1
|
Fu S, Yang Z, He X, Liu D, Yang Z, Zhang J, Du L. Long-term Efficacy of Bilateral Globus Pallidus Stimulation in the Treatment of Meige Syndrome. Neuromodulation 2025; 28:532-544. [PMID: 38597859 DOI: 10.1016/j.neurom.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVE This study aimed to investigate the long-term efficacy and prognosis of bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) in patients with benign essential blepharospasm (BEB) and complete Meige syndrome, and to search for the best therapeutic subregion within the GPi. MATERIALS AND METHODS Data were collected for 36 patients with Meige syndrome who underwent bilateral GPi-DBS surgery at our hospital between March 2014 and February 2022. Using the Burk-Fahn-Marsden Dystonia Rating Scale (BFMDRS)-Movement (BFMDRS-M) and BFMDRS-Disability (BFMDRS-D), the severity of the symptoms of patients with complete Meige syndrome was evaluated before surgery and at specific time points after surgery. Patients with BEB were clinically evaluated for the severity of blepharospasm using BFMDRS-M, the Blepharospasm Disability Index (BDI), and Jankovic Rating Scale (JRS). Three-dimensional reconstruction of the GPi-electrode was performed in some patients using the lead-DBS software, and the correlation between GPi subregion volume of tissue activated (VTA) and symptom improvement was analyzed in patients six months after surgery. The follow-up duration ranged from six to 99 months. RESULTS Compared with preoperative scores, the results of all patients at six months after surgery and final follow-up showed a significant decrease (p < 0.05) in the mean BFMDRS-M score. Among them, the average BFMDRS-M improvement rates in patients with BEB at six months after surgery and final follow-up were 60.3% and 69.7%, respectively, whereas those in patients with complete Meige syndrome were 54.5% and 58.3%, respectively. The average JRS and BDI scores of patients with BEB also decreased significantly (p < 0.05) at six months after surgery and at the final follow-up (JRS improvement: 38.6% and 49.1%, respectively; BDI improvement: 42.6% and 57.4%, respectively). We were unable to identify significantly correlated prognostic factors. There was a significant correlation between GPi occipital VTA and symptom improvement in patients at six months after surgery (r = 0.34, p = 0.025). CONCLUSIONS Our study suggests that bilateral GPi-DBS is an effective treatment for Meige syndrome, with no serious postoperative complications. The VTA in the GPi subregion may be related to the movement score improvement. In addition, further research is needed to predict patients with poor surgical outcomes.
Collapse
|
2
|
Filip P, Lasica A, Kiakou D, Mueller K, Keller J, Urgošík D, Novák D, Jech R. Sweet spot for resting-state functional MRI effect of deep brain stimulation in dystonia lies in the lower pallidal area. Neuroimage Clin 2025; 45:103750. [PMID: 39986202 PMCID: PMC11889665 DOI: 10.1016/j.nicl.2025.103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Deep brain stimulation (DBS) of the internal globus pallidus (GPi) is a well-established, effective treatment for dystonia. Substantial variability of therapeutic success has been the one of the drivers of an ongoing debate about proper stimulation site and settings, with several indications of the notional sweet spot pointing to the lower GPi or even subpallidal area. METHODS The presented patient-blinded, random-order study with cross-sectional verification against healthy controls enrolled 17 GPi DBS idiopathic, cervical or generalised dystonia patients to compare the effect of the stimulation in the upper and lower GPi area, with the focus on sensorimotor network connectivity and local activity measured using functional magnetic resonance. RESULTS Stimulation brought both these parameters to levels closer to the state detected in healthy controls. This effect was much more pronounced during the stimulation in the lower GPi area or beneath it than in slightly higher positions, with stimulation-related changes detected by both metrics of interest in the sensorimotor cortex, striatum, thalamus and cerebellum. CONCLUSIONS All in all, this study not only replicated the results of previous studies on GPi DBS as a modality restoring sensorimotor network connectivity and local activity in dystonia towards the levels in healthy population, but also showed that lower GPi area or even subpallidal structures, be it white matter or even small, but essential nodes in the zona incerta as nucleus basalis of Meynert, are important regions to consider when programming DBS in dystonia patients.
Collapse
Affiliation(s)
- Pavel Filip
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 30, 120 00 Prague, Czech Republic; Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA; Department of Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Andrej Lasica
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 30, 120 00 Prague, Czech Republic
| | - Dimitra Kiakou
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 30, 120 00 Prague, Czech Republic; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karsten Mueller
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 30, 120 00 Prague, Czech Republic; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jiří Keller
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic; Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Dušan Urgošík
- Department of stereotactic and radiation neurosurgery, Nemocnice Na Homolce, Prague, Czech Republic
| | - Daniel Novák
- Department of Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 30, 120 00 Prague, Czech Republic.
| |
Collapse
|
3
|
Chan JL, Rawls AE, Wong JK, Hogarth P, Hilliard JD, Okun MS. Patient Selection for Deep Brain Stimulation for Pantothenate Kinase-Associated Neurodegeneration. Tremor Other Hyperkinet Mov (N Y) 2024; 14:51. [PMID: 39430809 PMCID: PMC11488193 DOI: 10.5334/tohm.929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Clinical Vignette A 23-year-old woman with pantothenate kinase-associated neurodegeneration (PKAN) presented with medication-refractory generalized dystonia and an associated gait impairment. Clinical Dilemma Bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) can be an effective treatment for dystonia. However, outcomes for PKAN DBS have been variable and there are no standardized criteria for patient selection. Clinical Solution Bilateral GPi DBS implantation resulted in improvement in dystonia and gait. The benefit has persisted over one year after implantation. Gap in Knowledge PKAN is a rare neurodegenerative disorder and evidence supporting the use of PKAN DBS has been largely limited to case reports and case series. Consequently, there is a paucity of long-term data, especially on gait-related outcomes. Expert Commentary The clinical characteristics of dystonia that respond to DBS tend to respond in PKAN. Clinicians counselling patients about the effects of DBS for PKAN should thoughtfully discuss gait and postural instability as important aspects to consider, especially as the disease will progress post-DBS.
Collapse
Affiliation(s)
- Jason L. Chan
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Ashley E. Rawls
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Joshua K. Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Penelope Hogarth
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Justin D. Hilliard
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael S. Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Cavallieri F, Mulroy E, Moro E. The history of deep brain stimulation. Parkinsonism Relat Disord 2024; 121:105980. [PMID: 38161106 DOI: 10.1016/j.parkreldis.2023.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Deep brain stimulation (DBS) surgery is an established and effective treatment for several movement disorders (tremor, Parkinson's disease, and dystonia), and is under investigation in numerous other neurological and psychiatric disorders. However, the origins and development of this neurofunctional technique are not always well understood and recognized. In this mini-review, we review the history of DBS, highlighting important milestones and the most remarkable protagonists (neurosurgeons, neurologists, and neurophysiologists) who pioneered and fostered this therapy throughout the 20th and early 21st century. Alongside DBS historical markers, we also briefly discuss newer developments in the field, and the future challenges which accompany such progress.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.
| |
Collapse
|
5
|
Iess G, Bonomo G, Levi V, Aquino D, Zekaj E, Mezza F, Servello D. MER and increased operative time are not risk factors for the formation of pneumocephalus during DBS. Sci Rep 2023; 13:9324. [PMID: 37291256 PMCID: PMC10250399 DOI: 10.1038/s41598-023-30289-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/21/2023] [Indexed: 06/10/2023] Open
Abstract
Although only recently directional leads have proven their potential to compensate for sub-optimally placed electrodes, optimal lead positioning remains the most critical factor in determining Deep Brain Stimulation (DBS) outcome. Pneumocephalus is a recognized source of error, but the factors that contribute to its formation are still a matter of debate. Among these, operative time is one of the most controversial. Because cases of DBS performed with Microelectrode Recordings (MER) are affected by an increase in surgical length, it is useful to analyze whether MER places patients at risk for increased intracranial air entry. Data of 94 patients from two different institutes who underwent DBS for different neurologic and psychiatric conditions were analyzed for the presence of postoperative pneumocephalus. Operative time and use of MER, as well as other potential risk factors for pneumocephalus (age, awake vs. asleep surgery, number of MER passages, burr hole size, target and unilateral vs. bilateral implants) were examined. Mann-Whitney U and Kruskal-Wallis tests were utilized to compare intracranial air distributions across groups of categorical variables. Partial correlations were used to assess the association between time and volume. A generalized linear model was created to predict the effects of time and MER on the volume of intracranial air, controlling for other potential risk factors identified: age, number of MER passages, awake vs. asleep surgery, burr hole size, target, unilateral vs. bilateral surgery. Significantly different distributions of air volume were noted between different targets, unilateral vs. bilateral implants, and number of MER trajectories. Patients undergoing DBS with MER did not present a significant increase in pneumocephalus compared to patients operated without (p = 0.067). No significant correlation was found between pneumocephalus and time. Using multivariate analysis, unilateral implants exhibited lower volumes of pneumocephalus (p = 0.002). Two specific targets exhibited significantly different volumes of pneumocephalus: the bed nucleus of the stria terminalis with lower volumes (p < 0.001) and the posterior hypothalamus with higher volumes (p = 0.011). MER, time, and other parameters analyzed failed to reach statistical significance. Operative time and use of intraoperative MER are not significant predictors of pneumocephalus during DBS. Air entry is greater for bilateral surgeries and may be also influenced by the specific stimulated target.
Collapse
Affiliation(s)
- Guglielmo Iess
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
- Università degli Studi di Milano, Milan, Italy.
- Department of Neurosurgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| | - Giulio Bonomo
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Levi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Edvin Zekaj
- Department of Neurosurgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Federica Mezza
- Department of Economics, University of California, Los Angeles, USA
| | - Domenico Servello
- Department of Neurosurgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
6
|
Lu H, Wang X, Lou X. Current applications for magnetic resonance-guided focused ultrasound in the treatment of Parkinson's disease. Chin Med J (Engl) 2023; 136:780-787. [PMID: 36914938 PMCID: PMC10150909 DOI: 10.1097/cm9.0000000000002319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 03/16/2023] Open
Abstract
ABSTRACT Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel and minimally invasive technology. Since the US Food and Drug Administration approved unilateral ventral intermediate nucleus-MRgFUS for medication-refractory essential tremor in 2016, studies on new indications, such as Parkinson's disease (PD), psychiatric diseases, and brain tumors, have been on the rise, and MRgFUS has become a promising method to treat such neurological diseases. Currently, as the second most common degenerative disease, PD is a research hotspot in the field of MRgFUS. The actions of MRgFUS on the brain range from thermoablation, blood-brain barrier (BBB) opening, to neuromodulation. Intensity is a key determinant of ultrasound actions. Generally, high intensity can be used to precisely thermoablate brain targets, whereas low intensity can be used as molecular therapies to modulate neuronal activity and open the BBB in conjunction with injected microbubbles. Here, we aimed to summarize advances in the application of MRgFUS for the treatment of PD, with a focus on thermal ablation, BBB opening, and neuromodulation, in the hope of informing clinicians of current applications.
