved in the development of TDP-43 proteinopathy and studies using biosamples from clinical entities associated with TDP-43 pathology to investigate biomarker candidates.
Collapse
|
22
|
Chatterjee P, Doré V, Pedrini S, Krishnadas N, Thota R, Bourgeat P, Ikonomovic MD, Rainey-Smith SR, Burnham SC, Fowler C, Taddei K, Mulligan R, Ames D, Masters CL, Fripp J, Rowe CC, Martins RN, Villemagne VL. Plasma Glial Fibrillary Acidic Protein Is Associated with 18F-SMBT-1 PET: Two Putative Astrocyte Reactivity Biomarkers for Alzheimer's Disease. J Alzheimers Dis 2023; 92:615-628. [PMID: 36776057 PMCID: PMC10041433 DOI: 10.3233/jad-220908] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Astrocyte reactivity is an early event along the Alzheimer's disease (AD) continuum. Plasma glial fibrillary acidic protein (GFAP), posited to reflect astrocyte reactivity, is elevated across the AD continuum from preclinical to dementia stages. Monoamine oxidase-B (MAO-B) is also elevated in reactive astrocytes observed using 18F-SMBT-1 PET in AD. OBJECTIVE The objective of this study was to evaluate the association between the abovementioned astrocyte reactivity biomarkers. METHODS Plasma GFAP and Aβ were measured using the Simoa ® platform in participants who underwent brain 18F-SMBT-1 and Aβ-PET imaging, comprising 54 healthy control (13 Aβ-PET+ and 41 Aβ-PET-), 11 mild cognitively impaired (3 Aβ-PET+ and 8 Aβ-PET-) and 6 probable AD (5 Aβ-PET+ and 1 Aβ-PET-) individuals. Linear regressions were used to assess associations of interest. RESULTS Plasma GFAP was associated with 18F-SMBT-1 signal in brain regions prone to early Aβ deposition in AD, such as the supramarginal gyrus (SG), posterior cingulate (PC), lateral temporal (LT) and lateral occipital cortex (LO). After adjusting for age, sex, APOE ɛ4 genotype, and soluble Aβ (plasma Aβ 42/40 ratio), plasma GFAP was associated with 18F-SMBT-1 signal in the SG, PC, LT, LO, and superior parietal cortex (SP). On adjusting for age, sex, APOE ɛ4 genotype and insoluble Aβ (Aβ-PET), plasma GFAP was associated with 18F-SMBT-1 signal in the SG. CONCLUSION There is an association between plasma GFAP and regional 18F-SMBT-1 PET, and this association appears to be dependent on brain Aβ load.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Vincent Doré
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia.,Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Natasha Krishnadas
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Rohith Thota
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Pierrick Bourgeat
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Queensland, Australia
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pennsylvania, PA, USA.,Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, PA, USA
| | - Stephanie R Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Samantha C Burnham
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Queensland, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Rachel Mulligan
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia.,Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Jürgen Fripp
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ralph N Martins
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,Department of Psychiatry, University of Pittsburgh, Pennsylvania, PA, USA
| | | |
Collapse
|
23
|
Chen R, Lin LR, Xiao Y, Ke WJ, Yang TC. Evaluation of cerebrospinal fluid ubiquitin C-terminal hydrolase-L1, glial fibrillary acidic protein, and neurofilament light protein as novel markers for the diagnosis of neurosyphilis among HIV-negative patients. Int J Infect Dis 2023; 127:36-44. [PMID: 36400375 DOI: 10.1016/j.ijid.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To evaluate the possibility of using cerebrospinal fluid (CSF) ubiquitin C-terminal hydrolase L1 (UCH-L1), glial fibrillary acidic protein (GFAP), and neurofilament light protein (NF-L) for the diagnosis of neurosyphilis (NS). METHODS A cross-sectional study of 576 subjects was conducted at Zhongshan Hospital from January 2021 to August 2022 to evaluate the diagnostic accuracy of CSF UCH-L1, GFAP, and NF-L for NS and analyze their correlations with CSF rapid plasma reagin (RPR), white blood cells (WBCs), and protein. RESULTS Patients with NS had higher CSF UCH-L1, GFAP, and NF-L levels than patients with syphilis/non-NS and nonsyphilis. Using a cut-off point of 652.25 pg/ml, 548.89 pg/ml, and 48.38 pg/ml, CSF UCH-L1, GFAP, and NF-L had a sensitivity of 85.11%, 76.60%, and 82.98%, with a specificity of 92.22%, 85.56%, and 91.11%, respectively, for NS diagnosis. Moreover, parallel and serial testing algorithms improved their sensitivity and specificity to 93.62% and 98.89%, respectively. Interestingly, levels between patients with NS who are CSF RPR-positive and -negative did not differ and showed a weak or moderate correlation with WBC and CSF protein in patients with syphilis. CONCLUSION CSF UCH-L1, GFAP, and NF-L can be used as novel markers for the diagnosis of NS, independent of CSF RPR, WBC, and proteins.
Collapse
Affiliation(s)
- Rui Chen
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yao Xiao
- Department of Hospital Infection Management, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wu-Jian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China; Xiamen Clinical Laboratory Quality Control Center, Xiamen, China.
| |
Collapse
|
24
|
Zetterberg H, Teunissen C, van Swieten J, Kuhle J, Boxer A, Rohrer JD, Mitic L, Nicholson AM, Pearlman R, McCaughey SM, Tatton N. The role of neurofilament light in genetic frontotemporal lobar degeneration. Brain Commun 2023; 5:fcac310. [PMID: 36694576 PMCID: PMC9866262 DOI: 10.1093/braincomms/fcac310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/26/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic frontotemporal lobar degeneration caused by autosomal dominant gene mutations provides an opportunity for targeted drug development in a highly complex and clinically heterogeneous dementia. These neurodegenerative disorders can affect adults in their middle years, progress quickly relative to other dementias, are uniformly fatal and have no approved disease-modifying treatments. Frontotemporal dementia, caused by mutations in the GRN gene which encodes the protein progranulin, is an active area of interventional drug trials that are testing multiple strategies to restore progranulin protein deficiency. These and other trials are also examining neurofilament light as a potential biomarker of disease activity and disease progression and as a therapeutic endpoint based on the assumption that cerebrospinal fluid and blood neurofilament light levels are a surrogate for neuroaxonal damage. Reports from genetic frontotemporal dementia longitudinal studies indicate that elevated concentrations of blood neurofilament light reflect disease severity and are associated with faster brain atrophy. To better inform patient stratification and treatment response in current and upcoming clinical trials, a more nuanced interpretation of neurofilament light as a biomarker of neurodegeneration is now required, one that takes into account its relationship to other pathophysiological and topographic biomarkers of disease progression from early presymptomatic to later clinically symptomatic stages.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden.,Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.,Dementia Research Institute, University College London, London, UK.,DRI Fluid Biomarker Laboratory, Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Charlotte Teunissen
- Department of Clinical Chemistry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - John van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jens Kuhle
- Department of Clinical Research, Department of Neurology, Department of Biomedicine, Multiple Sclerosis Centre, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan D Rohrer
- Queen Square UCL Institute of Neurology, Dementia Research Centre, UK Dementia Research Institute, University College London, London, UK
| | - Laura Mitic
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA.,The Bluefield Project to Cure FTD, San Francisco, CA, USA
| | - Alexandra M Nicholson
- The Bluefield Project to Cure FTD, San Francisco, CA, USA.,Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | | | | | - Nadine Tatton
- Medical Affairs, Alector, Inc., South San Francisco, CA, USA
| |
Collapse
|
25
|
Novel CSF Biomarkers Tracking Autoimmune Inflammatory and Neurodegenerative Aspects of CNS Diseases. Diagnostics (Basel) 2022; 13:diagnostics13010073. [PMID: 36611365 PMCID: PMC9818715 DOI: 10.3390/diagnostics13010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The accurate diagnosis of neuroinflammatory (NIDs) and neurodegenerative (NDDs) diseases and the stratification of patients into disease subgroups with distinct disease-related characteristics that reflect the underlying pathology represents an unmet clinical need that is of particular interest in the era of emerging disease-modifying therapies (DMT). Proper patient selection for clinical trials and identifying those in the prodromal stages of the diseases or those at high risk will pave the way for precision medicine approaches and halt neuroinflammation and/or neurodegeneration in early stages where this is possible. Towards this direction, novel cerebrospinal fluid (CSF) biomarker candidates were developed to reflect the diseased organ's pathology better. Μisfolded protein accumulation, microglial activation, synaptic dysfunction, and finally, neuronal death are some of the pathophysiological aspects captured by these biomarkers to support proper diagnosis and screening. We also describe advances in the field of molecular biomarkers, including miRNAs and extracellular nucleic acids known as cell-free DNA and mitochondrial DNA molecules. Here we review the most important of these novel CSF biomarkers of NIDs and NDDs, focusing on their involvement in disease development and emphasizing their ability to define homogeneous disease phenotypes and track potential treatment outcomes that can be mirrored in the CSF compartment.
