1
|
Smirniotopoulos JB, Ozen M. Image-Guided Robotic Interventions for Musculoskeletal Disease. Tech Vasc Interv Radiol 2024; 27:101004. [PMID: 39828381 DOI: 10.1016/j.tvir.2024.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Image-guided robotic interventions have revolutionized the treatment of musculoskeletal (MSK) diseases, combining the precision of robotics with advanced imaging to improve procedural accuracy and patient outcomes. This review delves into the evolution, current applications, and future prospects of robotic systems in managing MSK disorders. Special attention is given to the integration of various imaging modalities, the clinical impact on patient care, and the ongoing challenges that need to be addressed to enhance the adoption and efficacy of these technologies.
Collapse
Affiliation(s)
- John B Smirniotopoulos
- Division of Vascular and Interventional Radiology, MedStar Washington Hospital Center, Washington, DC; Division of Vascular and Interventional Radiology, MedStar Georgetown University Hospital, Washington, DC.
| | - Merve Ozen
- Division of Interventional Radiology, Mayo Clinic, Phoenix, AZ
| |
Collapse
|
2
|
Bodard S, Guinebert S, Dimopoulos PM, Tacher V, Cornelis FH. Contribution and advances of robotics in percutaneous oncological interventional radiology. Bull Cancer 2024; 111:967-979. [PMID: 39198085 DOI: 10.1016/j.bulcan.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 09/01/2024]
Abstract
The advent of robotic systems in interventional radiology marks a significant evolution in minimally invasive medical procedures, offering enhanced precision, safety, and efficiency. This review comprehensively analyzes the current state and applications of robotic system usage in interventional radiology, which can be particularly helpful for complex procedures and in challenging anatomical regions. Robotic systems can improve the accuracy of interventions like microwave ablation, radiofrequency ablation, and irreversible electroporation. Indeed, studies have shown a notable decrease of an average 30% in the mean deviation of probes, and a 40% lesser need for adjustments during interventions carried out with robotic assistance. Moreover, this review highlights a 35% reduction in radiation dose and a stable-to-30% reduction in operating time associated with robot-assisted procedures compared to manual methods. Additionally, the potential of robotic systems to standardize procedures and minimize complications is discussed, along with the challenges they pose, such as setup duration, organ movement, and a lack of tactile feedback. Despite these advancements, the field still grapples with a dearth of randomized controlled trials, which underscores the need for more robust evidence to validate the efficacy and safety of robotic system usage in interventional radiology.
Collapse
Affiliation(s)
- Sylvain Bodard
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Radiology, Necker Hospital, University of Paris-Cité, 149 rue de Sèvres, 75015 Paris, France; CNRS UMR 7371, Inserm U 1146, laboratoire d'imagerie biomédicale, Sorbonne University, 75006 Paris, France.
| | - Sylvain Guinebert
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Platon M Dimopoulos
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Interventional Radiodolgy Dpt, University Hospital of Patras with memorial, 26504 Rio, Greece
| | - Vania Tacher
- Unité Inserm U955 n(o) 18, service d'imagerie médicale, hôpital Henri-Mondor, université Paris-Est, AP-HP, Créteil, France
| | - Francois H Cornelis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Radiology, Tenon Hospital, Sorbonne University, 4, rue de la Chine, 75020 Paris, France; Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
3
|
Scharll Y, Radojicic N, Laimer G, Schullian P, Bale R. Robot-Assisted 2D Fluoroscopic Needle Placement-A Phantom Study. Diagnostics (Basel) 2024; 14:1723. [PMID: 39202211 PMCID: PMC11354198 DOI: 10.3390/diagnostics14161723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
RATIONALE AND OBJECTIVES To evaluate the targeting accuracy of a novel robot-assisted guidance technique relying on one pair of 2D C-arm images. MATERIAL AND METHODS In total, 160 punctures were carried out semi-automatically by using a novel robotic device. The needle's paths were planned based on one pair of 2D fluoroscopic images from different angles. Conically shaped aluminum tips inside a gelatin-filled plexiglass phantom served as targets. The accuracy of the needle placement was assessed by taking control CTs and measuring the Euclidean distance (ED) and normal distance (ND) between the needle and the target point. In addition, the procedural time per needle placement was evaluated. RESULTS The accomplished mean NDs at the target for the 45°, 60°, 75° and 90° angles were 1.86 mm (SD ± 0.19), 2.68 mm (SD ± 0.18), 2.19 mm (SD ± 0.18) and 1.86 mm (SD ± 0.18), respectively. The corresponding mean EDs were 2.32 mm (SD ± 0.16), 2.68 mm (SD ± 0.18), 2.65 mm (SD ± 0.16) and 2.44 mm (SD ± 0.15). The mean duration of the total procedure, including image acquisition, trajectory planning and placement of four needles sequentially, was 12.7 min. CONCLUSIONS Robotic guidance based on two 2D fluoroscopy images allows for the precise placement of needle-like instruments at the first attempt without the need for using an invasive dynamic reference frame. This novel approach seems to be a valuable tool for the precise targeting of various anatomical structures that can be identified in fluoroscopic images.