Collapse
Affiliation(s)
- Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing 100853, China
| | - Xiaoyu Wang
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing 100853, China
| |
Collapse
|
7
|
Razmkon A, Abdollahifard S, Taherifard E, Roshanshad A, Shahrivar K. Effect of deep brain stimulation on freezing of gait in patients with Parkinson's disease: a systematic review. Br J Neurosurg 2023; 37:3-11. [PMID: 35603983 DOI: 10.1080/02688697.2022.2077308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVES Freezing of gait (FOG) is a disabling gait disorder in patients with Parkinson's disease (PD), characterized by recurrent episodes of halting steps. Dopaminergic drugs are common treatments for PD and FOG; however, these drugs may worsen FOG. Deep brain stimulation (DBS) is another option used to treat selected patients. The device needs to be programmed at a specific frequency, amplitude, and pulse width to achieve optimum effects for each patient. This systematic review aimed to evaluate the efficacy of DBS for FOG and its correlation with programmed parameters and the location of the electrodes in the brain. MATERIALS AND METHODS Data for this systematic review were gathered from five online databases: Medline (via PubMed), Scopus, Embase, Web of Science, and Cochrane Library (including both Cochrane Reviews and Cochrane Trials) with a broad search strategy. We included those articles that reported clinical trials and a specific measurement for FOG. RESULTS This review included 13 studies of DBS that targeted the subthalamic nucleus (STN), substantia nigra (SNr), or pedunculopontine nucleus (PPN). Our analysis showed that low-frequency stimulation (LFS) was superior to high-frequency stimulation (HFS) for improving FOG. In the long term, the efficacy of both LFS and HFS decreased. The effect of amplitude was variable, and this parameter needed to be adjusted for each patient. Bilateral stimulation was better than unilateral stimulation. CONCLUSION DBS is a promising choice for the treatment of severe FOG in patients with PD. Bilateral, low-frequency stimulation combined with medical therapy is associated with better responses, especially in the first 2 years of treatment. However, individualizing the DBS parameters should be considered to optimize treatment response.
Collapse
Affiliation(s)
- Ali Razmkon
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Unite de Recherche Clinique du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Saeed Abdollahifard
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Unite de Recherche Clinique du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Erfan Taherifard
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Department of Master Public Health (MPH), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Roshanshad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Master Public Health (MPH), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamyab Shahrivar
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Holland MT, Jiao J, Mantovani A, Anderson S, Mitchell KA, Safarpour D, Burchiel KJ. Identifying the therapeutic zone in globus pallidus deep brain stimulation for Parkinson's disease. J Neurosurg 2023; 138:329-336. [PMID: 35901683 DOI: 10.3171/2022.5.jns22152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The globus pallidus internus (GPI) has been demonstrated to be an effective surgical target for deep brain stimulation (DBS) treatment in patients with medication-refractory Parkinson's disease (PD). The ability of neurosurgeons to define the area of greatest therapeutic benefit within the globus pallidus (GP) may improve clinical outcomes in these patients. The objective of this study was to determine the best DBS therapeutic implantation site within the GP for effective treatment in PD patients. METHODS The authors performed a retrospective review of 56 patients who underwent bilateral GP DBS implantation at their institution during the period from January 2015 to January 2020. Each implanted contact was anatomically localized. Patients were followed for stimulation programming for at least 6 months. The authors reviewed preoperative and 6-month postsurgery clinical outcomes based on data from the Unified Parkinson's Disease Rating Scale Part III (UPDRS III), dyskinesia scores, and levodopa equivalent daily dose (LEDD). RESULTS Of the 112 leads implanted, the therapeutic cathode was most frequently located in the lamina between the GPI external segment (GPIe) and the GP externus (GPE) (n = 40). Other common locations included the GPE (n = 24), the GPIe (n = 15), and the lamina between the GPI internal segment (GPIi) and the GPIe (n = 14). In the majority of patients (73%) a monopolar programming configuration was used. At 6 months postsurgery, UPDRS III off medications (OFF) and on stimulation (ON) scores significantly improved (z = -4.02, p < 0.001), as did postsurgery dyskinesia ON scores (z = -4.08, p < 0.001) and postsurgery LEDD (z = -4.7, p < 0.001). CONCLUSIONS Though the ventral GP (pallidotomy target) has been a commonly used target for GP DBS, a more dorsolateral target may be more effective for neuromodulation strategies. The assessment of therapeutic contact locations performed in this study showed that the lamina between GPI and GPE used in most patients is the optimal central stimulation target. This information should improve preoperative GP targeting.
Collapse
Affiliation(s)
- Marshall T Holland
- 1Department of Neurological Surgery, University of Alabama at Birmingham, Alabama; and
| | | | - Alessandra Mantovani
- 3Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | | - Katherine A Mitchell
- 3Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | | - Kim J Burchiel
- 3Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
9
|
Baker S, Tekriwal A, Felsen G, Christensen E, Hirt L, Ojemann SG, Kramer DR, Kern DS, Thompson JA. Automatic extraction of upper-limb kinematic activity using deep learning-based markerless tracking during deep brain stimulation implantation for Parkinson's disease: A proof of concept study. PLoS One 2022; 17:e0275490. [PMID: 36264986 PMCID: PMC9584454 DOI: 10.1371/journal.pone.0275490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Optimal placement of deep brain stimulation (DBS) therapy for treating movement disorders routinely relies on intraoperative motor testing for target determination. However, in current practice, motor testing relies on subjective interpretation and correlation of motor and neural information. Recent advances in computer vision could improve assessment accuracy. We describe our application of deep learning-based computer vision to conduct markerless tracking for measuring motor behaviors of patients undergoing DBS surgery for the treatment of Parkinson's disease. Video recordings were acquired during intraoperative kinematic testing (N = 5 patients), as part of standard of care for accurate implantation of the DBS electrode. Kinematic data were extracted from videos post-hoc using the Python-based computer vision suite DeepLabCut. Both manual and automated (80.00% accuracy) approaches were used to extract kinematic episodes from threshold derived kinematic fluctuations. Active motor epochs were compressed by modeling upper limb deflections with a parabolic fit. A semi-supervised classification model, support vector machine (SVM), trained on the parameters defined by the parabolic fit reliably predicted movement type. Across all cases, tracking was well calibrated (i.e., reprojection pixel errors 0.016-0.041; accuracies >95%). SVM predicted classification demonstrated high accuracy (85.70%) including for two common upper limb movements, arm chain pulls (92.30%) and hand clenches (76.20%), with accuracy validated using a leave-one-out process for each patient. These results demonstrate successful capture and categorization of motor behaviors critical for assessing the optimal brain target for DBS surgery. Conventional motor testing procedures have proven informative and contributory to targeting but have largely remained subjective and inaccessible to non-Western and rural DBS centers with limited resources. This approach could automate the process and improve accuracy for neuro-motor mapping, to improve surgical targeting, optimize DBS therapy, provide accessible avenues for neuro-motor mapping and DBS implantation, and advance our understanding of the function of different brain areas.
Collapse
Affiliation(s)
- Sunderland Baker
- Department of Human Biology and Kinesiology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Anand Tekriwal
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Elijah Christensen
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Lisa Hirt
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Steven G. Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Daniel R. Kramer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Drew S. Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John A. Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
10
|
Deep brain stimulation in dystonia: factors contributing to variability in outcome in short and long term follow-up. Curr Opin Neurol 2022; 35:510-517. [PMID: 35787538 DOI: 10.1097/wco.0000000000001072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is currently the most effective treatment for medically refractory dystonia with globus pallidus internus (GPi) usually the preferred target. Despite the overall success of DBS in dystonia, there remains variability in treatment outcome in both short and long-term follow-up, due to various factors. Factors contributing to variability in outcome comprise 'Dystonia Related' including dystonia classification, semiology, duration, body distribution, orthopaedic deformity, aetiology and genetic cause. The majority of these factors are identifiable from clinical assessment, brain MRI and genetic testing, and therefore merit careful preoperative consideration. 'DBS related' factors include brain target, accuracy of lead placement, stimulation parameters, time allowed for response, neurostimulation technology employed and DBS induced side-effects. In this review, factors contributing to variability in short and long-term dystonia DBS outcome are reviewed and discussed. RECENT FINDINGS The recognition of differential DBS benefit in monogenic dystonia, increasing experience with subthalamic nucleus (STN) DBS and in DBS for Meige syndrome, elucidation of DBS side effects and novel neurophysiological and imaging techniques to assist in predicting clinical outcome. SUMMARY Improved understanding of factors contributing to variability of DBS outcome in dystonia may assist in patient selection and predicting surgical outcomes.
Collapse
|
11
|
da Silva Lapa JD, Godinho FLF, Teixeira MJ, Listik C, Iglesio RF, Duarte KP, Cury RG. Should the Globus Pallidus Targeting Be Refined in Dystonia? J Neurol Surg A Cent Eur Neurosurg 2021; 83:361-367. [PMID: 34808675 DOI: 10.1055/s-0041-1735856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND STUDY AIMS Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is a highly effective therapy for primary generalized and focal dystonias, but therapeutic success is compromised by a nonresponder rate of up to 20%. Variability in electrode placement and in tissue stimulated inside the GPi may explain in part different outcomes among patients. Refinement of the target within the pallidal area could be helpful for surgery planning and clinical outcomes. The objective of this study was to discuss current and potential methodological (somatotopy, neuroimaging, and neurophysiology) aspects that might assist neurosurgical targeting of the GPi, aiming to treat generalized or focal dystonia. METHODS We selected published studies by searching electronic databases and scanning the reference lists for articles that examined the anatomical and electrophysiologic aspects of the GPi in patients with idiopathic/inherited dystonia who underwent functional neurosurgical procedures. RESULTS The sensorimotor sector of the GPi was the best target to treat dystonic symptoms, and was localized at its lateral posteroventral portion. The effective volume of tissue activated (VTA) to treat dystonia had a mean volume of 153 mm3 in the posterior GPi area. Initial tractography studies evaluated the close relation between the electrode localization and pallidothalamic tract to control dystonic symptoms.Regarding the somatotopy, the more ventral, lateral, and posterior areas of the GPi are associated with orofacial and cervical representation. In contrast, the more dorsal, medial, and anterior areas are associated with the lower limbs; between those areas, there is the representation of the upper limb. Excessive pallidal synchronization has a peak at the theta band of 3 to 8 Hz, which might be responsible for generating dystonic symptoms. CONCLUSIONS Somatotopy assessment of posteroventral GPi contributes to target-specific GPi sectors related to segmental body symptoms. Tractography delineates GPi output pathways that might guide electrode implants, and electrophysiology might assist in pointing out areas of excessive theta synchronization. Finally, the identification of oscillatory electrophysiologic features that correlate with symptoms might enable closed-loop approaches in the future.