Collapse
|
26
|
Jiang Z, Wang Z, Wei X, Yu XF. Inflammatory checkpoints in amyotrophic lateral sclerosis: From biomarkers to therapeutic targets. Front Immunol 2022; 13:1059994. [PMID: 36618399 PMCID: PMC9815501 DOI: 10.3389/fimmu.2022.1059994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron damage. Due to the complexity of the ALS, so far the etiology and underlying pathogenesis of sporadic ALS are not completely understood. Recently, many studies have emphasized the role of inflammatory networks, which are comprised of various inflammatory molecules and proteins in the pathogenesis of ALS. Inflammatory molecules and proteins may be used as independent predictors of patient survival and might be used in patient stratification and in evaluating the therapeutic response in clinical trials. This review article describes the latest advances in various inflammatory markers in ALS and its animal models. In particular, this review discusses the role of inflammatory molecule markers in the pathogenesis of the disease and their relationship with clinical parameters. We also highlight the advantages and disadvantages of applying inflammatory markers in clinical manifestations, animal studies, and drug clinical trials. Further, we summarize the potential application of some inflammatory biomarkers as new therapeutic targets and therapeutic strategies, which would perhaps expand the therapeutic interventions for ALS.
Collapse
|
27
|
Di Francesco AM, Verrecchia E, Manna S, Urbani A, Manna R. The chitinases as biomarkers in immune-mediate diseases. Clin Chem Lab Med 2022:cclm-2022-0767. [DOI: 10.1515/cclm-2022-0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Abstract
The role of chitinases has been focused as potential biomarkers in a wide number of inflammatory diseases, in monitoring active disease state, and predicting prognosis and response to therapies. The main chitinases, CHIT1 and YKL-40, are derived from 18 glycosyl hydrolases macrophage activation and play important roles in defense against chitin-containing pathogens and in food processing. Moreover, chitinases may have organ- as well as cell-specific effects in the context of infectious diseases and inflammatory disorders and able to induce tissue remodelling. The CHIT1 measurement is an easy, reproducible, reliable, and cost-effective affordable assay. The clinical use of CHIT1 for the screening of lysosomal storage disorders is quite practical, when proper cut-off values are determined for each laboratory. The potential of CHIT1 and chitinases has not been fully explored yet and future studies will produce many surprising discoveries in the immunology and allergology fields of research. However, since the presence of a null CHIT1 gene in a subpopulation would be responsible of false-negative values, the assay should be completed with the other markers such ACE and, if necessary, by genetic analysis when CHIT1 is unexpected low.
Collapse
Affiliation(s)
- Angela Maria Di Francesco
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
| | - Elena Verrecchia
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
| | - Stefano Manna
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
| | - Andrea Urbani
- Institute of Internal Medicine, Policlinico A. Gemelli Foundation IRCCS , Rome , Italy
- Department of Chemistry, Biochemistry and Molecular Biology , Policlinico A. Gemelli Foundation IRCCS , Rome , Italy
| | - Raffaele Manna
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
- Institute of Internal Medicine, Policlinico A. Gemelli Foundation IRCCS , Rome , Italy
| |
Collapse
|
28
|
Yilmazer-Hanke D, Ouali Alami N, Fang L, Klotz S, Kovacs GG, Pankratz H, Weis J, Katona I, Scheuerle A, Streit WJ, Del Tredici K. Differential Glial Chitotriosidase 1 and Chitinase 3-like Protein 1 Expression in the Human Primary Visual Cortex and Cerebellum after Global Hypoxia-Ischemia. Neuroscience 2022; 506:91-113. [PMID: 36332693 DOI: 10.1016/j.neuroscience.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Here, we studied the neuroinflammation- and ischemia-related glial markers chitotriosidase 1 (CHIT1) and chitinase-3-like protein 1 (CHI3L1, alias YKL-40) in the human striate cortex and cerebellum at different time points after global hypoxic-ischemic brain injury (HIBI). Both regions differ considerably in their glial cell population but are supplied by the posterior circulation. CHIT1 and CHI3L1 expression was compared to changes in microglial (IBA1, CD68), astrocytic (GFAP, S100β), and neuronal markers (H&E, neurofilament heavy chain, NfH; calretinin, CALR) using immunohistochemistry and multiple-label immunofluorescence. Initial striatal cortical and cerebellar Purkinje cell damage, detectable already 1/2 d after HIBI, led to delayed neuronal death, whereas loss of cerebellar NfH-positive stellate and CALR-positive granule cells was variable. During the first week post-HIBI, a transient reduction of IBA1-positive microglia was observed in both regions, and fragmented/clasmatodendritic cerebellar Bergmann glia appeared. In long-term survivors, both brain regions displayed high densities of activated IBA1-positive cells and CD68-positive macrophages, which showed CHIT1 co-localization in the striate cortex. Furthermore, enlarged GFAP- and S100β-positive astroglia emerged in both regions around 9-10 d post-HIBI, i.e., along with clearance of dead neurons from the neuropil, although GFAP-/S100β-positive gemistocytic astrocytes that co-expressed CHI3L1 were found only in the striate cortex. Thus, only GFAP-/S100β-positive astrocytes in the striate cortex, but not cerebellar Bergmann glia, differentiated into CHI3L1-positive gemistocytes. CHIT1 was co-expressed almost entirely in macrophages in the striate cortex and not cerebellum of long-term survivors, thereby indicating that CHIT1 and CHI3L1 could be valuable biomarkers for monitoring the outcome of global HIBI.
Collapse
Affiliation(s)
- Deniz Yilmazer-Hanke
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany.