Collapse
Affiliation(s)
| | | | | | | | - Reto Bale
- Interventional Oncology-Stereotaxy & Robotics (SIP), Department of Radiology, Medical University Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Arapi V, Hardt-Stremayr A, Weiss S, Steinbrener J. Bridging the simulation-to-real gap for AI-based needle and target detection in robot-assisted ultrasound-guided interventions. Eur Radiol Exp 2023; 7:30. [PMID: 37332035 DOI: 10.1186/s41747-023-00344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/05/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Artificial intelligence (AI)-powered, robot-assisted, and ultrasound (US)-guided interventional radiology has the potential to increase the efficacy and cost-efficiency of interventional procedures while improving postsurgical outcomes and reducing the burden for medical personnel. METHODS To overcome the lack of available clinical data needed to train state-of-the-art AI models, we propose a novel approach for generating synthetic ultrasound data from real, clinical preoperative three-dimensional (3D) data of different imaging modalities. With the synthetic data, we trained a deep learning-based detection algorithm for the localization of needle tip and target anatomy in US images. We validated our models on real, in vitro US data. RESULTS The resulting models generalize well to unseen synthetic data and experimental in vitro data making the proposed approach a promising method to create AI-based models for applications of needle and target detection in minimally invasive US-guided procedures. Moreover, we show that by one-time calibration of the US and robot coordinate frames, our tracking algorithm can be used to accurately fine-position the robot in reach of the target based on 2D US images alone. CONCLUSIONS The proposed data generation approach is sufficient to bridge the simulation-to-real gap and has the potential to overcome data paucity challenges in interventional radiology. The proposed AI-based detection algorithm shows very promising results in terms of accuracy and frame rate. RELEVANCE STATEMENT This approach can facilitate the development of next-generation AI algorithms for patient anatomy detection and needle tracking in US and their application to robotics. KEY POINTS • AI-based methods show promise for needle and target detection in US-guided interventions. • Publicly available, annotated datasets for training AI models are limited. • Synthetic, clinical-like US data can be generated from magnetic resonance or computed tomography data. • Models trained with synthetic US data generalize well to real in vitro US data. • Target detection with an AI model can be used for fine positioning of the robot.
Collapse
Affiliation(s)
- Visar Arapi
- Control of Networked Systems Research Group, Institute of Smart Systems Technologies, University of Klagenfurt, Klagenfurt, Austria.
| | - Alexander Hardt-Stremayr
- Control of Networked Systems Research Group, Institute of Smart Systems Technologies, University of Klagenfurt, Klagenfurt, Austria
| | - Stephan Weiss
- Control of Networked Systems Research Group, Institute of Smart Systems Technologies, University of Klagenfurt, Klagenfurt, Austria
| | - Jan Steinbrener
- Control of Networked Systems Research Group, Institute of Smart Systems Technologies, University of Klagenfurt, Klagenfurt, Austria
| |
Collapse
|
5
|
Lanza C, Carriero S, Buijs EFM, Mortellaro S, Pizzi C, Sciacqua LV, Biondetti P, Angileri SA, Ianniello AA, Ierardi AM, Carrafiello G. Robotics in Interventional Radiology: Review of Current and Future Applications. Technol Cancer Res Treat 2023; 22:15330338231152084. [PMID: 37113061 PMCID: PMC10150437 DOI: 10.1177/15330338231152084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
This review is a brief overview of the current status and the potential role of robotics in interventional radiology. Literature published in the last decades, with an emphasis on the last 5 years, was reviewed and the technical developments in robotics and navigational systems using CT-, MR- and US-image guidance were analyzed. Potential benefits and disadvantages of their current and future use were evaluated. The role of fusion imaging modalities and artificial intelligence was analyzed in both percutaneous and endovascular procedures. A few hundred articles describing results of single or several systems were included in our analysis.