Collapse
Affiliation(s)
- Jorge Dornellys da Silva Lapa
- Neurosurgery Unit, Fundação de Beneficiência Hospital de Cirurgia, Cirurgia, Aracaju, Sergipe, Brazil.,Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Fábio Luiz Franceschi Godinho
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | | | - Clarice Listik
- Movement Disorders Center, Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, São Paulo, Brazil
| | - Ricardo Ferrareto Iglesio
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Kleber Paiva Duarte
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Kamel WA, Majumdar P, Matis G, Fenoy AJ, Balakrishnan S, Zirh AT, Cevik A, Tomar AK, Ouerchefani N. Surgical Management for Dystonia: Efficacy of Deep Brain Stimulation in the Long Term. Neurol Int 2021; 13:371-386. [PMID: 34449699 PMCID: PMC8395937 DOI: 10.3390/neurolint13030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction: Dystonia is a movement disorder substantially affecting the quality of life. Botulinum Neurotoxin (BoNT) is used intramuscularly as a treatment for dystonia; however, not all dystonia patients respond to this treatment. Deep brain stimulation (DBS) is an established treatment for Parkinson’s disease (PD) and essential tremor, but it can help in dystonia as well. Objectives: We studied a total of 67 dystonia patients who were treated with DBS over a period of 7 years to find out the long-term efficacy of DBS in those patients. First, we calculated patient improvement in post-surgery follow-up programs using the Global Dystonia Severity scale (GDS) and Burke–Fahn–Marsden dystonia rating scale (BFMDRS). Secondly, we analyzed the scales scores to see if there was any statistical significance. Methods: In our study we analyzed patients with ages from 38 to 78 years with dystonia who underwent DBS surgery between January 2014 and December 2020 in four different centers (India, Kuwait, Egypt, and Turkey). The motor response to DBS surgery was retrospectively measured for each patient during every follow-up visit using the GDS and the BFMDRS scales. Results: Five to 7 years post-DBS, the mean reduction in the GDS score was 30 ± 1.0 and for the BFMDRS score 26 ± 1.0. The longitudinal change in scores at 12 and 24 months post-op was also significant with mean reductions in GDS and BFMDRS scores of 68 ± 1.0 and 56 ± 1.0, respectively. The p-values were <0.05 for our post-DBS dystonia patients. Conclusions: This study illustrates DBS is an established, effective treatment option for patients with different dystonias, such as generalized, cervical, and various brain pathology-induced dystonias. Although symptoms are not completely eliminated, continuous improvements are noticed throughout the post-stimulation time frame.
Collapse
Affiliation(s)
- Walaa A. Kamel
- Neurology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
- Neurology Department, Ibn-Sina Hospital, Kuwait City 25427, Kuwait
| | - Pritam Majumdar
- Department of Stereotactic and Functional Neurosurgery, University Cologne Hospital, 50931 Cologne, Germany;
- Correspondence:
| | - Georgios Matis
- Department of Stereotactic and Functional Neurosurgery, University Cologne Hospital, 50931 Cologne, Germany;
| | - Albert J. Fenoy
- Department of Neurosurgery, McGovern Medical School, The University of Texas at Houston, UTHealth Neurosciences, Houston, TX 77030, USA;
| | - Shankar Balakrishnan
- Department of Neurology and Neuromodulation, MIOT International Hospital, Hennai 600089, India;
| | - Ali T. Zirh
- Department of Neurosurgery, Istanbul Medipol University, Istanbul 34810, Turkey;
| | - Aslihan Cevik
- Department of Neurosurgery, Istanbul Aydin University, Istanbul Medical Park Florya, Istanbul 34295, Turkey;
| | - Amit Kumar Tomar
- Department of Anesthesia and Neurosurgery, Indo-Gulf Hospital, Noida 201301, India;
| | | |
Collapse
|
13
|
Permezel F. Brain MRI-guided focused ultrasound conceptualised as a tool for brain network intervention. J Clin Neurosci 2021; 90:370-379. [PMID: 34275578 DOI: 10.1016/j.jocn.2021.05.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/02/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging guided high intensity focused ultrasound (HIFU) has emerged as a tool offering incisionless intervention on brain tissue. The low risk and rapid recovery from this procedure, in addition to the ability to assess for clinical benefit and adverse events intraprocedurally, makes it an ideal tool for intervention upon brain networks both for clinical and research applications. This review article proposes that conceptualising brain focused ultrasound as a tool for brain network intervention and adoption of methodology to complement this approach may result in better clinical outcomes, fewer adverse events and may unveil or allow treatment opportunities not otherwise possible. A brief introduction to network neuroscience is discussed before a description of pathological brain networks is provided for a number of conditions for which MRI-guided brain HIFU intervention has been implemented. Essential Tremor is discussed as the most advanced example of MRI-guided brain HIFU intervention adoption along with the issues that present with this treatment modality compared to alternatives. The brain network intervention paradigm is proposed to overcome these issues and a number of examples of implementation of this are discussed. The ability of low intensity MRI guided focussed ultrasound to neuromoduate brain tissue without lesioning is introduced. This tool is discussed with regards to its potential clinical application as well as its potential to further our understanding of network neuroscience via its ability to interrogate brain networks without damaging tissue. Finally, a number of current clinical trials utilising brain focused ultrasound are discussed, along with the additional applications available from the utilisation of low intensity focused ultrasound.
Collapse
Affiliation(s)
- Fiona Permezel
- Austin Hospital, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Austin Hospital, Victoria, Australia.
| |
Collapse
|
14
|
Adair DSP, Gomes KS, Kiss ZHT, Gobbi DG, Starreveld YP. Tactics: an open-source platform for planning, simulating and validating stereotactic surgery. Comput Assist Surg (Abingdon) 2021; 25:1-14. [PMID: 32401082 DOI: 10.1080/24699322.2020.1760354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Frame-based stereotaxy is widely used for planning and implanting deep-brain electrodes. In 2013, as part of a clinical study on deep-brain stimulation for treatment-resistant depression, our group identified a need for software to simulate and plan stereotactic procedures. Shortcomings in extant commercial systems encouraged us to develop Tactics. Tactics is purpose-designed for frame-based stereotactic placement of electrodes. The workflow is far simpler than commercial systems. By simulating specific electrode placement, immediate in-context view of each electrode contact, and the cortical entry site are available within seconds. Post implantation, electrode placement is verified by linearly registering post-operative images. Tactics has been particularly helpful for invasive electroencephalography electrodes where as many as 20 electrodes are planned and placed within minutes. Currently, no commercial system has a workflow supporting the efficient placement of this many electrodes. Tactics includes a novel implementation of automated frame localization and a user-extensible mechanism for importing electrode specifications for visualization of individual electrode contacts. The system was systematically validated, through comparison against gold-standard techniques and quantitative analysis of targeting accuracy using a purpose-built imaging phantom mountable by a stereotactic frame. Internal to our research group, Tactics has been used to plan over 300 depth-electrode targets and trajectories in over 50 surgical cases, and to plan dozens of stereotactic biopsies. Source code and pre-built binaries for Tactics are public and open-source, enabling use and contribution by the extended community.
Collapse
Affiliation(s)
- David S P Adair
- Department of Radiology and Calgary Image Processing and Analysis Centre, University of Calgary, Calgary, Canada
| | - Keith S Gomes
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Zelma H T Kiss
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - David G Gobbi
- Department of Radiology and Calgary Image Processing and Analysis Centre, University of Calgary, Calgary, Canada
| | - Yves P Starreveld
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
15
|
Mulroy E, Vijiaratnam N, De Roquemaurel A, Bhatia KP, Zrinzo L, Foltynie T, Limousin P. A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism Relat Disord 2021; 87:142-154. [PMID: 34074583 DOI: 10.1016/j.parkreldis.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
High frequency deep brain stimulation (DBS) of the internal portion of the globus pallidus has, in the last two decades, become a mainstream therapy for the management of medically-refractory dystonia syndromes. Such increasing uptake places an onus on movement disorder physicians to become familiar with this treatment modality, in particular optimal patient selection for the procedure and how to troubleshoot problems relating to sub-optimal efficacy and therapy-related side effects. Deep brain stimulation for dystonic conditions presents some unique challenges. For example, the frequent lack of immediate change in clinical status following stimulation alterations means that programming often relies on personal experience and local practice rather than real-time indicators of efficacy. Further, dystonia is a highly heterogeneous disorder, making the development of unifying guidelines and programming algorithms for DBS in this population difficult. Consequently, physicians may feel less confident in managing DBS for dystonia as compared to other indications e.g. Parkinson's disease. In this review, we integrate our years of personal experience of the programming of DBS systems for dystonia with a critical appraisal of the literature to produce a practical guide for troubleshooting common issues encountered in patients with dystonia treated with DBS, in the hope of improving the care for these patients.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexis De Roquemaurel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
16
|
Tisch S, Kumar KR. Pallidal Deep Brain Stimulation for Monogenic Dystonia: The Effect of Gene on Outcome. Front Neurol 2021; 11:630391. [PMID: 33488508 PMCID: PMC7820073 DOI: 10.3389/fneur.2020.630391] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Globus pallidus internus deep brain stimulation (GPi DBS) is the most effective intervention for medically refractory segmental and generalized dystonia in both children and adults. Predictive factors for the degree of improvement after GPi DBS include shorter disease duration and dystonia subtype with idiopathic isolated dystonia usually responding better than acquired combined dystonias. Other factors contributing to variability in outcome may include body distribution, pattern of dystonia and DBS related factors such as lead placement and stimulation parameters. The responsiveness to DBS appears to vary between different monogenic forms of dystonia, with some improving more than others. The first observation in this regard was reports of superior DBS outcomes in DYT-TOR1A (DYT1) dystonia, although other studies have found no difference. Recently a subgroup with young onset DYT-TOR1A, more rapid progression and secondary worsening after effective GPi DBS, has been described. Myoclonus dystonia due to DYT-SCGE (DYT11) usually responds well to GPi DBS. Good outcomes following GPi DBS have also been documented in X-linked dystonia Parkinsonism (DYT3). In contrast, poorer, more variable DBS outcomes have been reported in DYT-THAP1 (DYT6) including a recent larger series. The outcome of GPi DBS in other monogenic isolated and combined dystonias including DYT-GNAL (DYT25), DYT-KMT2B (DYT28), DYT-ATP1A3 (DYT12), and DYT-ANO3 (DYT24) have been reported with varying results in smaller numbers of patients. In this article the available evidence for long term GPi DBS outcome between different genetic dystonias is reviewed to reappraise popular perceptions of expected outcomes and revisit whether genetic diagnosis may assist in predicting DBS outcome.