| | - Najwa Ouali Alami
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| | - Lubin Fang
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| | - Sigried Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Helmut Pankratz
- Institute of Forensic Medicine, Medical Faculty, Ludwig-Maximilian University Munich, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Angelika Scheuerle
- Department of Pathology, Section Neuropathology, University Hospital, Ulm, Germany
| | - Wolfgang J Streit
- Department of Neuroscience, College of Medicine, University of Florida, FL, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
29
|
Rifai OM, Longden J, O'Shaughnessy J, Sewell MDE, Pate J, McDade K, Daniels MJ, Abrahams S, Chandran S, McColl BW, Sibley CR, Gregory JM. Random forest modelling demonstrates microglial and protein misfolding features to be key phenotypic markers in C9orf72-ALS. J Pathol 2022; 258:366-381. [PMID: 36070099 PMCID: PMC9827842 DOI: 10.1002/path.6008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 01/19/2023]
Abstract
Clinical heterogeneity observed across patients with amyotrophic lateral sclerosis (ALS) is a known complicating factor in identifying potential therapeutics, even within cohorts with the same mutation, such as C9orf72 hexanucleotide repeat expansions (HREs). Thus, further understanding of pathways underlying this heterogeneity is essential for appropriate ALS trial stratification and the meaningful assessment of clinical outcomes. It has been shown that both inflammation and protein misfolding can influence ALS pathogenesis, such as the manifestation or severity of motor or cognitive symptoms. However, there has yet to be a systematic and quantitative assessment of immunohistochemical markers to interrogate the potential relevance of these pathways in an unbiased manner. To investigate this, we extensively characterised features of commonly used glial activation and protein misfolding stains in thousands of images of post-mortem tissue from a heterogeneous cohort of deeply clinically profiled patients with a C9orf72 HRE. Using a random forest model, we show that microglial staining features are the most accurate classifiers of disease status in our panel and that clinicopathological relationships exist between microglial activation status, TDP-43 pathology, and language dysfunction. Furthermore, we detected spatially resolved changes in fused in sarcoma (FUS) staining, suggesting that liquid-liquid phase shift of this aggregation-prone RNA-binding protein may be important in ALS caused by a C9orf72 HRE. Interestingly, no one feature alone significantly impacted the predictiveness of the model, indicating that the collective examination of all features, or a combination of several features, is what allows the model to be predictive. Our findings provide further support to the hypothesis of dysfunctional immune regulation and proteostasis in the pathogenesis of C9-ALS and provide a framework for digital analysis of commonly used neuropathological stains as a tool to enrich our understanding of clinicopathological relationships within and between cohorts. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Olivia M Rifai
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - James Longden
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Judi O'Shaughnessy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Michael DE Sewell
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Judith Pate
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Karina McDade
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | | | - Sharon Abrahams
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Human Cognitive Neuroscience-Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher R Sibley
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Jenna M Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
30
|
Woollacott IOC, Swift IJ, Sogorb‐Esteve A, Heller C, Knowles K, Bouzigues A, Russell LL, Peakman G, Greaves CV, Convery R, Heslegrave A, Rowe JB, Borroni B, Galimberti D, Tiraboschi P, Masellis M, Tartaglia MC, Finger E, van Swieten JC, Seelaar H, Jiskoot L, Sorbi S, Butler CR, Graff C, Gerhard A, Laforce R, Sanchez‐Valle R, de Mendonça A, Moreno F, Synofzik M, Vandenberghe R, Ducharme S, Ber IL, Levin J, Otto M, Pasquier F, Santana I, Zetterberg H, Rohrer JD. CSF glial markers are elevated in a subset of patients with genetic frontotemporal dementia. Ann Clin Transl Neurol 2022; 9:1764-1777. [PMID: 36245297 PMCID: PMC9639635 DOI: 10.1002/acn3.51672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Neuroinflammation has been shown to be an important pathophysiological disease mechanism in frontotemporal dementia (FTD). This includes activation of microglia, a process that can be measured in life through assaying different glia-derived biomarkers in cerebrospinal fluid. However, only a few studies so far have taken place in FTD, and even fewer focusing on the genetic forms of FTD. METHODS We investigated the cerebrospinal fluid concentrations of TREM2, YKL-40 and chitotriosidase using immunoassays in 183 participants from the Genetic FTD Initiative (GENFI) study: 49 C9orf72 (36 presymptomatic, 13 symptomatic), 49 GRN (37 presymptomatic, 12 symptomatic) and 23 MAPT (16 presymptomatic, 7 symptomatic) mutation carriers and 62 mutation-negative controls. Concentrations were compared between groups using a linear regression model adjusting for age and sex, with 95% bias-corrected bootstrapped confidence intervals. Concentrations in each group were correlated with the Mini-Mental State Examination (MMSE) score using non-parametric partial correlations adjusting for age. Age-adjusted z-scores were also created for the concentration of markers in each participant, investigating how many had a value above the 95th percentile of controls. RESULTS Only chitotriosidase in symptomatic GRN mutation carriers had a concentration significantly higher than controls. No group had higher TREM2 or YKL-40 concentrations than controls after adjusting for age and sex. There was a significant negative correlation of chitotriosidase concentration with MMSE in presymptomatic GRN mutation carriers. In the symptomatic groups, for TREM2 31% of C9orf72, 25% of GRN, and 14% of MAPT mutation carriers had a concentration above the 95th percentile of controls. For YKL-40 this was 8% C9orf72, 8% GRN and 0% MAPT mutation carriers, whilst for chitotriosidase it was 23% C9orf72, 50% GRN, and 29% MAPT mutation carriers. CONCLUSIONS Although chitotriosidase concentrations in GRN mutation carriers were the only significantly raised glia-derived biomarker as a group, a subset of mutation carriers in all three groups, particularly for chitotriosidase and TREM2, had elevated concentrations. Further work is required to understand the variability in concentrations and the extent of neuroinflammation across the genetic forms of FTD. However, the current findings suggest limited utility of these measures in forthcoming trials.
Collapse
Affiliation(s)
- Ione O. C. Woollacott
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Imogen J. Swift
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Aitana Sogorb‐Esteve
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Carolin Heller
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Kathryn Knowles
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Lucy L. Russell
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Georgia Peakman
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Caroline V. Greaves
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Rhian Convery
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | | | - James B. Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | | | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research InstituteUniversity of TorontoTorontoCanada
| | | | - Elizabeth Finger
- Department of Clinical Neurological SciencesUniversity of Western OntarioLondonOntarioCanada
| | | | - Harro Seelaar
- Department of NeurologyErasmus Medical CentreRotterdamThe Netherlands
| | - Lize Jiskoot
- Department of NeurologyErasmus Medical CentreRotterdamThe Netherlands
| | - Sandro Sorbi
- Department of NeurofarbaUniversity of FlorenceFlorenceItaly
- IRCCS Fondazione Don Carlo GnocchiFlorenceItaly
| | - Chris R. Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences DivisionUniversity of OxfordOxfordUnited Kingdom
- Department of Brain SciencesImperial College LondonUnited Kingdom
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of NeurobiologyCare Sciences and Society, Bioclinicum, Karolinska InstitutetSolnaSweden
- Unit for Hereditary Dementias, Theme AgingKarolinska University HospitalSolnaSweden
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging CentreUniversity of ManchesterManchesterUnited Kingdom
- Departments of Geriatric Medicine and Nuclear MedicineUniversity of Duisburg‐EssenEssenGermany
- Cerebral Function Unit, Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUnited Kingdom
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de MédecineUniversité LavalQuébecCanada
| | - Raquel Sanchez‐Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I SunyerUniversity of BarcelonaBarcelonaSpain
| | | | - Fermin Moreno
- Cognitive Disorders Unit, Department of NeurologyDonostia University HospitalSan SebastianGipuzkoaSpain
- Neuroscience AreaBiodonostia Health Research InstituteSan SebastianGipuzkoaSpain
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Neurology ServiceUniversity Hospitals LeuvenLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Simon Ducharme
- Douglas Mental Health University Institute, Department of PsychiatryMcGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & NeurosurgeryMcGill UniversityMontrealCanada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, AP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
- Centre de référence des démences rares ou précoces, IM2A, Département de NeurologieAP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
- Département de NeurologieAP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig‐Maximilians‐UniversitätMunichGermany
- Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems NeurologyMunichGermany
| | - Markus Otto
- Department of NeurologyUniversity of UlmUlmGermany
| | - Florence Pasquier
- Univ LilleLilleFrance
- Inserm 1172LilleFrance
- CHU, CNR‐MAJ, Labex Distalz, LiCEND LilleLilleFrance
| | - Isabel Santana
- Neurology Service, Faculty of MedicineUniversity Hospital of Coimbra (HUC), University of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell Biology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCLLondonUnited Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Hong Kong Center for Neurodegenerative DiseasesClear Water Bay, Hong KongChina
| | - Jonathan D. Rohrer
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) is an incurable, devastating neurodegenerative disease. Still, the diagnosis is mainly based on clinical symptoms, and the treatment options are strongly limited. However, the pipeline of potential treatments currently tested in clinical trials is promising. This review will discuss developments in ALS biomarker research and applications within the last 2 years and suggest future directions and needs. RECENT FINDINGS The diagnostic and prognostic utility of neurofilaments, a general marker for axoneuronal degeneration, has been confirmed by further studies in patients with ALS, and neurofilaments are finding their way into routine diagnostic and clinical trials. Additionally, there have been advancements in developing and implementing disease-specific biomarkers, especially in patients with a genetic variant, such as SOD1 or C9orf72 . Here, biomarkers have already been used as target markers and outcome parameters for novel treatment approaches. In addition, several novel biomarkers have shown encouraging results but should be discussed in the context of their early stage of assay and clinical establishment. SUMMARY The first biomarkers have found their way into clinical routine in ALS. In light of an increasing pipeline of potential treatments, further progress in discovering and implementing novel and existing biomarkers is crucial.