Collapse
Affiliation(s)
- Carolina Lanza
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Serena Carriero
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | | | - Sveva Mortellaro
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Caterina Pizzi
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | | | - Pierpaolo Biondetti
- Foundation IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | | | | | | | - Gianpaolo Carrafiello
- Foundation IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Navigation accuracy and assessability of carbon fiber-reinforced PEEK instrumentation with multimodal intraoperative imaging in spinal oncology. Sci Rep 2022; 12:15816. [PMID: 36138117 PMCID: PMC9500029 DOI: 10.1038/s41598-022-20222-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Radiolucent carbon-fiber reinforced PEEK (CFRP) implants have helped improve oncological follow-up and radiation therapy. Here, we investigated the performance of 3D intraoperative imaging and navigation systems for instrumentation and precision assessment of CFRP pedicle screws across the thoraco-lumbar spine. Thirty-three patients with spinal tumors underwent navigated CFRP instrumentation with intraoperative CT (iCT), robotic cone-beam CT (rCBCT) or cone-beam CT (CBCT) imaging. Two different navigation systems were used for iCT-/rCBCT- and CBCT-based navigation. Demographic, clinical and outcome data was assessed. Four blinded observers rated image quality, assessability and accuracy of CFRP pedicle screws. Inter-observer reliability was determined with Fleiss` Kappa analysis. Between 2018 and 2021, 243 CFRP screws were implanted (iCT:93, rCBCT: 99, CBCT: 51), of which 13 were non-assessable (iCT: 1, rCBCT: 9, CBCT: 3; *p = 0.0475; iCT vs. rCBCT). Navigation accuracy was highest using iCT (74%), followed by rCBCT (69%) and CBCT (49%) (*p = 0.0064; iCT vs. CBCT and rCBCT vs. CBCT). All observers rated iCT image quality higher than rCBCT/CBCT image quality (*p < 0.01) but relevant pedicle breaches were reliably identified with substantial agreement between all observers regardless of the imaging modality. Navigation accuracy for CFRP pedicle screws was considerably lower than expected from reports on titanium implants and CT may be best for reliable assessment of CFRP materials.
Collapse
|
7
|
Additively manufactured test phantoms for mimicking soft tissue radiation attenuation in CBCT using Polyjet technology. Z Med Phys 2022:S0939-3889(22)00063-0. [PMID: 35792011 DOI: 10.1016/j.zemedi.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To develop and validate a simple approach for building cost-effective imaging phantoms for Cone Beam Computed Tomography (CBCT) using a modified Polyjet additive manufacturing technology where a single material can mimic a range of human soft-tissue radiation attenuation. MATERIALS AND METHODS Single material test phantoms using a cubic lattice were designed in 3-Matic 15.0 software . Keeping the individual cubic lattice volume constant, eight different percentage ratio (R) of air: material from 0% to 70% with a 10% increment were assigned to each sample. The phantoms were printed in three materials, namely Vero PureWhite, VeroClear and TangoPlus using Polyjet technology. The CT value analysis, non-contact profile measurement and microCT-based volumetric analysis was performed for all the samples. RESULTS The printed test phantoms produced a grey value spectrum equivalent to the radiation attenuation of human soft tissues in the range of -757 to +286 HU on CT. The results from dimensional comparison analysis of the printed phantoms with the digital test phantoms using non-contact profile measurement showed a mean accuracy of 99.07 % and that of micro-CT volumetric analysis showed mean volumetric accuracy of 84.80-94.91%. The material and printing costs of developing 24 test phantoms was 83.00 Euro. CONCLUSIONS The study shows that additive manufacturing-guided macrostructure manipulation modifies successfully the radiographic visibility of a material in CBCT imaging with 1 mm3 resolution, helping customization of imaging phantoms.