Collapse
Affiliation(s)
- Stephen Tisch
- Department of Neurology, St Vincent's Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
17
|
Scorza D, El Hadji S, Cortés C, Bertelsen Á, Cardinale F, Baselli G, Essert C, Momi ED. Surgical planning assistance in keyhole and percutaneous surgery: A systematic review. Med Image Anal 2021; 67:101820. [PMID: 33075642 DOI: 10.1016/j.media.2020.101820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/07/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
Surgical planning of percutaneous interventions has a crucial role to guarantee the success of minimally invasive surgeries. In the last decades, many methods have been proposed to reduce clinician work load related to the planning phase and to augment the information used in the definition of the optimal trajectory. In this survey, we include 113 articles related to computer assisted planning (CAP) methods and validations obtained from a systematic search on three databases. First, a general formulation of the problem is presented, independently from the surgical field involved, and the key steps involved in the development of a CAP solution are detailed. Secondly, we categorized the articles based on the main surgical applications, which have been object of study and we categorize them based on the type of assistance provided to the end-user.
Collapse
Affiliation(s)
- Davide Scorza
- Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain; Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy; Biodonostia Health Research Institute, Donostia-San Sebastián, Spain.
| | - Sara El Hadji
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy.
| | - Camilo Cortés
- Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain; Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
| | - Álvaro Bertelsen
- Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain; Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
| | - Francesco Cardinale
- Claudio Munari Centre for Epilepsy and Parkinson surgery, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda (ASST GOM Niguarda), Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Caroline Essert
- ICube Laboratory, CNRS, UMR 7357, Université de Strasbourg, Strasbourg, France
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| |
Collapse
|
18
|
Li H, Wang T, Zhang C, Su D, Lai Y, Sun B, Li D, Wu Y. Asleep Deep Brain Stimulation in Patients With Isolated Dystonia: Stereotactic Accuracy, Efficacy, and Safety. Neuromodulation 2020; 24:272-278. [PMID: 33325608 DOI: 10.1111/ner.13341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Lead placement for deep brain stimulation (DBS) is routinely performed using neuroimaging or microelectrode recording (MER). Recent studies have demonstrated that DBS under general anesthesia using an imaging-guided target technique ("asleep" DBS) can be performed accurately and effectively with lower surgery complication rates than the MER-guided target method under local anesthesia ("awake" DBS). This suggests that asleep DBS may be a more acceptable method. However, there is limited direct evidence focused on isolated dystonia using this method. Therefore, this study aimed to investigate the clinical outcomes and targeting accuracy in patients with dystonia who underwent asleep DBS. MATERIALS AND METHODS We examined 56 patients (112 leads) with isolated dystonia who underwent asleep DBS targeting in the globus pallidus internus (GPi) and subthalamic nucleus (STN). The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) scores were assessed preoperatively and at 12-month follow-up (12 m-FU). The lead accuracy was evaluated by comparing the coordinates of the preoperative plan with those of the final electrode implantation location. Other measures analyzed included stimulation parameters and adverse events (AEs). RESULTS For both GPi and STN cohorts, mean BFMDRS motor scores were significantly lower at 12 m-FU (8.9 ± 10.9 and 4.6 ± 5.7 points) than at baseline (22.6 ± 16.4 and 16.1 ± 14.1 points, p < 0.001). The mean difference between the planned target and the distal contact of the leads was 1.33 ± 0.54 mm for the right brain electrodes and 1.50 ± 0.57 mm for the left, determined by Euclidian distance. No perioperative complications or AEs related to the device were observed during the complete follow-up. However, AEs associated with stimulation occurred in 12 and 6 patients in the GPi and STN groups, respectively. CONCLUSIONS Asleep DBS may be an accurate, effective, and safe method for treating patients with isolated dystonia regardless of the stimulation target.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daoqing Su
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, China
| | - Yijie Lai
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Atkinson-Clement C, Tarrano C, Porte CA, Wattiez N, Delorme C, McGovern EM, Brochard V, Thobois S, Tranchant C, Grabli D, Degos B, Corvol JC, Pedespan JM, Krystkoviak P, Houeto JL, Degardin A, Defebvre L, Valabregue R, Rosso C, Apartis E, Vidailhet M, Pouget P, Roze E, Worbe Y. Dissociation in reactive and proactive inhibitory control in Myoclonus dystonia. Sci Rep 2020; 10:13933. [PMID: 32811896 PMCID: PMC7434767 DOI: 10.1038/s41598-020-70926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/27/2020] [Indexed: 12/03/2022] Open
Abstract
Myoclonus-dystonia (MD) is a syndrome characterized by myoclonus of subcortical origin and dystonia, frequently associated with psychiatric comorbidities. The motor and psychiatric phenotypes of this syndrome likely result from cortico-striato-thamalo-cerebellar-cortical pathway dysfunction. We hypothesized that reactive and proactive inhibitory control may be altered in these patients. Using the Stop Signal Task, we assessed reactive and proactive inhibitory control in MD patients with (n = 12) and without (n = 21) deep brain stimulation of the globus pallidus interna and compared their performance to matched healthy controls (n = 24). Reactive inhibition was considered as the ability to stop an already initiated action and measured using the stop signal reaction time. Proactive inhibition was assessed through the influence of several consecutive GO or STOP trials on decreased response time or inhibitory process facilitation. The proactive inhibition was solely impaired in unoperated MD patients. Patients with deep brain stimulation showed impairment in reactive inhibition, independent of presence of obsessive–compulsive disorders. This impairment in reactive inhibitory control correlated with intrinsic severity of myoclonus (i.e. pre-operative score). The results point to a dissociation in reactive and proactive inhibitory control in MD patients with and without deep brain stimulation of the globus pallidus interna.
Collapse
Affiliation(s)
- Cyril Atkinson-Clement
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France
| | - Clement Tarrano
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Department of Neurology, CHU Côte de Nacre, Université Caen Normandie, Caen, France
| | - Camille-Albane Porte
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France
| | - Nicolas Wattiez
- Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne University, Paris, France
| | - Cécile Delorme
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Eavan M McGovern
- Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Department of Neurology, St Vincent's University Hospital Dublin, Dublin, Ireland
| | - Vanessa Brochard
- INSERM/APHP, Centre d'Investigation Clinique 1422, Paris, France
| | - Stéphane Thobois
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, University of Lyon, Bron, France.,Service de Neurologie C, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - David Grabli
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Bertrand Degos
- Department of Neurology, Hôpital Avicennes, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Jean-Christophe Corvol
- Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Pierre Krystkoviak
- Department of Neurology, Amiens University Medical Center, Amiens, France
| | - Jean-Luc Houeto
- Service de Neurologie, CIC-INSERM 1402, CHU de Poitiers, Poitiers, France
| | - Adrian Degardin
- Department of Neurology, Centre Hospitalier de Tourcoing, Tourcoing, France
| | - Luc Defebvre
- INSERM, U1171-Degenerative and Vascular Cognitive Disorders, CHU Lille, Université de Lille, Lille, France.,Lille Centre of Excellence for Neurodegenerative Diseases (LiCEND), Lille, France
| | - Romain Valabregue
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,UMR S 975, CNRS UMR 7225, ICM, Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, Paris, France
| | - Charlotte Rosso
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Urgences Cérébro-Vasculaires, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Emmanuelle Apartis
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Vidailhet
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Pierre Pouget
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France
| | - Emmanuel Roze
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Yulia Worbe
- Sorbonne University, 75005, Paris, France. .,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France. .,Movement Investigation and Therapeutics Team, Paris, France. .,Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
20
|
Bertino S, Basile GA, Bramanti A, Anastasi GP, Quartarone A, Milardi D, Cacciola A. Spatially coherent and topographically organized pathways of the human globus pallidus. Hum Brain Mapp 2020; 41:4641-4661. [PMID: 32757349 PMCID: PMC7555102 DOI: 10.1002/hbm.25147] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022] Open
Abstract
Internal and external segments of globus pallidus (GP) exert different functions in basal ganglia circuitry, despite their main connectional systems share the same topographical organization, delineating limbic, associative, and sensorimotor territories. The identification of internal GP sensorimotor territory has therapeutic implications in functional neurosurgery settings. This study is aimed at assessing the spatial coherence of striatopallidal, subthalamopallidal, and pallidothalamic pathways by using tractography‐derived connectivity‐based parcellation (CBP) on high quality diffusion MRI data of 100 unrelated healthy subjects from the Human Connectome Project. A two‐stage hypothesis‐driven CBP approach has been carried out on the internal and external GP. Dice coefficient between functionally homologous pairs of pallidal maps has been computed. In addition, reproducibility of parcellation according to different pathways of interest has been investigated, as well as spatial relations between connectivity maps and existing optimal stimulation points for dystonic patients. The spatial organization of connectivity clusters revealed anterior limbic, intermediate associative and posterior sensorimotor maps within both internal and external GP. Dice coefficients showed high degree of coherence between functionally similar maps derived from the different bundles of interest. Sensorimotor maps derived from the subthalamopallidal pathway resulted to be the nearest to known optimal pallidal stimulation sites for dystonic patients. Our findings suggest that functionally homologous afferent and efferent connections may share similar spatial territory within the GP and that subcortical pallidal connectional systems may have distinct implications in the treatment of movement disorders.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
21
|
Jiang H, Wang R, Zheng Z, Zhu J. Deep brain stimulation for the treatment of cerebral palsy: A review. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2020.9050002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Deep brain stimulation (DBS) has been used as a safe and effective neuromodulation technique for treatment of various diseases. A large number of patients suffering from movement disorders such as dyskinesia may benefit from DBS. Cerebral palsy (CP) is a group of permanent disorders mainly involving motor impairment, and medical interventions are usually unsatisfactory or temporarily active, especially for dyskinetic CP. DBS may be another approach to the treatment of CP. In this review we discuss the targets for DBS and the mechanisms of action for the treatment of CP, and focus on presurgical assessment, efficacy for dystonia and other symptoms, safety, and risks.
Collapse
Affiliation(s)
- Hongjie Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rui Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhe Zheng
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
22
|
Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res 2020; 238:1645-1657. [PMID: 32638036 PMCID: PMC7413898 DOI: 10.1007/s00221-020-05833-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neurophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, studies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, EEG and evoked potentials.