Collapse
Affiliation(s)
- Simon Witzel
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg
| | - Kristina Mayer
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg
- German Center for Neurodegenerative Diseases (DZNE), Site Ulm, Ulm, Germany
| |
Collapse
|
32
|
van der Ende EL, Heller C, Sogorb-Esteve A, Swift IJ, McFall D, Peakman G, Bouzigues A, Poos JM, Jiskoot LC, Panman JL, Papma JM, Meeter LH, Dopper EGP, Bocchetta M, Todd E, Cash D, Graff C, Synofzik M, Moreno F, Finger E, Sanchez-Valle R, Vandenberghe R, Laforce R, Masellis M, Tartaglia MC, Rowe JB, Butler C, Ducharme S, Gerhard A, Danek A, Levin J, Pijnenburg YAL, Otto M, Borroni B, Tagliavini F, de Mendonça A, Santana I, Galimberti D, Sorbi S, Zetterberg H, Huang E, van Swieten JC, Rohrer JD, Seelaar H. Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study. J Neuroinflammation 2022; 19:217. [PMID: 36064709 PMCID: PMC9446850 DOI: 10.1186/s12974-022-02573-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation is emerging as an important pathological process in frontotemporal dementia (FTD), but biomarkers are lacking. We aimed to determine the value of complement proteins, which are key components of innate immunity, as biomarkers in cerebrospinal fluid (CSF) and plasma of presymptomatic and symptomatic genetic FTD mutation carriers. METHODS We measured the complement proteins C1q and C3b in CSF by ELISAs in 224 presymptomatic and symptomatic GRN, C9orf72 or MAPT mutation carriers and non-carriers participating in the Genetic Frontotemporal Dementia Initiative (GENFI), a multicentre cohort study. Next, we used multiplex immunoassays to measure a panel of 14 complement proteins in plasma of 431 GENFI participants. We correlated complement protein levels with corresponding clinical and neuroimaging data, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). RESULTS CSF C1q and C3b, as well as plasma C2 and C3, were elevated in symptomatic mutation carriers compared to presymptomatic carriers and non-carriers. In genetic subgroup analyses, these differences remained statistically significant for C9orf72 mutation carriers. In presymptomatic carriers, several complement proteins correlated negatively with grey matter volume of FTD-related regions and positively with NfL and GFAP. In symptomatic carriers, correlations were additionally observed with disease duration and with Mini Mental State Examination and Clinical Dementia Rating scale® plus NACC Frontotemporal lobar degeneration sum of boxes scores. CONCLUSIONS Elevated levels of CSF C1q and C3b, as well as plasma C2 and C3, demonstrate the presence of complement activation in the symptomatic stage of genetic FTD. Intriguingly, correlations with several disease measures in presymptomatic carriers suggest that complement protein levels might increase before symptom onset. Although the overlap between groups precludes their use as diagnostic markers, further research is needed to determine their potential to monitor dysregulation of the complement system in FTD.
Collapse
Affiliation(s)
- Emma L. van der Ende
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Carolin Heller
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Imogen J. Swift
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David McFall
- Department of Pathology, University of California San Francisco, San Francisco, USA
| | - Georgia Peakman
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jackie M. Poos
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Lize C. Jiskoot
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jessica L. Panman
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Janne M. Papma
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Lieke H. Meeter
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Elise G. P. Dopper
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Emily Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario Donostia, San Sebastian, Gipuzkoa Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa Spain
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON Canada
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département Des Sciences Neurologiques, CHU de Québec, Université Laval, Québec, Canada
| | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON Canada
| | - James B. Rowe
- Cambridge University Centre for Frontotemporal Dementia, University of Cambridge, Cambridge, UK
| | - Chris Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute and McGill University Health Centre, McGill University, Montreal, Québec Canada
| | - Alexander Gerhard
- Department of Nuclear Medicine and Geriatric Medicine, University Hospital Essen, Essen, Germany
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Adrian Danek
- Neurologische Klinik Und Poliklinik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Neurologische Klinik Und Poliklinik, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yolande A. L. Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Markus Otto
- Department of Neurology, Universität Ulm, Ulm, Germany
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | | | - Isabel Santana
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Daniela Galimberti
- Fondazione IRCCS, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
- University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Eric Huang
- Department of Pathology, University of California San Francisco, San Francisco, USA
| | - John C. van Swieten
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jonathan D. Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Harro Seelaar
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
33
|
Swann OJ, Turner M, Heslegrave A, Zetterberg H. Fluid biomarkers and risk of neurodegenerative disease in retired athletes with multiple concussions: results from the International Concussion and Head Injury Research Foundation Brain health in Retired athletes Study of Ageing and Impact-Related Neurodegenerative Disease (ICHIRF-BRAIN study). BMJ Open Sport Exerc Med 2022; 8:e001327. [PMID: 36111130 PMCID: PMC9438045 DOI: 10.1136/bmjsem-2022-001327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives To investigate the association and utility of blood plasma markers of neurodegeneration in a population of retired athletes self-reporting multiple concussions throughout a sporting career. It is hypothesised that this type of athletic history would cause an increased prevalence of neurodegenerative disease, as detected by biomarkers for neurodegenerative disease processes. Methods One hundred and fifty-nine participants were recruited (90 males, 69 females, mean age 61.3±9.13 years), including 121 participants who had retired from playing professional or semiprofessional sports and self-reported ≥1 concussion during their careers (range 1–74; mean concussions=10.7). The control group included 38 age-matched and sex-matched controls, with no history of concussion. We measured neurofilament light (NfL) and tau (neurodegeneration markers), glial fibrillar acidic protein (GFAP) (astrocytic activation marker) and 40 and 42 amino acid-long amyloid beta (Aβ40 and Aβ42) (Alzheimer-associated amyloid pathology markers) concentrations using ultrasensitive single molecule array technology. Results We found retired athletes reporting one or more concussions throughout an athletic career showed no significant changes in NfL, tau, GFAP and Aβ40 and Aβ42 concentrations in comparison to a control group. No correlations were found between biomarkers and number of concussions (mean=10.7). A moderate correlation was found between NfL concentration and age. Conclusion No difference in blood concentrations of neurodegeneration markers NfL, tau, GFAP and Aβ40 and Aβ42 was found in retired athletes with a history of concussion compared with controls. An increased prevalence of neurodegenerative diseases is not detected by biomarkers in a population self-reporting multiple concussions. Trial registration number ISRCTN 11312093
Collapse
Affiliation(s)
- Owen James Swann
- UK Dementia Research Institute Fluid Biomarker Laboratory, University College London, London, UK
| | - Michael Turner
- International Concussion and Head Injury Research Foundation, London, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute Fluid Biomarker Laboratory, University College London, London, UK
- Department of Neurodegenerative Diseases, University College London, London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute Fluid Biomarker Laboratory, University College London, London, UK
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
34
|
Hok-A-Hin YS, Hoozemans JJM, Hu WT, Wouters D, Howell JC, Rábano A, van der Flier WM, Pijnenburg YAL, Teunissen CE, Del Campo M. YKL-40 changes are not detected in post-mortem brain of patients with Alzheimer's disease and frontotemporal lobar degeneration. Alzheimers Res Ther 2022; 14:100. [PMID: 35879733 PMCID: PMC9310415 DOI: 10.1186/s13195-022-01039-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022]
Abstract
Background YKL-40 (Chitinase 3-like I) is increased in CSF of Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) patients and is therefore considered a potential neuroinflammatory biomarker. Whether changed YKL-40 levels in the CSF reflect dysregulation of YKL-40 in the brain is not completely understood yet. We aimed to extensively analyze YKL-40 levels in the brain of AD and different FTLD pathological subtypes. The direct relationship between YKL-40 levels in post-mortem brain and ante-mortem CSF was examined in a small set of paired brain-CSF samples. Method YKL-40 was analyzed in post-mortem temporal and frontal cortex of non-demented controls and patients with AD and FTLD (including FTLD-Tau and FTLD-TDP) pathology by immunohistochemistry (temporal cortex: 51 controls and 56 AD and frontal cortex: 7 controls and 24 FTLD patients), western blot (frontal cortex: 14 controls, 5 AD and 67 FTLD patients), or ELISA (temporal cortex: 11 controls and 7 AD and frontal cortex: 14 controls, 5 AD and 67 FTLD patients). YKL-40 levels were also measured in paired post-mortem brain and ante-mortem CSF samples from dementia patients (n = 9, time-interval collection: 1.4 years) by ELISA. Results We observed that YKL-40 post-mortem brain levels were similar between AD, FTLD, and controls as shown by immunohistochemistry, western blot, and ELISA. Interestingly, strong YKL-40 immunoreactivity was observed in AD cases with cerebral amyloid angiopathy (CAA; n = 6). In paired CSF-brain samples, YKL-40 concentration was 8-times higher in CSF compared to brain. Conclusion Our data suggest that CSF YKL-40 changes may not reflect YKL-40 changes within AD and FTLD pathological brain areas. The YKL-40 reactivity associated with classical CAA hallmarks indicates a possible relationship between YKL-40, neuroinflammation, and vascular pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01039-y.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - William T Hu