Collapse
|
8
|
Kendlbacher P, Tkatschenko D, Czabanka M, Bayerl S, Bohner G, Woitzik J, Vajkoczy P, Hecht N. Workflow and performance of intraoperative CT, cone-beam CT, and robotic cone-beam CT for spinal navigation in 503 consecutive patients. Neurosurg Focus 2022; 52:E7. [PMID: 34973677 DOI: 10.3171/2021.10.focus21467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE A direct comparison of intraoperative CT (iCT), cone-beam CT (CBCT), and robotic cone-beam CT (rCBCT) has been necessary to identify the ideal imaging solution for each individual user's need. Herein, the authors sought to analyze workflow, handling, and performance of iCT, CBCT, and rCBCT imaging for navigated pedicle screw instrumentation across the entire spine performed within the same surgical environment by the same group of surgeons. METHODS Between 2014 and 2018, 503 consecutive patients received 2673 navigated pedicle screws using iCT (n = 1219), CBCT (n = 646), or rCBCT (n = 808) imaging during the first 24 months after the acquisition of each modality. Clinical and demographic data, workflow, handling, and screw assessment and accuracy were analyzed. RESULTS Intraoperative CT showed image quality and workflow advantages for cervicothoracic cases, obese patients, and long-segment instrumentation, whereas CBCT and rCBCT offered independent handling, around-the-clock availability, and the option of performing 2D fluoroscopy. All modalities permitted reliable intraoperative screw assessment. Navigated screw revision was possible with each modality and yielded final accuracy rates > 92% in all groups (iCT 96.2% vs CBCT 92.3%, p < 0.001) without a difference in the accuracy of cervical pedicle screw placement or the rate of secondary screw revision surgeries. CONCLUSIONS Continuous training and an individual setup of iCT, CBCT, and rCBCT has been shown to permit safe and precise navigated posterior instrumentation across the entire spine with reliable screw assessment and the option of immediate revision. The perceived higher image quality and larger scan area of iCT should be weighed against the around-the-clock availability of CBCT and rCBCT technology with the option of single-handed robotic image acquisition.
Collapse
Affiliation(s)
- Paul Kendlbacher
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin.,2Department of Neurosurgery, Goethe Universität Frankfurt, Frankfurt am Main
| | | | - Marcus Czabanka
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin.,2Department of Neurosurgery, Goethe Universität Frankfurt, Frankfurt am Main
| | - Simon Bayerl
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin
| | - Georg Bohner
- 3Department of Neuroradiology, Charité-Universitätsmedizin Berlin; and
| | - Johannes Woitzik
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin.,4Department of Neurosurgery, University at Oldenburg, Germany
| | - Peter Vajkoczy
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin
| | - Nils Hecht
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin
| |
Collapse
|
9
|
Hatamikia S, Biguri A, Kronreif G, Figl M, Russ T, Kettenbach J, Buschmann M, Birkfellner W. Toward on-the-fly trajectory optimization for C-arm CBCT under strong kinematic constraints. PLoS One 2021; 16:e0245508. [PMID: 33561127 PMCID: PMC7872257 DOI: 10.1371/journal.pone.0245508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022] Open
Abstract
Cone beam computed tomography (CBCT) has become a vital tool in interventional radiology. Usually, a circular source-detector trajectory is used to acquire a three-dimensional (3D) image. Kinematic constraints due to the patient size or additional medical equipment often cause collisions with the imager while performing a full circular rotation. In a previous study, we developed a framework to design collision-free, patient-specific trajectories for the cases in which circular CBCT is not feasible. Our proposed trajectories included enough information to appropriately reconstruct a particular volume of interest (VOI), but the constraints had to be defined before the intervention. As most collisions are unpredictable, performing an on-the-fly trajectory optimization is desirable. In this study, we propose a search strategy that explores a set of trajectories that cover the whole collision-free area and subsequently performs a search locally in the areas with the highest image quality. Selecting the best trajectories is performed using simulations on a prior diagnostic CT volume which serves as a digital phantom for simulations. In our simulations, the Feature SIMilarity Index (FSIM) is used as the objective function to evaluate the imaging quality provided by different trajectories. We investigated the performance of our methods using three different anatomical targets inside the Alderson-Rando phantom. We used FSIM and Universal Quality Image (UQI) to evaluate the final reconstruction results. Our experiments showed that our proposed trajectories could achieve a comparable image quality in the VOI compared to the standard C-arm circular CBCT. We achieved a relative deviation less than 10% for both FSIM and UQI metrics between the reconstructed images from the optimized trajectories and the standard C-arm CBCT for all three targets. The whole trajectory optimization took approximately three to four minutes.