Collapse
|
23
|
Quartarone A, Cacciola A, Milardi D, Ghilardi MF, Calamuneri A, Chillemi G, Anastasi G, Rothwell J. New insights into cortico-basal-cerebellar connectome: clinical and physiological considerations. Brain 2020; 143:396-406. [PMID: 31628799 DOI: 10.1093/brain/awz310] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
The current model of the basal ganglia system based on the 'direct', 'indirect' and 'hyperdirect' pathways provides striking predictions about basal ganglia function that have been used to develop deep brain stimulation approaches for Parkinson's disease and dystonia. The aim of this review is to challenge this scheme in light of new tract tracing information that has recently become available from the human brain using MRI-based tractography, thus providing a novel perspective on the basal ganglia system. We also explore the implications of additional direct pathways running from cortex to basal ganglia and between basal ganglia and cerebellum in the pathophysiology of movement disorders.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi 'Bonino Pulejo', Messina, Italy
| | | | | | | | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| |
Collapse
|
24
|
Macerollo A, Sajin V, Bonello M, Barghava D, Alusi SH, Eldridge PR, Osman-Farah J. Deep brain stimulation in dystonia: State of art and future directions. J Neurosci Methods 2020; 340:108750. [DOI: 10.1016/j.jneumeth.2020.108750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023]
|
25
|
Reich MM, Horn A, Lange F, Roothans J, Paschen S, Runge J, Wodarg F, Pozzi NG, Witt K, Nickl RC, Soussand L, Ewert S, Maltese V, Wittstock M, Schneider GH, Coenen V, Mahlknecht P, Poewe W, Eisner W, Helmers AK, Matthies C, Sturm V, Isaias IU, Krauss JK, Kühn AA, Deuschl G, Volkmann J. Probabilistic mapping of the antidystonic effect of pallidal neurostimulation: a multicentre imaging study. Brain 2020; 142:1386-1398. [PMID: 30851091 DOI: 10.1093/brain/awz046] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation of the internal globus pallidus is a highly effective and established therapy for primary generalized and cervical dystonia, but therapeutic success is compromised by a non-responder rate of up to 25%, even in carefully-selected groups. Variability in electrode placement and inappropriate stimulation settings may account for a large proportion of this outcome variability. Here, we present probabilistic mapping data on a large cohort of patients collected from several European centres to resolve the optimal stimulation volume within the pallidal region. A total of 105 dystonia patients with pallidal deep brain stimulation were enrolled and 87 datasets (43 with cervical dystonia and 44 with generalized dystonia) were included into the subsequent 'normative brain' analysis. The average improvement of dystonia motor score was 50.5 ± 30.9% in cervical and 58.2 ± 48.8% in generalized dystonia, while 19.5% of patients did not respond to treatment (<25% benefit). We defined probabilistic maps of anti-dystonic effects by aggregating individual electrode locations and volumes of tissue activated (VTA) in normative atlas space and ranking voxel-wise for outcome distribution. We found a significant relation between motor outcome and the stimulation volume, but not the electrode location per se. The highest probability of stimulation induced motor benefit was found in a small volume covering the ventroposterior globus pallidus internus and adjacent subpallidal white matter. We then used the aggregated VTA-based outcome maps to rate patient individual VTAs and trained a linear regression model to predict individual outcomes. The prediction model showed robustness between the predicted and observed clinical improvement, with an r2 of 0.294 (P < 0.0001). The predictions deviated on average by 16.9 ± 11.6 % from observed dystonia improvements. For example, if a patient improved by 65%, the model would predict an improvement between 49% and 81%. Results were validated in an independent cohort of 10 dystonia patients, where prediction and observed benefit had a correlation of r2 = 0.52 (P = 0.02) and a mean prediction error of 10.3% (±8.9). These results emphasize the potential of probabilistic outcome brain mapping in refining the optimal therapeutic volume for pallidal neurostimulation and advancing computer-assisted planning and programming of deep brain stimulation.
Collapse
Affiliation(s)
- Martin M Reich
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany.,Beth Israel Deaconess Medical Center, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - Florian Lange
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | - Jonas Roothans
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | | | | | - Fritz Wodarg
- University Kiel, Department of Radiology, Germany
| | - Nicolo G Pozzi
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | - Karsten Witt
- University Kiel, Department of Neurology, Germany.,University Oldenburg, Department of Neurology, Germany
| | - Robert C Nickl
- Julius-Maximilians-University, Department of Neurosurgery, Germany
| | - Louis Soussand
- Beth Israel Deaconess Medical Center, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Siobhan Ewert
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - Virgina Maltese
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | | | - Gerd-Helge Schneider
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - Volker Coenen
- Freiburg University Medical Center, Department of Stereotactic and Functional Neurosurgery, Germany
| | | | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Austria
| | - Wilhelm Eisner
- Department of Neurosurgery, Innsbruck Medical University, Austria
| | | | - Cordula Matthies
- Julius-Maximilians-University, Department of Neurosurgery, Germany
| | - Volker Sturm
- Julius-Maximilians-University, Department of Neurosurgery, Germany
| | - Ioannis U Isaias
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | | | - Andrea A Kühn
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | | | - Jens Volkmann
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| |
Collapse
|
26
|
Lungu C, Ozelius L, Standaert D, Hallett M, Sieber BA, Swanson-Fisher C, Berman BD, Calakos N, Moore JC, Perlmutter JS, Pirio Richardson SE, Saunders-Pullman R, Scheinfeldt L, Sharma N, Sillitoe R, Simonyan K, Starr PA, Taylor A, Vitek J. Defining research priorities in dystonia. Neurology 2020; 94:526-537. [PMID: 32098856 DOI: 10.1212/wnl.0000000000009140] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/14/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Dystonia is a complex movement disorder. Research progress has been difficult, particularly in developing widely effective therapies. This is a review of the current state of knowledge, research gaps, and proposed research priorities. METHODS The NIH convened leaders in the field for a 2-day workshop. The participants addressed the natural history of the disease, the underlying etiology, the pathophysiology, relevant research technologies, research resources, and therapeutic approaches and attempted to prioritize dystonia research recommendations. RESULTS The heterogeneity of dystonia poses challenges to research and therapy development. Much can be learned from specific genetic subtypes, and the disorder can be conceptualized along clinical, etiology, and pathophysiology axes. Advances in research technology and pooled resources can accelerate progress. Although etiologically based therapies would be optimal, a focus on circuit abnormalities can provide a convergent common target for symptomatic therapies across dystonia subtypes. The discussions have been integrated into a comprehensive review of all aspects of dystonia. CONCLUSION Overall research priorities include the generation and integration of high-quality phenotypic and genotypic data, reproducing key features in cellular and animal models, both of basic cellular mechanisms and phenotypes, leveraging new research technologies, and targeting circuit-level dysfunction with therapeutic interventions. Collaboration is necessary both for collection of large data sets and integration of different research methods.
Collapse
Affiliation(s)
- Codrin Lungu
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN.
| | - Laurie Ozelius
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - David Standaert
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Mark Hallett
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Beth-Anne Sieber
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Christine Swanson-Fisher
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Brian D Berman
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Nicole Calakos
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Jennifer C Moore
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Joel S Perlmutter
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Sarah E Pirio Richardson
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Rachel Saunders-Pullman
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Laura Scheinfeldt
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Nutan Sharma
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Roy Sillitoe
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Kristina Simonyan
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Philip A Starr
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Anna Taylor
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Jerrold Vitek
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | | |
Collapse
|
27
|
Zittel S, Hidding U, Trumpfheller M, Baltzer VL, Gulberti A, Schaper M, Biermann M, Buhmann C, Engel AK, Gerloff C, Westphal M, Stadler J, Köppen JA, Pötter-Nerger M, Moll CKE, Hamel W. Pallidal lead placement in dystonia: leads of non-responders are contained within an anatomical range defined by responders. J Neurol 2020; 267:1663-1671. [PMID: 32067124 PMCID: PMC7293687 DOI: 10.1007/s00415-020-09753-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 01/10/2023]
Abstract
Background Deep brain stimulation (DBS) within the pallidum represents an effective and well-established treatment for isolated dystonia. However, clinical outcome after surgery may be variable with limited response in 10–25% of patients. The effect of lead location on clinical improvement is still under debate. Objective To identify stimulated brain regions associated with the most beneficial clinical outcome in dystonia patients. Methods 18 patients with cervical and generalized dystonia with chronic DBS of the internal pallidum were investigated. Patients were grouped according to their clinical improvement into responders, intermediate responders and non-responders. Magnetic resonance and computed tomography images were co-registered, and the volume of tissue activated (VTA) with respect to the pallidum of individual patients was analysed. Results VTAs in responders (n = 11), intermediate responders (n = 3) and non-responders (n = 4) intersected with the posterior internal (GPi) and external (GPe) pallidum and the subpallidal area. VTA heat maps showed an almost complete overlap of VTAs of responders, intermediate and non-responders. VTA coverage of the GPi was not higher in responders. In contrast, VTAs of intermediate and non-responders covered the GPi to a significantly larger extent in the left hemisphere (p < 0.01). Conclusions DBS of ventral parts of the posterior GPi, GPe and the adjacent subpallidal area containing pallidothalamic output projections resulted in favourable clinical effects. Of note, non-responders were also stimulated within the same area. This suggests that factors other than mere lead location (e.g., clinical phenotype, genetic background) have determined clinical outcome in the present cohort. Electronic supplementary material The online version of this article (10.1007/s00415-020-09753-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ute Hidding
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Schaper
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maxine Biermann
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Johannes A Köppen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Krause P, Völzmann S, Ewert S, Kupsch A, Schneider GH, Kühn AA. Long-term effects of bilateral pallidal deep brain stimulation in dystonia: a follow-up between 8 and 16 years. J Neurol 2020; 267:1622-1631. [PMID: 32055996 PMCID: PMC8592956 DOI: 10.1007/s00415-020-09745-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 11/29/2022]
Abstract
Objective Observational study to evaluate the long-term motor and non-motor effects of deep brain stimulation (DBS) of the globus pallidus internus (GPi) on medically refractory dystonia. Background Dystonia is a chronic disease affecting mainly young patients with a regular life expectancy and lifelong need for therapy. Pallidal DBS is an established treatment for severe isolated dystonia but long-term data are sparse. Methods We considered 36 consecutive patients with isolated generalized (n = 14) and cervical/segmental (n = 22) dystonia operated at Charité-University Hospital between 2000 and 2007 in a retrospective analysis for long-term outcome of pallidal DBS. In 19 of these patients, we could analyze dystonic symptoms and disability rated by the Burke–Fahn–Marsden Dystonia Rating scale (BFMDRS) at baseline, short-term (ST-FU, range 3–36 months) and long-term follow-up (LT-FU, range 93–197 months). Quality of life and mood were evaluated using the SF36 and Beck Depression Index (BDI) questionnaires. Results Patients reached an improvement in motor symptoms of 63.8 ± 5.7% (mean ± SE) at ST-FU and 67.9 ± 6.1% at LT-FU. Moreover, a significant and stable reduction in disability was shown following DBS (54.2 ± 9.4% at ST-FU and 53.8 ± 9.2% at LT-FU). BDI and SF36 had improved by 40% and 23%, respectively, at LT-FU (n = 14). Stimulation-induced adverse events included swallowing difficulties, dysarthria, and bradykinesia. Pulse generator (n = 3) and electrodes (n = 5) were revised in seven patients due to infection. Conclusions Pallidal DBS is a safe and efficacious long-term treatment for dystonia with sustained effects on motor impairment and disability, accompanied by a robust improvement in mood and quality of life. Electronic supplementary material The online version of this article (10.1007/s00415-020-09745-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - S Völzmann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - S Ewert
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - A Kupsch
- Department of Neurology and Stereotactic Neurosurgery, University Medicine of Magdeburg, Magdeburg, Germany
| | - G H Schneider
- Department of Neurosurgery, Charité, University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
29
|
Mei S, Eisinger RS, Hu W, Tsuboi T, Foote KD, Hass CJ, Okun MS, Chan P, Ramirez-Zamora A. Three-Year Gait and Axial Outcomes of Bilateral STN and GPi Parkinson's Disease Deep Brain Stimulation. Front Hum Neurosci 2020; 14:1. [PMID: 32116598 PMCID: PMC7026192 DOI: 10.3389/fnhum.2020.00001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/03/2020] [Indexed: 01/18/2023] Open
Abstract
Objective: To examine the short- and long-term clinical outcomes of the bilateral subthalamic nucleus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) on gait and axial symptoms in Parkinson's disease (PD) patients. Available data have been inconsistent and mostly short-term regarding the effect of both brain targets on gait and axial symptoms. We aimed to identify potential target specific differences at 3-year follow-up from a large single-center experience. Methods: We retrospectively reviewed short-term (6-month follow-up) and long-term (36-month follow-up) changes in the Unified Parkinson's Disease Rating Scale (UPDRS) Part II and III total scores of 72 PD patients (53 with bilateral STN-DBS and 19 with bilateral GPi-DBS). An interdisciplinary team made target-specific decisions for each DBS patient. We analyzed changes in gait and axial subscores derived from UPDRS II and III. Results: In both the STN- and GPi-DBS cohorts, we observed no significant differences in gait and axial UPDRS derived subscores in the off-med/on stimulation state at long-term follow-up when compared to baseline. On-med axial scores remained similar in the short-term but worsened in both groups (STN, 2.23 ± 3.43, p < 0.001; GPi, 2.53 ± 2.37, p < 0.01) in the long-term possibly due to disease progression. At long-term follow-up, the UPDRS III off-med/on stimulation scores worsened but were persistently improved from baseline in both groups (-9.07 ± 13.9, p < 0.001). Conclusions: The study showed that long-term both STN- and GPi-DBS had a similar effect on gait and axial symptoms in UPDRS derived subscores at 36-month follow-up despite potential baseline differences in criteria for selection of each target. More sophisticated measures of gait and balance beyond the categorical UPDRS score will be needed for future studies.