- Department of Neurology, Center for Neurodegenerative Diseases Research, Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, USA
| | - Dorine Wouters
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jennifer C Howell
- Department of Neurology, Center for Neurodegenerative Diseases Research, Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, USA
| | - Alberto Rábano
- CIEN Tissue Bank, Alzheimer's Centre Reina Sofía-CIEN Foundation, Madrid, Spain
| | - Wiesje M van der Flier
- Alzheimer Centre Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU University Medical Centers, Amsterdam, The Netherlands.,Department of Epidemiology and Data Science, VU University Medical Centers, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Centre Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU University Medical Centers, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.,Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
35
|
van der Ende EL, Bron EE, Poos JM, Jiskoot LC, Panman JL, Papma JM, Meeter LH, Dopper EGP, Wilke C, Synofzik M, Heller C, Swift IJ, Sogorb-Esteve A, Bouzigues A, Borroni B, Sanchez-Valle R, Moreno F, Graff C, Laforce R, Galimberti D, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, Rowe JB, de Mendonça A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Otto M, Pijnenburg YAL, Sorbi S, Zetterberg H, Niessen WJ, Rohrer JD, Klein S, van Swieten JC, Venkatraghavan V, Seelaar H. A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain 2022; 145:1805-1817. [PMID: 34633446 PMCID: PMC9166533 DOI: 10.1093/brain/awab382] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Emma L van der Ende
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jackie M Poos
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jessica L Panman
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Janne M Papma
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Elise G P Dopper
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Carlo Wilke
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Carolin Heller
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Imogen J Swift
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, 20014 Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, 17176 Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 17176 Solna, Sweden
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Université Laval, G1Z 1J4 Québec, Canada
| | - Daniela Galimberti
- Centro Dino Ferrari, University of Milan, 20122 Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, ON M4N 3M5 Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, M5S 1A8 Toronto, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, ON N6A 3K7 London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - James B Rowe
- Cambridge University Centre for Frontotemporal Dementia, University of Cambridge, CB2 0SZ Cambridge, UK
| | | | | | - Isabel Santana
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute and McGill University Health Centre, McGill University, 3801 Montreal, Québec, Canada
| | - Christopher R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, OX3 9DU Oxford, UK
- Department of Brain Sciences, Imperial College London, SW7 2AZ London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ Manchester, UK
- Department of Nuclear Medicine and Geriatric Medicine, University Hospital Essen, 45 147 Essen, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | - Yolande A L Pijnenburg
- Department of Neurology, Alzheimer Center, Location VU University Medical Center Amsterdam Neuroscience, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139 Florence, Italy
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 405 30 Mölndal, Sweden
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Stefan Klein
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Vikram Venkatraghavan
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
36
|
Houghton OH, Mizielinska S, Gomez-Suaga P. The Interplay Between Autophagy and RNA Homeostasis: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Cell Dev Biol 2022; 10:838402. [PMID: 35573690 PMCID: PMC9096704 DOI: 10.3389/fcell.2022.838402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are neurodegenerative disorders that lie on a disease spectrum, sharing genetic causes and pathology, and both without effective therapeutics. Two pathways that have been shown to play major roles in disease pathogenesis are autophagy and RNA homeostasis. Intriguingly, there is an increasing body of evidence suggesting a critical interplay between these pathways. Autophagy is a multi-stage process for bulk and selective clearance of malfunctional cellular components, with many layers of regulation. Although the majority of autophagy research focuses on protein degradation, it can also mediate RNA catabolism. ALS/FTD-associated proteins are involved in many stages of autophagy and autophagy-mediated RNA degradation, particularly converging on the clearance of persistent pathological stress granules. In this review, we will summarise the progress in understanding the autophagy-RNA homeostasis interplay and how that knowledge contributes to our understanding of the pathobiology of ALS/FTD.
Collapse
Affiliation(s)
- O H Houghton
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - S Mizielinska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - P Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
37
|
Oeckl P, Anderl-Straub S, Von Arnim CAF, Baldeiras I, Diehl-Schmid J, Grimmer T, Halbgebauer S, Kort AM, Lima M, Marques TM, Ortner M, Santana I, Steinacker P, Verbeek MM, Volk AE, Ludolph AC, Otto M. Serum GFAP differentiates Alzheimer's disease from frontotemporal dementia and predicts MCI-to-dementia conversion. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328547. [PMID: 35477892 DOI: 10.1136/jnnp-2021-328547] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Reactive astrogliosis is a hallmark of Alzheimer's disease (AD) and frontotemporal dementia (FTD) but differences between the diseases and time course are unclear. Here, we used serum levels of the astroglial marker glial fibrillary acidic protein (GFAP) to investigate differences in patients with AD dementia, mild cognitive impairment (MCI)-AD and behavioural variant FTD (bvFTD). METHODS This multicentre study included serum samples from patients diagnosed with AD dementia (n=230), MCI-AD (n=111), bvFTD (n=140) and controls (n=129). A subgroup of patients with MCI-AD (n=32) was longitudinally followed-up for 3.9±2.6 years after sample collection. Serum levels of GFAP, neurofilament light chain (NfL) and pTau181 were measured by Simoa (Quanterix) and Ella (ProteinSimple). RESULTS In total, samples from 610 individuals from four clinical centres were investigated in this study. Serum GFAP levels in AD dementia were increased (median 375 pg/mL, IQR 276-505 pg/mL) compared with controls (167 pg/mL, IQR 108-234 pg/mL) and bvFTD (190 pg/mL, IQR 134-298 pg/mL, p<0.001). GFAP was already increased in the early disease phase (MCI-AD, 300 pg/mL, IQR 232-433 pg/mL, p<0.001) and was higher in patients with MCI-AD who developed dementia during follow-up (360 pg/mL, IQR 253-414 pg/mL vs 215 pg/mL, IQR 111-266 pg/mL, p<0.01, area under the curve (AUC)=0.77). Diagnostic performance of serum GFAP for AD (AUC=0.84, sensitivity 98%, specificity 60%, likelihood ratio 2.5) was comparable to serum pTau181 (AUC=0.89, sensitivity 80%, specificity 87%, likelihood ratio 6.0) but superior to serum NfL (AUC=0.71, sensitivity 92%, specificity 49%, likelihood ratio 1.8). CONCLUSIONS Our data indicate a different type of reactive astrogliosis in AD and bvFTD and support serum GFAP as biomarker for differential diagnosis and prediction of MCI-to-dementia conversion.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | | | - Christine A F Von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Division of Geriatrics, University Medical Center Göttingen, Göttingen, Niedersachsen, Germany
| | - Inês Baldeiras
- Center for Neurosciences and Cell Biology-CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar de Coimbra, Coimbra, Portugal
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | | | - Anna M Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Raboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marisa Lima
- Center for Neurosciences and Cell Biology-CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tainá M Marques
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Raboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marion Ortner
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Isabel Santana
- Center for Neurosciences and Cell Biology-CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar de Coimbra, Coimbra, Portugal
| | | | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Raboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Sachsen-Anhalt, Germany
| |
Collapse
|
38
|
Dreger M, Steinbach R, Otto M, Turner MR, Grosskreutz J. Cerebrospinal fluid biomarkers of disease activity and progression in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:422-435. [PMID: 35105727 PMCID: PMC8921583 DOI: 10.1136/jnnp-2021-327503] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/29/2021] [Indexed: 12/04/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disease, and only modest disease-modifying strategies have been established to date. Numerous clinical trials have been conducted in the past years, but have been severely hampered by the wide-ranging heterogeneity of both the biological origins and clinical characteristics of the disease. Thus, reliable biomarkers of disease activity are urgently needed to stratify patients into homogenous groups with aligned disease trajectories to allow a more effective design of clinical trial. In this review, the most promising candidate biomarkers in the cerebrospinal fluid (CSF) of patients with ALS will be summarised. Correlations between biomarker levels and clinical outcome parameters are discussed, while highlighting potential pitfalls and intercorrelations of these clinical parameters. Several CSF molecules have shown potential as biomarkers of progression and prognosis, but large, international, multicentric and longitudinal studies are crucial for validation. A more standardised choice of clinical endpoints in these studies, as well as the application of individualised models of clinical progression, would allow the quantification of disease trajectories, thereby allowing a more accurate analysis of the clinical implications of candidate biomarkers. Additionally, a comparative analysis of several biomarkers and ideally the application of a multivariate analysis including comprehensive genotypic, phenotypic and clinical characteristics collectively contributing to biomarker levels in the CSF, could promote their verification. Thus, reliable prognostic markers and markers of disease activity may improve clinical trial design and patient management in the direction of precision medicine.
Collapse
Affiliation(s)
- Marie Dreger
- Department of Neurology, Jena University Hospital, Jena, Thüringen, Germany
| | - Robert Steinbach
- Department of Neurology, Jena University Hospital, Jena, Thüringen, Germany
| | - Markus Otto
- Department of Neurology, University of Halle (Saale), Halle (Saale), Germany
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, Oxfordshire, UK
| | - Julian Grosskreutz
- Precision Neurology, Department of Neurology, University of Luebeck Human Medicine, Luebeck, Schleswig-Holstein, Germany
| |
Collapse
|
39
|
Fluid Biomarkers in Alzheimer’s Disease and Other Neurodegenerative Disorders: Toward Integrative Diagnostic Frameworks and Tailored Treatments. Diagnostics (Basel) 2022; 12:diagnostics12040796. [PMID: 35453843 PMCID: PMC9029739 DOI: 10.3390/diagnostics12040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of neurodegenerative diseases (NDDs) represents an increasing social burden, with the unsolved issue of disease-modifying therapies (DMTs). The failure of clinical trials treating Alzheimer′s Disease (AD) so far highlighted the need for a different approach in drug design and patient selection. Identifying subjects in the prodromal or early symptomatic phase is critical to slow down neurodegeneration, but the implementation of screening programs with this aim will have an ethical and social aftermath. Novel minimally invasive candidate biomarkers (derived from blood, saliva, olfactory brush) or classical cerebrospinal fluid (CSF) biomarkers have been developed in research settings to stratify patients with NDDs. Misfolded protein accumulation, neuroinflammation, and synaptic loss are the pathophysiological hallmarks detected by these biomarkers to refine diagnosis, prognosis, and target engagement of drugs in clinical trials. We reviewed fluid biomarkers of NDDs, considering their potential role as screening, diagnostic, or prognostic tool, and their present-day use in clinical trials (phase II and III). A special focus will be dedicated to novel techniques for the detection of misfolded proteins. Eventually, an applicative diagnostic algorithm will be proposed to translate the research data in clinical practice and select prodromal or early patients to be enrolled in the appropriate DMTs trials for NDDs.
Collapse
|
40
|
Masrori P, Beckers J, Gossye H, Van Damme P. The role of inflammation in neurodegeneration: novel insights into the role of the immune system in C9orf72 HRE-mediated ALS/FTD. Mol Neurodegener 2022; 17:22. [PMID: 35303907 PMCID: PMC8932121 DOI: 10.1186/s13024-022-00525-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is an important hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). An inflammatory reaction to neuronal injury is deemed vital for neuronal health and homeostasis. However, a continued activation of the inflammatory response can be detrimental to remaining neurons and aggravate the disease process. Apart from a disease modifying role, some evidence suggests that neuroinflammation may also contribute to the upstream cause of the disease. In this review, we will first focus on the role of neuroinflammation in the pathogenesis of chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansions (HRE)-mediated ALS/FTD (C9-ALS/FTD). Additionally, we will discuss evidence from ex vivo and in vivo studies and finally, we briefly summarize the trials and progress of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Pegah Masrori
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium.,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.,Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium
| | - Helena Gossye
- Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium.,VIB Center for Molecular Neurology, Neurodegenerative Brain Diseases, University of Antwerp, 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium. .,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium. .,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
41
|
Katzeff JS, Bright F, Phan K, Kril JJ, Ittner LM, Kassiou M, Hodges JR, Piguet O, Kiernan MC, Halliday GM, Kim WS. Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2022; 145:1598-1609. [PMID: 35202463 PMCID: PMC9166557 DOI: 10.1093/brain/awac077] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/12/2022] Open
Abstract
Frontotemporal dementia refers to a group of neurodegenerative disorders characterized by behaviour and language alterations and focal brain atrophy. Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease characterized by loss of motor neurons resulting in muscle wasting and paralysis. Frontotemporal dementia and amyotrophic lateral sclerosis are considered to exist on a disease spectrum given substantial overlap of genetic and molecular signatures. The predominant genetic abnormality in both frontotemporal dementia and amyotrophic lateral sclerosis is an expanded hexanucleotide repeat sequence in the C9orf72 gene. In terms of brain pathology, abnormal aggregates of TAR-DNA-binding protein-43 are predominantly present in frontotemporal dementia and amyotrophic lateral sclerosis patients. Currently, sensitive and specific diagnostic and disease surveillance biomarkers are lacking for both diseases. This has impeded the capacity to monitor disease progression during life and the development of targeted drug therapies for the two diseases. The purpose of this review is to examine the status of current biofluid biomarker discovery and development in frontotemporal dementia and amyotrophic lateral sclerosis. The major pathogenic proteins implicated in different frontotemporal dementia and amyotrophic lateral sclerosis molecular subtypes and proteins associated with neurodegeneration and the immune system will be discussed. Furthermore, the use of mass spectrometry-based proteomics as an emerging tool to identify new biomarkers in frontotemporal dementia and amyotrophic lateral sclerosis will be summarized.
Collapse
Affiliation(s)
- Jared S Katzeff
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Fiona Bright
- The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katherine Phan
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Jillian J Kril
- The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Michael Kassiou
- The University of Sydney, School of Chemistry, Sydney, NSW, Australia
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Psychology, Sydney, NSW, Australia
| | - Matthew C Kiernan
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Woojin Scott Kim
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| |
Collapse
|
42
|
Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 2022; 18:158-172. [PMID: 35115728 DOI: 10.1038/s41582-021-00616-3] [Citation(s) in RCA: 359] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Blood-derived biomarkers for brain and spinal cord diseases are urgently needed. The introduction of highly sensitive immunoassays led to a rapid increase in the number of potential blood-derived biomarkers for diagnosis and monitoring of neurological disorders. In 2018, the FDA authorized a blood test for clinical use in the evaluation of mild traumatic brain injury (TBI). The test measures levels of the astrocytic intermediate filament glial fibrillary acidic protein (GFAP) and neuroaxonal marker ubiquitin carboxy-terminal hydrolase L1. In TBI, blood GFAP levels are correlated with clinical severity and extent of intracranial pathology. Evidence also indicates that blood GFAP levels hold the potential to reflect, and might enable prediction of, worsening of disability in individuals with progressive multiple sclerosis. A growing body of evidence suggests that blood GFAP levels can be used to detect even subtle injury to the CNS. Most importantly, the successful completion of the ongoing validation of point-of-care platforms for blood GFAP might ameliorate the decision algorithms for acute neurological diseases, such as TBI and stroke, with important economic implications. In this Review, we provide a systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases. We propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting. In our opinion, the clinical use of blood GFAP measurements has the potential to contribute to accelerated diagnosis and improved prognostication, and represents an important step forward in the era of precision medicine.