Collapse
Affiliation(s)
- Shanshan Mei
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Robert S Eisinger
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Wei Hu
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Takashi Tsuboi
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Christopher J Hass
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,College of Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Adolfo Ramirez-Zamora
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
30
|
Muller J, Alizadeh M, Li L, Thalheimer S, Matias C, Tantawi M, Miao J, Silverman M, Zhang V, Yun G, Romo V, Mohamed FB, Wu C. Feasibility of diffusion and probabilistic white matter analysis in patients implanted with a deep brain stimulator. Neuroimage Clin 2019; 25:102135. [PMID: 31901789 PMCID: PMC6948366 DOI: 10.1016/j.nicl.2019.102135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 01/03/2023]
Abstract
Deep brain stimulation (DBS) for Parkinson's disease (PD) is an established advanced therapy that produces therapeutic effects through high frequency stimulation. Although this therapeutic option leads to improved clinical outcomes, the mechanisms of the underlying efficacy of this treatment are not well understood. Therefore, investigation of DBS and its postoperative effects on brain architecture is of great interest. Diffusion weighted imaging (DWI) is an advanced imaging technique, which has the ability to estimate the structure of white matter fibers; however, clinical application of DWI after DBS implantation is challenging due to the strong susceptibility artifacts caused by implanted devices. This study aims to evaluate the feasibility of generating meaningful white matter reconstructions after DBS implantation; and to subsequently quantify the degree to which these tracts are affected by post-operative device-related artifacts. DWI was safely performed before and after implanting electrodes for DBS in 9 PD patients. Differences within each subject between pre- and post-implantation FA, MD, and RD values for 123 regions of interest (ROIs) were calculated. While differences were noted globally, they were larger in regions directly affected by the artifact. White matter tracts were generated from each ROI with probabilistic tractography, revealing significant differences in the reconstruction of several white matter structures after DBS. Tracts pertinent to PD, such as regions of the substantia nigra and nigrostriatal tracts, were largely unaffected. The aim of this study was to demonstrate the feasibility and clinical applicability of acquiring and processing DWI post-operatively in PD patients after DBS implantation. The presence of global differences provides an impetus for acquiring DWI shortly after implantation to establish a new baseline against which longitudinal changes in brain connectivity in DBS patients can be compared. Understanding that post-operative fiber tracking in patients is feasible on a clinically-relevant scale has significant implications for increasing our current understanding of the pathophysiology of movement disorders, and may provide insights into better defining the pathophysiology and therapeutic effects of DBS.
Collapse
Affiliation(s)
- J Muller
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States.
| | - M Alizadeh
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - L Li
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - S Thalheimer
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - C Matias
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - M Tantawi
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - J Miao
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - M Silverman
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - V Zhang
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - G Yun
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - V Romo
- Department of Anesthesiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - F B Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - C Wu
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Maruyama S, Fukunaga M, Fautz HP, Heidemann R, Sadato N. Comparison of 3T and 7T MRI for the visualization of globus pallidus sub-segments. Sci Rep 2019; 9:18357. [PMID: 31797993 PMCID: PMC6892946 DOI: 10.1038/s41598-019-54880-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
The success of deep brain stimulation (DBS) targeting the internal globus pallidus (GPi) depends on the accuracy of electrode localization inside the GPi. In this study, we sought to compare visualization of the medial medullary lamina (MML) and accessory medullary lamina (AML) between proton density-weighted (PDW) and T2-weighted (T2W) sequences on 3T and 7T MRI scanners. Eleven healthy participants (five men and six women; age, 19–28 years; mean, 21.5) and one 61-year-old man were scanned using two-dimensional turbo spin-echo PDW and T2W sequences on 3T and 7T MRI scanners with a 32-channel receiver head coil and a single-channel transmission coil. Profiles of signal intensity were obtained from the pixel values of straight lines over the GP regions crossing the MML and AML. Contrast ratios (CRs) for GPe/MML, GPie/MML, GPie/AML, and GPii/AML were calculated. Qualitatively, 7T visualized both the MML and AML, whereas 3T visualized the MML less clearly and hardly depicted the AML. The T2W sequence at 7T yielded significantly higher CRs for GPie/MML, GPie/AML, and GPii/AML than the PDW sequence at 7T or 3T. The T2W sequence at 7T allows visualization of the internal structures of GPi segments with high signal intensity and contrast.
Collapse
Affiliation(s)
- Shuki Maruyama
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Masaki Fukunaga
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Hans-Peter Fautz
- Siemens Healthineers, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Robin Heidemann
- Siemens Healthineers, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Norihiro Sadato
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan. .,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193, Japan.
| |
Collapse
|
32
|
Pathophysiology of gait disorders induced by bilateral globus pallidus interna stimulation in dystonia. Brain 2019; 143:e3. [DOI: 10.1093/brain/awz356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Mahlknecht P, Kaski D, Georgiev D, Foltynie T, Limousin P. Reply: Pathophysiology of gait disorders induced by bilateral globus pallidus interna stimulation in dystonia. Brain 2019; 143:e4. [DOI: 10.1093/brain/awz357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Philipp Mahlknecht
- Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Diego Kaski
- Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Dejan Georgiev
- Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Medical University Ljubljana, Ljubljana, Slovenia
| | - Thomas Foltynie
- Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Patricia Limousin
- Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
34
|
Piña-Fuentes D, Beudel M, Little S, van Zijl J, Elting JW, Oterdoom DLM, van Egmond ME, van Dijk JMC, Tijssen MAJ. Toward adaptive deep brain stimulation for dystonia. Neurosurg Focus 2019; 45:E3. [PMID: 30064317 DOI: 10.3171/2018.5.focus18155] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of abnormal neural oscillations within the cortico-basal ganglia-thalamo-cortical (CBGTC) network has emerged as one of the current principal theories to explain the pathophysiology of movement disorders. In theory, these oscillations can be used as biomarkers and thereby serve as a feedback signal to control the delivery of deep brain stimulation (DBS). This new form of DBS, dependent on different characteristics of pathological oscillations, is called adaptive DBS (aDBS), and it has already been applied in patients with Parkinson's disease. In this review, the authors summarize the scientific research to date on pathological oscillations in dystonia and address potential biomarkers that might be used as a feedback signal for controlling aDBS in patients with dystonia.
Collapse
Affiliation(s)
- Dan Piña-Fuentes
- Departments of1Neurosurgery and.,2Neurology, University Medical Center Groningen, University of Groningen
| | - Martijn Beudel
- 2Neurology, University Medical Center Groningen, University of Groningen.,3Department of Neurology, Isala Klinieken, Zwolle, The Netherlands; and
| | - Simon Little
- 4Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Jonathan van Zijl
- 2Neurology, University Medical Center Groningen, University of Groningen
| | - Jan Willem Elting
- 2Neurology, University Medical Center Groningen, University of Groningen
| | | | | | | | - Marina A J Tijssen
- 2Neurology, University Medical Center Groningen, University of Groningen
| |
Collapse
|
35
|
Steigerwald F, Kirsch AD, Kühn AA, Kupsch A, Mueller J, Eisner W, Deuschl G, Falk D, Schnitzler A, Skogseid IM, Vollmer-Haase J, Ip CW, Tronnier V, Vesper J, Naumann M, Volkmann J. Evaluation of a programming algorithm for deep brain stimulation in dystonia used in a double-blind, sham-controlled multicenter study. Neurol Res Pract 2019; 1:25. [PMID: 33324891 PMCID: PMC7650081 DOI: 10.1186/s42466-019-0032-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background Programming deep brain stimulation in dystonia is difficult because of the delayed benefits and absence of evidence-based guidelines. Therefore, we evaluated the efficacy of a programming algorithm applied in a double-blind, sham-controlled multicenter study of pallidal deep brain stimulation in dystonia. Methods A standardized monopolar review to identify the contact with the best acute antidystonic effect was applied in 40 patients, who were then programmed 0.5 V below the adverse effect threshold and maintained on these settings for at least 3 months, if tolerated. If no acute effects were observed, contact selection was based on adverse effects or anatomical criteria. Three-year follow-up data was available for 31 patients, and five-year data for 32 patients. The efficacy of the algorithm was based on changes in motor scores, adverse events, and the need for reprogramming. Results The mean (±standard deviation) dystonia motor score decreased by 73 ± 24% at 3 years and 63 ± 38% at 5 years for contacts that exhibited acute improvement of dystonia (n = 17) during the monopolar review. Contacts without acute benefit improved by 58 ± 30% at 3 years (n = 63) and 53 ± 31% at 5 years (n = 59). Interestingly, acute worsening or induction of dystonia/dyskinesia (n = 9) correlated significantly with improvement after 3 years, but not 5 years. Conclusions Monopolar review helped to detect the best therapeutic contact in approximately 30% of patients exhibiting acute modulation of dystonic symptoms. Acute improvement, as well as worsening of dystonia, predicted a good long-term outcome, while induction of phosphenes did not correlate with outcome. Trial registration ClinicalTrials.gov NCT00142259.