Collapse
|
43
|
Halbgebauer S, Abu-Rumeileh S, Oeckl P, Steinacker P, Roselli F, Wiesner D, Mammana A, Beekes M, Kortazar-Zubizarreta I, Perez de Nanclares G, Capellari S, Giese A, Castilla J, Ludolph AC, Žáková D, Parchi P, Otto M. Blood β-Synuclein and Neurofilament Light Chain During the Course of Prion Disease. Neurology 2022; 98:e1434-e1445. [PMID: 35110380 DOI: 10.1212/wnl.0000000000200002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES For early diagnosis and disease monitoring of neurodegenerative diseases (NDs) reliable blood biomarkers are needed. Elevated levels of neurofilament light chain protein (NfL), an axonal damage marker, have been described across different NDs with highest values in prion diseases and amyotrophic lateral sclerosis (ALS). Synaptic degeneration is a common early feature in most NDs and seems to precede neuronal degeneration in prion disease. However, synaptic markers in blood are still missing. Here we investigated if the brain specific protein beta-synuclein might be a suitable blood biomarker for early diagnosis and evaluation of synaptic integrity in prion disease. METHODS We analyzed blood beta-synuclein with a newly established digital ELISA and NfL with single molecule array in samples obtained from human subjects and prion and ALS animal models. Furthermore, beta-synuclein was investigated in brain tissue of Creutzfeldt-Jakob disease (CJD) and control cases. RESULTS We investigated 308 patients including 129 prion disease cases, 8 presymptomatic PRNP mutation carriers, 60 ALS, 68 other ND and 43 control patients. In CJD symptomatic cases beta-synuclein and NfL were markedly increased compared to all other diagnostic groups (p<0.001). In the large majority of pre-symptomatic PRNP mutation carriers beta-synuclein and NfL levels were within normal range. In prion disease animal models, beta-synuclein and NfL displayed normal levels in the pre-symptomatic phase with a sudden elevation at disease onset and a plateau in the symptomatic phase. In contrast to NfL, beta-synuclein was neither elevated in symptomatic ALS patients nor in an ALS animal model. In the discrimination between prion disease and all other groups beta-synuclein (AUC: 0.97, 95% CI: 0.94-0.99, p<0.001) was superior to NfL (AUC: 0.91, 95% CI: 0.88-0.94, p<0.001). Additionally, brain tissue beta-synuclein showed significantly reduced levels in CJD compared to control patients (p<0.001). DISCUSSION Blood beta-synuclein was significantly elevated in CJD patients reflecting ongoing synaptic damage and showed good discriminative characteristics. We therefore propose it as a candidate blood marker for early diagnosis and monitoring of synaptic integrity in prion disease. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that serum beta synuclein concentration accurately distinguishes patients with symptomatic CJD from controls.
Collapse
Affiliation(s)
- Steffen Halbgebauer
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.,Department of Neurology, Halle University Hospital, Martin Luther University Halle/Wittenberg, Ernst-Grube Strasse 49, 06120 Halle (Saale), Germany
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Petra Steinacker
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Diana Wiesner
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Angela Mammana
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michael Beekes
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | | | | | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Armin Giese
- Department of Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Albert C Ludolph
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Dana Žáková
- Department of Prion Diseases, Slovak Medical University, Bratislava, Slovakia
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany .,Department of Neurology, Halle University Hospital, Martin Luther University Halle/Wittenberg, Ernst-Grube Strasse 49, 06120 Halle (Saale), Germany
| |
Collapse
|
44
|
Reyes-Leiva D, Dols-Icardo O, Sirisi S, Cortés-Vicente E, Turon-Sans J, de Luna N, Blesa R, Belbin O, Montal V, Alcolea D, Fortea J, Lleó A, Rojas-García R, Illán-Gala I. Pathophysiological Underpinnings of Extra-Motor Neurodegeneration in Amyotrophic Lateral Sclerosis: New Insights From Biomarker Studies. Front Neurol 2022; 12:750543. [PMID: 35115992 PMCID: PMC8804092 DOI: 10.3389/fneur.2021.750543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) lie at opposing ends of a clinical, genetic, and neuropathological continuum. In the last decade, it has become clear that cognitive and behavioral changes in patients with ALS are more frequent than previously recognized. Significantly, these non-motor features can impact the diagnosis, prognosis, and management of ALS. Partially overlapping neuropathological staging systems have been proposed to describe the distribution of TAR DNA-binding protein 43 (TDP-43) aggregates outside the corticospinal tract. However, the relationship between TDP-43 inclusions and neurodegeneration is not absolute and other pathophysiological processes, such as neuroinflammation (with a prominent role of microglia), cortical hyperexcitability, and synaptic dysfunction also play a central role in ALS pathophysiology. In the last decade, imaging and biofluid biomarker studies have revealed important insights into the pathophysiological underpinnings of extra-motor neurodegeneration in the ALS-FTLD continuum. In this review, we first summarize the clinical and pathophysiological correlates of extra-motor neurodegeneration in ALS. Next, we discuss the diagnostic and prognostic value of biomarkers in ALS and their potential to characterize extra-motor neurodegeneration. Finally, we debate about how biomarkers could improve the diagnosis and classification of ALS. Emerging imaging biomarkers of extra-motor neurodegeneration that enable the monitoring of disease progression are particularly promising. In addition, a growing arsenal of biofluid biomarkers linked to neurodegeneration and neuroinflammation are improving the diagnostic accuracy and identification of patients with a faster progression rate. The development and validation of biomarkers that detect the pathological aggregates of TDP-43 in vivo are notably expected to further elucidate the pathophysiological underpinnings of extra-motor neurodegeneration in ALS. Novel biomarkers tracking the different aspects of ALS pathophysiology are paving the way to precision medicine approaches in the ALS-FTLD continuum. These are essential steps to improve the diagnosis and staging of ALS and the design of clinical trials testing novel disease-modifying treatments.
Collapse
Affiliation(s)
- David Reyes-Leiva
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Oriol Dols-Icardo
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sonia Sirisi
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Elena Cortés-Vicente
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Janina Turon-Sans
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Noemi de Luna
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Ricard Rojas-García
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
- *Correspondence: Ignacio Illán-Gala
| |
Collapse
|
45
|
Zhu N, Santos-Santos M, Illán-Gala I, Montal V, Estellés T, Barroeta I, Altuna M, Arranz J, Muñoz L, Belbin O, Sala I, Sánchez-Saudinós MB, Subirana A, Videla L, Pegueroles J, Blesa R, Clarimón J, Carmona-Iragui M, Fortea J, Lleó A, Alcolea D. Plasma glial fibrillary acidic protein and neurofilament light chain for the diagnostic and prognostic evaluation of frontotemporal dementia. Transl Neurodegener 2021; 10:50. [PMID: 34893073 PMCID: PMC8662866 DOI: 10.1186/s40035-021-00275-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Astrocytes play an essential role in neuroinflammation and are involved in the pathogenesis of neurodenegerative diseases. Studies of glial fibrillary acidic protein (GFAP), an astrocytic damage marker, may help advance our understanding of different neurodegenerative diseases. In this study, we investigated the diagnostic performance of plasma GFAP (pGFAP), plasma neurofilament light chain (pNfL) and their combination for frontotemporal dementia (FTD) and Alzheimer's disease (AD) and their clinical utility in predicting disease progression. METHODS pGFAP and pNfL concentrations were measured in 72 FTD, 56 AD and 83 cognitively normal (CN) participants using the Single Molecule Array technology. Of the 211 participants, 199 underwent cerebrospinal (CSF) analysis and 122 had magnetic resonance imaging. We compared cross-sectional biomarker levels between groups, studied their diagnostic performance and assessed correlation between CSF biomarkers, cognitive performance and cortical thickness. The prognostic performance was investigated, analyzing cognitive decline through group comparisons by tertile. RESULTS Unlike pNfL, which was increased similarly in both clinical groups, pGFAP was increased in FTD but lower than in AD (all P < 0.01). Combination of both plasma markers improved the diagnostic performance to discriminate FTD from AD (area under the curve [AUC]: combination 0.78; pGFAP 0.7; pNfL 0.61, all P < 0.05). In FTD, pGFAP correlated with cognition, CSF and plasma NfL, and cortical thickness (all P < 0.05). The higher tertile of pGFAP was associated with greater change in MMSE score and poor cognitive outcome during follow-up both in FTD (1.40 points annually, hazard ratio [HR] 3.82, P < 0.005) and in AD (1.20 points annually, HR 2.26, P < 0.005). CONCLUSIONS pGFAP and pNfL levels differ in FTD and AD, and their combination is useful for distinguishing between the two diseases. pGFAP could also be used to track disease severity and predict greater cognitive decline during follow-up in patients with FTD.
Collapse
Affiliation(s)
- Nuole Zhu
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Autonomous University of Barcelona, 08913, Barcelona, Spain
| | - Miguel Santos-Santos
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
| | - Teresa Estellés
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Javier Arranz
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Laia Muñoz
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Isabel Sala
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Maria Belén Sánchez-Saudinós
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Andrea Subirana
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Fundación Catalana Síndrome de Down, Centre Mèdic Down, 08029, Barcelona, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
| | - Jordi Clarimón
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Fundación Catalana Síndrome de Down, Centre Mèdic Down, 08029, Barcelona, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Fundación Catalana Síndrome de Down, Centre Mèdic Down, 08029, Barcelona, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Autonomous University of Barcelona, 08913, Barcelona, Spain.
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Autonomous University of Barcelona, 08913, Barcelona, Spain.
| |
Collapse
|
46
|
Thompson AG, Oeckl P, Feneberg E, Bowser R, Otto M, Fischer R, Kessler B, Turner MR. Advancing mechanistic understanding and biomarker development in amyotrophic lateral sclerosis. Expert Rev Proteomics 2021; 18:977-994. [PMID: 34758687 DOI: 10.1080/14789450.2021.2004890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Proteomic analysis has contributed significantly to the study of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has helped to define the pathological change common to nearly all cases, namely intracellular aggregates of phosphorylated TDP-43, shifting the focus of pathogenesis in ALS toward RNA biology. Proteomics has also uniquely underpinned the delineation of disease mechanisms in model systems and has been central to recent advances in human ALS biomarker development. AREAS COVERED The contribution of proteomics to understanding the cellular pathological changes, disease mechanisms, and biomarker development in ALS are covered. EXPERT OPINION Proteomics has delivered unique insights into the pathogenesis of ALS and advanced the goal of objective measurements of disease activity to improve therapeutic trials. Further developments in sensitivity and quantification are expected, with application to the presymptomatic phase of human disease offering the hope of prevention strategies.
Collapse
Affiliation(s)
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (Dzne e.V.), Ulm, Germany
| | - Emily Feneberg
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Robert Bowser
- Departments of Neurology and Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Amor S, Nutma E, Marzin M, Puentes F. Imaging immunological processes from blood to brain in amyotrophic lateral sclerosis. Clin Exp Immunol 2021; 206:301-313. [PMID: 34510431 PMCID: PMC8561688 DOI: 10.1111/cei.13660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathology studies of amyotrophic lateral sclerosis (ALS) and animal models of ALS reveal a strong association between aberrant protein accumulation and motor neurone damage, as well as activated microglia and astrocytes. While the role of neuroinflammation in the pathology of ALS is unclear, imaging studies of the central nervous system (CNS) support the idea that innate immune activation occurs early in disease in both humans and rodent models of ALS. In addition, emerging studies also reveal changes in monocytes, macrophages and lymphocytes in peripheral blood as well as at the neuromuscular junction. To more clearly understand the association of neuroinflammation (innate and adaptive) with disease progression, the use of biomarkers and imaging modalities allow monitoring of immune parameters in the disease process. Such approaches are important for patient stratification, selection and inclusion in clinical trials, as well as to provide readouts of response to therapy. Here, we discuss the different imaging modalities, e.g. magnetic resonance imaging, magnetic resonance spectroscopy and positron emission tomography as well as other approaches, including biomarkers of inflammation in ALS, that aid the understanding of the underlying immune mechanisms associated with motor neurone degeneration in ALS.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Manuel Marzin
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
48
|
Boström G, Freyhult E, Virhammar J, Alcolea D, Tumani H, Otto M, Brundin RM, Kilander L, Löwenmark M, Giedraitis V, Lleó A, von Arnim CAF, Kultima K, Ingelsson M. Different Inflammatory Signatures in Alzheimer's Disease and Frontotemporal Dementia Cerebrospinal Fluid. J Alzheimers Dis 2021; 81:629-640. [PMID: 33814444 PMCID: PMC8203220 DOI: 10.3233/jad-201565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Neuroinflammatory processes are common in neurodegenerative diseases such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD), but current knowledge is limited as to whether cerebrospinal fluid (CSF) levels of neuroinflammatory proteins are altered in these diseases. Objective: To identify and characterize neuroinflammatory signatures in CSF from patients with AD, mild cognitive impairment (MCI), and FTD. Methods: We used proximity extension assay and ANOVA to measure and compare levels of 92 inflammatory proteins in CSF from 42 patients with AD, 29 with MCI due to AD (MCI/AD), 22 with stable MCI, 42 with FTD, and 49 control subjects, correcting for age, gender, collection unit, and multiple testing. Results: Levels of matrix metalloproteinase-10 (MMP-10) were increased in AD, MCI/AD, and FTD compared with controls (AD: fold change [FC] = 1.32, 95% confidence interval [CI] 1.14–1.53, q = 0.018; MCI/AD: FC = 1.53, 95% CI 1.20–1.94, q = 0.045; and FTD: FC = 1.42, 95% CI 1.10–1.83, q = 0.020). MMP-10 and eleven additional proteins were increased in MCI/AD, compared with MCI (q < 0.05). In FTD, 36 proteins were decreased, while none was decreased in AD or MCI/AD, compared with controls (q < 0.05). Conclusion: In this cross-sectional multi-center study, we found distinct patterns of CSF inflammatory marker levels in FTD and in both early and established AD, suggesting differing neuroinflammatory processes in the two disorders.
Collapse
Affiliation(s)
- Gustaf Boström
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Eva Freyhult
- Department of Medical Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Virhammar
- Department of Neuroscience, Neurology, Uppsala University Hospital, Uppsala, Sweden
| | - Daniel Alcolea
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Rose-Marie Brundin
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Malin Löwenmark
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Alberto Lleó
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Christine A F von Arnim
- Department of Neurology, Ulm University Hospital, Ulm, Germany.,Department of Geriatric Medicine, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
49
|
Abstract
Neuropsychiatric sequalae to coronavirus disease 2019 (COVID-19) infection are beginning to emerge, like previous Spanish influenza and severe acute respiratory syndrome episodes. Streptococcal infection in paediatric patients causing obsessive compulsive disorder (PANDAS) is another recent example of an infection-based psychiatric disorder. Inflammation associated with neuropsychiatric disorders has been previously reported but there is no standard clinical management approach established. Part of the reason is that it is unclear what factors determine the specific neuronal vulnerability and the efficacy of anti-inflammatory treatment in neuroinflammation. The emerging COVID-19 data suggested that in the acute stage, widespread neuronal damage appears to be the result of abnormal and overactive immune responses and cytokine storm is associated with poor prognosis. It is still too early to know if there are long-term-specific neuronal or brain regional damages associated with COVID-19, resulting in distinct neuropsychiatric disorders. In several major psychiatric disorders where neuroinflammation is present, patients with abnormal inflammatory markers may also experience less than favourable response or treatment resistance when standard treatment is used alone. Evidence regarding the benefits of co-administered anti-inflammatory agents such as COX-2 inhibitor is encouraging in selected patients though may not benefit others. Disease-modifying therapies are increasingly being applied to neuropsychiatric diseases characterised by abnormal or hyperreactive immune responses. Adjunct anti-inflammatory treatment may benefit selected patients and is definitely an important component of clinical management in the presence of neuroinflammation.
Collapse
|
50
|
Barro C, Zetterberg H. The blood biomarkers puzzle - A review of protein biomarkers in neurodegenerative diseases. J Neurosci Methods 2021; 361:109281. [PMID: 34237384 DOI: 10.1016/j.jneumeth.2021.109281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/07/2021] [Accepted: 07/04/2021] [Indexed: 02/04/2023]
Abstract
Neurodegenerative diseases are heterogeneous in their cause and clinical presentation making clinical assessment and disease monitoring challenging. Because of this, there is an urgent need for objective tools such as fluid biomarkers able to quantitate different aspects of the disease. In the last decade, technological improvements and awareness of the importance of biorepositories led to the discovery of an evolving number of fluid biomarkers covering the main characteristics of neurodegenerative diseases such as neurodegeneration, protein aggregates and inflammation. The ability to quantitate each aspect of the disease at a high definition enables a more precise stratification of the patients at inclusion in clinical trials, hence reducing the noise that may hamper the detection of therapeutical efficacy and allowing for smaller but likewise powered studies, which particularly improves the ability to start clinical trials for rare neurological diseases. Moreover, the use of fluid biomarkers has the potential to support a targeted therapeutical intervention, as it is now emerging for the treatment of amyloid-beta deposition in patients suffering from Alzheimer's disease. Here we review the knowledge that evolved from the measurement of fluid biomarker proteins in neurodegenerative conditions.
Collapse
Affiliation(s)
- Christian Barro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|