Collapse
Affiliation(s)
- Frank Steigerwald
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurology and Neurological Critical Care, Rhön-Klinikum, Bad Neustadt, Germany.,Department of Neurology, Christian Albrechts University, Kiel, Germany
| | - Anna Dalal Kirsch
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Andrea A Kühn
- Department of Neurology, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Kupsch
- Neurology Moves, Movement Disorder Center Berlin, Berlin, Germany
| | - Joerg Mueller
- Department of Neurology, Vivantes Hospital Berlin Spandau, Berlin, Germany.,Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilhelm Eisner
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Günther Deuschl
- Department of Neurology, Christian Albrechts University, Kiel, Germany
| | - Daniela Falk
- Department of Neurosurgery, Christian Albrechts University, Kiel, Germany
| | - Alfons Schnitzler
- Department of Neurology and Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Chi W Ip
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Albert Ludwig University Freiburg, Freiburg, Germany.,Department of Functional Neurosurgery and Stereotaxy, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Markus Naumann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, Klinikum Augsburg, Augsburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, Christian Albrechts University, Kiel, Germany
| | | |
Collapse
|
36
|
Koeglsperger T, Palleis C, Hell F, Mehrkens JH, Bötzel K. Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies. Front Neurol 2019; 10:410. [PMID: 31231293 PMCID: PMC6558426 DOI: 10.3389/fneur.2019.00410] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson's disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor for the individual outcome after DBS. Programming of the implanted pulse generator (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes even more relevant in cases in which the electrodes are located at the border of the intended target structure and when side effects become challenging. At present, adjusting stimulation parameters depends to a large extent on personal experience. Based on a comprehensive literature search, we here summarize previous studies that examined the significance of distinct stimulation strategies for ameliorating disease signs and symptoms. We assess the effect of adjusting the stimulus amplitude (A), frequency (f), and pulse width (pw) on clinical symptoms and examine more recent techniques for modulating neuronal elements by electrical stimulation, such as interleaving (Medtronic®) or directional current steering (Boston Scientific®, Abbott®). We thus provide an evidence-based strategy for achieving the best clinical effect with different disorders and avoiding adverse effects in DBS of the subthalamic nucleus (STN), the ventro-intermedius nucleus (VIM), and the globus pallidus internus (GPi).
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jan H Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
37
|
Hell F, Palleis C, Mehrkens JH, Koeglsperger T, Bötzel K. Deep Brain Stimulation Programming 2.0: Future Perspectives for Target Identification and Adaptive Closed Loop Stimulation. Front Neurol 2019; 10:314. [PMID: 31001196 PMCID: PMC6456744 DOI: 10.3389/fneur.2019.00314] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Deep brain stimulation has developed into an established treatment for movement disorders and is being actively investigated for numerous other neurological as well as psychiatric disorders. An accurate electrode placement in the target area and the effective programming of DBS devices are considered the most important factors for the individual outcome. Recent research in humans highlights the relevance of widespread networks connected to specific DBS targets. Improving the targeting of anatomical and functional networks involved in the generation of pathological neural activity will improve the clinical DBS effect and limit side-effects. Here, we offer a comprehensive overview over the latest research on target structures and targeting strategies in DBS. In addition, we provide a detailed synopsis of novel technologies that will support DBS programming and parameter selection in the future, with a particular focus on closed-loop stimulation and associated biofeedback signals.
Collapse
Affiliation(s)
- Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jan H. Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
38
|
Ewert S, Horn A, Finkel F, Li N, Kühn AA, Herrington TM. Optimization and comparative evaluation of nonlinear deformation algorithms for atlas-based segmentation of DBS target nuclei. Neuroimage 2018; 184:586-598. [PMID: 30267856 DOI: 10.1016/j.neuroimage.2018.09.061] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/16/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022] Open
Abstract
Nonlinear registration of individual brain MRI scans to standard brain templates is common practice in neuroimaging and multiple registration algorithms have been developed and refined over the last 20 years. However, little has been done to quantitatively compare the available algorithms and much of that work has exclusively focused on cortical structures given their importance in the fMRI literature. In contrast, for clinical applications such as functional neurosurgery and deep brain stimulation (DBS), proper alignment of subcortical structures between template and individual space is important. This allows for atlas-based segmentations of anatomical DBS targets such as the subthalamic nucleus (STN) and internal pallidum (GPi). Here, we systematically evaluated the performance of six modern and established algorithms on subcortical normalization and segmentation results by calculating over 11,000 nonlinear warps in over 100 subjects. For each algorithm, we evaluated its performance using T1-or T2-weighted acquisitions alone or a combination of T1-, T2-and PD-weighted acquisitions in parallel. Furthermore, we present optimized parameters for the best performing algorithms. We tested each algorithm on two datasets, a state-of-the-art MRI cohort of young subjects and a cohort of subjects age- and MR-quality-matched to a typical DBS Parkinson's Disease cohort. Our final pipeline is able to segment DBS targets with precision comparable to manual expert segmentations in both cohorts. Although the present study focuses on the two prominent DBS targets, STN and GPi, these methods may extend to other small subcortical structures like thalamic nuclei or the nucleus accumbens.
Collapse
Affiliation(s)
- Siobhan Ewert
- Charité - University Medicine Berlin, Department of Neurology, Movement Disorders and Neuromodulation Unit, Berlin, Germany; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Charité - University Medicine Berlin, Department of Neurology, Movement Disorders and Neuromodulation Unit, Berlin, Germany
| | - Francisca Finkel
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Program in Behavioral Neuroscience, Northeastern University, Boston, MA, USA
| | - Ningfei Li
- Charité - University Medicine Berlin, Department of Neurology, Movement Disorders and Neuromodulation Unit, Berlin, Germany; Institute of Software Engineering and Theoretical Computer Science, Neural Information Processing Group, Technische Universität Berlin, Germany
| | - Andrea A Kühn
- Charité - University Medicine Berlin, Department of Neurology, Movement Disorders and Neuromodulation Unit, Berlin, Germany
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Hogg E, During E, E. Tan E, Athreya K, Eskenazi J, Wertheimer J, Mamelak AN, Alterman RL, Tagliati M. Sustained quality-of-life improvements over 10 years after deep brain stimulation for dystonia. Mov Disord 2018; 33:1160-1167. [DOI: 10.1002/mds.27426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/10/2022] Open
Affiliation(s)
- Elliot Hogg
- Department of Neurology; Cedar-Sinai Medical Center; Los Angeles California USA
| | - Emmanuel During
- Department of Neurology; Cedar-Sinai Medical Center; Los Angeles California USA
| | - Echo E. Tan
- Department of Neurology; Cedar-Sinai Medical Center; Los Angeles California USA
| | - Kishore Athreya
- Department of Neurology; Cedar-Sinai Medical Center; Los Angeles California USA
| | - Jonathan Eskenazi
- Department of Neurology; Cedar-Sinai Medical Center; Los Angeles California USA
| | - Jeffrey Wertheimer
- Department of Neurology; Cedar-Sinai Medical Center; Los Angeles California USA
| | - Adam N. Mamelak
- Department of Neurosurgery; Cedar-Sinai Medical Center; Los Angeles California USA
| | - Ron L. Alterman
- Department of Neurosurgery; Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Michele Tagliati
- Department of Neurology; Cedar-Sinai Medical Center; Los Angeles California USA
| |
Collapse
|
40
|
Mahlknecht P, Georgiev D, Akram H, Brugger F, Vinke S, Zrinzo L, Hariz M, Bhatia KP, Hariz GM, Willeit P, Rothwell JC, Foltynie T, Limousin P. Parkinsonian signs in patients with cervical dystonia treated with pallidal deep brain stimulation. Brain 2018; 141:3023-3034. [DOI: 10.1093/brain/awy217] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Philipp Mahlknecht
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Dejan Georgiev
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Medical University Ljubljana, Ljubljana, Slovenia
| | - Harith Akram
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Florian Brugger
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Saman Vinke
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Marwan Hariz
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Gun-Marie Hariz
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Peter Willeit
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
41
|
Abstract
Within the field of movement disorders, the conceptual understanding of dystonia has continued to evolve. Clinical advances have included improvements in recognition of certain features of dystonia, such as tremor, and understanding of phenotypic spectrums in the genetic dystonias and dystonia terminology and classification. Progress has also been made in the understanding of underlying biological processes which characterize dystonia from discoveries using approaches such as neurophysiology, functional imaging, genetics, and animal models. Important advances include the role of the cerebellum in dystonia, the concept of dystonia as an aberrant brain network disorder, additional evidence supporting the concept of dystonia endophenotypes, and new insights into psychogenic dystonia. These discoveries have begun to shape treatment approaches as, in parallel, important new treatment modalities, including magnetic resonance imaging-guided focused ultrasound, have emerged and existing interventions such as deep brain stimulation have been further refined. In this review, these topics are explored and discussed.
Collapse
Affiliation(s)
- Stephen Tisch
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neurology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
42
|
Middlebrooks EH, Tuna IS, Grewal SS, Almeida L, Heckman MG, Lesser ER, Foote KD, Okun MS, Holanda VM. Segmentation of the Globus Pallidus Internus Using Probabilistic Diffusion Tractography for Deep Brain Stimulation Targeting in Parkinson Disease. AJNR Am J Neuroradiol 2018; 39:1127-1134. [PMID: 29700048 DOI: 10.3174/ajnr.a5641] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/24/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Although globus pallidus internus deep brain stimulation is a widely accepted treatment for Parkinson disease, there is persistent variability in outcomes that is not yet fully understood. In this pilot study, we aimed to investigate the potential role of globus pallidus internus segmentation using probabilistic tractography as a supplement to traditional targeting methods. MATERIALS AND METHODS Eleven patients undergoing globus pallidus internus deep brain stimulation were included in this retrospective analysis. Using multidirection diffusion-weighted MR imaging, we performed probabilistic tractography at all individual globus pallidus internus voxels. Each globus pallidus internus voxel was then assigned to the 1 ROI with the greatest number of propagated paths. On the basis of deep brain stimulation programming settings, the volume of tissue activated was generated for each patient using a finite element method solution. For each patient, the volume of tissue activated within each of the 10 segmented globus pallidus internus regions was calculated and examined for association with a change in the Unified Parkinson Disease Rating Scale, Part III score before and after treatment. RESULTS Increasing volume of tissue activated was most strongly correlated with a change in the Unified Parkinson Disease Rating Scale, Part III score for the primary motor region (Spearman r = 0.74, P = .010), followed by the supplementary motor area/premotor cortex (Spearman r = 0.47, P = .15). CONCLUSIONS In this pilot study, we assessed a novel method of segmentation of the globus pallidus internus based on probabilistic tractography as a supplement to traditional targeting methods. Our results suggest that our method may be an independent predictor of deep brain stimulation outcome, and evaluation of a larger cohort or prospective study is warranted to validate these findings.
Collapse
Affiliation(s)
| | - I S Tuna
- Departments of Radiology (I.S.T.)
| | | | | | - M G Heckman
- Division of Biomedical Statistics and Informatics (M.G.H., E.R.L.), Mayo Clinic, Jacksonville, Florida
| | - E R Lesser
- Division of Biomedical Statistics and Informatics (M.G.H., E.R.L.), Mayo Clinic, Jacksonville, Florida
| | - K D Foote
- Neurosurgery (K.D.F.), University of Florida, Gainesville, Florida
| | | | - V M Holanda
- Center of Neurology and Neurosurgery Associates (V.M.H.), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Hell F, Köglsperger T, Mehrkens J, Boetzel K. Improving the Standard for Deep Brain Stimulation Therapy: Target Structures and Feedback Signals for Adaptive Stimulation. Current Perspectives and Future Directions. Cureus 2018; 10:e2468. [PMID: 29900088 PMCID: PMC5997423 DOI: 10.7759/cureus.2468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Deep brain stimulation (DBS) is an established therapeutic option for the treatment of various neurological disorders and has been used successfully in movement disorders for over 25 years. However, the standard stimulation schemes have not changed substantially. Two major points of interest for the further development of DBS are target-structures and novel adaptive stimulation techniques integrating feedback signals. We describe recent research results on target structures and on neural and behavioural feedback signals for adaptive deep brain stimulation (aDBS), as well as outline future directions.
Collapse
Affiliation(s)
- Franz Hell
- Neurology, Ludwigs-Maximilians-University Munich, Munich, DEU
| | - Thomas Köglsperger
- Department of Neurology, Ludwigs-Maximilians-University Munich, Munich, DEU
| | - Jan Mehrkens
- Department of Neurosurgery (head of Functional Neurosurgery), Ludwigs-Maximilians-University Munich, Munich, DEU
| | - Kai Boetzel
- Department of Neurology, Ludwigs-Maximilians-University Munich, Munich, DEU
| |
Collapse
|
44
|
Automatic preoperative planning of DBS electrode placement using anatomo-clinical atlases and volume of tissue activated. Int J Comput Assist Radiol Surg 2018; 13:1117-1128. [PMID: 29557997 DOI: 10.1007/s11548-018-1724-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE Deep brain stimulation (DBS) is a procedure requiring accurate targeting and electrode placement. The two key elements for successful planning are preserving patient safety by ensuring a safe trajectory and creating treatment efficacy through optimal selection of the stimulation point. In this work, we present the first approach of computer-assisted preoperative DBS planning to automatically optimize both the safety of the electrode's trajectory and location of the stimulation point so as to provide the best clinical outcome. METHODS Building upon the findings of previous works focused on electrode trajectory, we added a set of constraints guiding the choice of stimulation point. These took into account retrospective data represented by anatomo-clinical atlases and intersections between the stimulation region and sensitive anatomical structures causing side effects. We implemented our method into automatic preoperative planning software to assess if the algorithm was able to simultaneously optimize electrode trajectory and the stimulation point. RESULTS Leave-one-out cross-validation on a dataset of 18 cases demonstrated an improvement in the expected outcome when using the new constraints. The distance to critical structures was not reduced. The intersection between the stimulation region and structures sensitive to stimulation was minimized. CONCLUSIONS Introducing these new constraints guided the planning to select locations showing a trend toward symptom improvement, while minimizing the risks of side effects, and there was no cost in terms of trajectory safety.
Collapse
|
45
|
Alterman RL, Stone S. Deep Brain Stimulation for Dystonia. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Neudorfer C, Maarouf M. Neuroanatomical background and functional considerations for stereotactic interventions in the H fields of Forel. Brain Struct Funct 2017; 223:17-30. [DOI: 10.1007/s00429-017-1570-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022]
|
47
|
Ide S, Kakeda S, Yoneda T, Moriya J, Watanabe K, Ogasawara A, Futatsuya K, Ohnari N, Sato T, Hiai Y, Matsuyama A, Fujiwara H, Hisaoka M, Korogi Y. Internal Structures of the Globus Pallidus in Patients with Parkinson's Disease: Evaluation with Phase Difference-enhanced Imaging. Magn Reson Med Sci 2017; 16:304-310. [PMID: 28003623 PMCID: PMC5743521 DOI: 10.2463/mrms.mp.2015-0091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose: The medial medullary lamina (MML) separates the medial globus pallidus (GPm) from the lateral. The aim of this study was to assess the changes in appearance of MML related to age using the phase difference-enhanced (PADRE) imaging and to determine whether PADRE can depict the MML in the patients with Parkinson’s disease (PD). Materials and Methods: We enrolled 20 patients with PD and 50 normal control subjects (NC). First, for the visualization of the MML in the NC, we compared the PADRE, susceptibility-weighted imaging (SWI)-like images and T2weighted imaging (WI) by using multiple comparison. The grading methods are as follows: grade 1; MML was not delineated, grade 2; less than half of MML was delineated, grade 3; more than half of MML was delineated and grade 4; whole MML was clearly delineated. We determined grade 3 and 4 as good depiction, delineating the GPm. Then, we evaluated patients with PD using the same method. Results: In NC, the delineation of MML was good in 84% of cases on PADRE, but only 34% of cases showed a good depiction on SWI-like images (average grading score 3.31 vs 2.11, P < 0.05). No MML was delineated in all cases on T2WI. Although younger subjects tended to show whole MML clearly, a part of MML tends to be obscured with age on PADRE. In patients with PD the depiction of MML on PADRE was also good in 90% of cases. Conclusion: The PADRE technique facilitates the depiction of the MML within globus pallidus (GP) on a broad range of age NC and patients with PD and it is superior to SWI-like images and T2WI.
Collapse
Affiliation(s)
- Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University
| | - Junji Moriya
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine
| | - Atsushi Ogasawara
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine
| | - Koichiro Futatsuya
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine
| | - Norihiro Ohnari
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine
| | - Toru Sato
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine
| | - Yasuhiro Hiai
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University
| | - Atsuji Matsuyama
- Department of Pathology and Oncology, University of Occupational and Environmental Health, School of Medicine
| | - Hitoshi Fujiwara
- Department of Surgical Pathology, University of Occupational and Environmental Health, School of Medicine
| | - Masanori Hisaoka
- Department of Pathology and Oncology, University of Occupational and Environmental Health, School of Medicine
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine
| |
Collapse
|
48
|
Nowacki A, Debove I, Fiechter M, Rossi F, Oertel MF, Wiest R, Schüpbach M, Pollo C. Targeting Accuracy of the Subthalamic Nucleus in Deep Brain Stimulation Surgery: Comparison Between 3 T T2-Weighted Magnetic Resonance Imaging and Microelectrode Recording Results. Oper Neurosurg (Hagerstown) 2017; 15:66-71. [DOI: 10.1093/ons/opx175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Targeting accuracy in deep brain stimulation (DBS) surgery can be defined as the level of accordance between selected and anatomic real target reflected by characteristic electrophysiological results of microelectrode recording (MER).
OBJECTIVE
To determine the correspondence between the preoperative predicted target based on modern 3-T magnetic resonance imaging (MRI) and intraoperative MER results separately on the initial and consecutive second side of surgery.
METHODS
Retrospective cohort study of 86 trajectories of DBS electrodes implanted into the subthalamic nucleus (STN) of patients with Parkinson's disease. The entrance point of the electrode into the STN and the length of the electrode trajectory crossing the STN were determined by intraoperative MER findings and 3 T T2-weighted magnetic resonance images with 1-mm slice thickness.
RESULTS
Average difference between MRI- and MER-based trajectory lengths crossing the STN was 0.28 ± 1.02 mm (95% CI: −0.51 to −0.05 mm). There was a statistically significant difference between the MRI- and MER-based entry points on the initial and second side of surgery (P = .04). Forty-three percent of the patients had a difference of more than ±1 mm of the MRI-based-predicted and the MER-based-determined entry points into the STN with values ranging from −3.0 to + 4.5 mm.
CONCLUSION
STN MRI-based targeting is accurate in the majority of cases on the first and second side of surgery. In 43% of implanted electrodes, we found a relevant deviation of more than 1 mm, supporting the concept of MER as an important tool to guide and optimize targeting and electrode placement.
Collapse
Affiliation(s)
- Andreas Nowacki
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Michael Fiechter
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Frédéric Rossi
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Markus Florian Oertel
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Michael Schüpbach
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
49
|
Reese R, Volkmann J. Deep Brain Stimulation for the Dystonias: Evidence, Knowledge Gaps, and Practical Considerations. Mov Disord Clin Pract 2017; 4:486-494. [PMID: 30363085 PMCID: PMC6090587 DOI: 10.1002/mdc3.12519] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/10/2017] [Accepted: 06/17/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus internus (GPi-DBS) is among the most effective treatment options for dystonias. Because the term "dystonia" is defined by a characteristic phenomenology of involuntary muscle contractions, which may present with a large clinical and pathogenetic heterogeneity, decision making for or against GPi-DBS can be difficult in individual patients. METHODS A search of the PubMed database for research and review articles, focused on "deep brain stimulation" and "dystonia" was used to identify clinical trials and to determine current concepts in the surgical management of dystonia. Patient selection in previous studies was recategorized by the authors using the new dystonia classification put forward by a consensus committee of experts in dystonia research. The evidence and knowledge gaps are summarized and commented by the authors taking into account expert opinion and personal clinical experience for providing practical guidance in patient selection for DBS in dystonia. RESULTS The literature review shows that pallidal deep brain stimulation is most effective in patients with isolated dystonia irrespective of the underlying etiology. In contrast, patients with combined dystonias are less likely to benefit from DBS, because the associated neurological symptoms (e.g., hypotonia or ataxia), with the exception of myoclonus, do not respond to pallidal neurostimulation. CONCLUSIONS It is important to recognize the clinical features of dystonia, because the distinction between isolated and combined dystonia syndromes may predict the treatment response to pallidal deep brain stimulation. The aim of this review is to help guide clinicians with advising patients about deep brain stimulation therapy for dystonia and refering appropriate candidates to surgical centers.
Collapse
Affiliation(s)
- René Reese
- Department of NeurologyRostock University Medical CenterRostockGermany
- Department of NeurologyUniversity Hospital WürzburgWürzburgGermany
| | - Jens Volkmann
- Department of NeurologyUniversity Hospital WürzburgWürzburgGermany
| |
Collapse
|
50
|
Sakas DE, Leonardos A, Boviatsis E, Gatzonis S, Panourias I, Stathis P, Stavrinou LC. Constant-Current Deep Brain Stimulation of the Globus Pallidus Internus in the Treatment of Primary Dystonia by a Novel 8-Contact (Octrode) Lead. World Neurosurg 2017; 103:45-56. [DOI: 10.1016/j.wneu.2017.03.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022]
|