Collapse
Affiliation(s)
- Sepideh Hatamikia
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ander Biguri
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Gernot Kronreif
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Michael Figl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Tom Russ
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Joachim Kettenbach
- Institute of Diagnostic and Interventional Radiology and Nuclear Medicine, Landesklinikum, Wiener Neustadt, Austria
| | - Martin Buschmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Birkfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis. Spine J 2021; 21:181-192. [PMID: 32976997 DOI: 10.1016/j.spinee.2020.09.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The introduction and integration of robot technology into modern spine surgery provides surgeons with millimeter accuracy for pedicle screw placement. Coupled with computer-based navigation platforms, robot-assisted spine surgery utilizes augmented reality to potentially improve the safety profile of instrumentation. PURPOSE In this study, the authors seek to determine the safety and efficacy of robotic-assisted pedicle screw placement compared to conventional free-hand (FH) technique. STUDY DESIGN/SETTING We conducted a systematic review of the electronic databases using different MeSH terms from 1980 to 2020. OUTCOME MEASURES The present study measures pedicle screw accuracy, complication rates, proximal-facet joint violation, intraoperative radiation time, radiation dosage, and length of surgery. RESULTS A total of 1,525 patients (7,379 pedicle screws) from 19 studies with 777 patients (51.0% with 3,684 pedicle screws) in the robotic-assisted group were included. Perfect pedicle screw accuracy, as categorized by Gerztbein-Robbin Grade A, was significantly superior with robotic-assisted surgery compared to FH-technique (Odds ratio [OR]: 1.68, 95% confidence interval [CI]: 1.20-2.35; p=.003). Similarly, clinically acceptable pedicle screw accuracy (Grade A+B) was significantly higher with robotic-assisted surgery versus FH-technique (OR: 1.54, 95% CI: 1.01-2.37; p=.05). Furthermore, the complication rates and proximal-facet joint violation were 69% (OR: 0.31, 95% CI: 0.20-0.48; p<.00001) and 92% less likely (OR: 0.08, 95% CI: 0.03-0.20; p<.00001) with robotic-assisted surgery versus FH-group. Robotic-assisted pedicle screw implantation significantly reduced intraoperative radiation time (MD: -5.30, 95% CI: -6.83-3.76; p<.00001) and radiation dosage (MD: -3.70, 95% CI: -4.80-2.60; p<.00001) compared to the conventional FH-group. However, the length of surgery was significantly higher with robotic-assisted surgery (MD: 22.70, 95% CI: 6.57-38.83; p=.006) compared to the FH-group. CONCLUSION This meta-analysis corroborates the accuracy of robot-assisted pedicle screw placement.
Collapse
|
11
|
Hatamikia S, Biguri A, Kronreif G, Kettenbach J, Russ T, Furtado H, Shiyam Sundar LK, Buschmann M, Unger E, Figl M, Georg D, Birkfellner W. Optimization for customized trajectories in cone beam computed tomography. Med Phys 2020; 47:4786-4799. [PMID: 32679623 PMCID: PMC7693244 DOI: 10.1002/mp.14403] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Accepted: 07/09/2020] [Indexed: 11/15/2022] Open
Abstract
Purpose We developed a target‐based cone beam computed tomography (CBCT) imaging framework for optimizing an unconstrained three dimensional (3D) source‐detector trajectory by incorporating prior image information. Our main aim is to enable a CBCT system to provide topical information about the target using a limited angle noncircular scan orbit with a minimal number of projections. Such a customized trajectory should include enough information to sufficiently reconstruct a particular volume of interest (VOI) under kinematic constraints, which may result from the patient size or additional surgical or radiation therapy‐related equipment. Methods A patient‐specific model from a prior diagnostic computed tomography (CT) volume is used as a digital phantom for CBCT trajectory simulations. Selection of the best projection views is accomplished through maximizing an objective function fed by the imaging quality provided by different x‐ray positions on the digital phantom data. The final optimized trajectory includes a limited angular range and a minimal number of projections which can be applied to a C‐arm device capable of general source‐detector positioning. The performance of the proposed framework is investigated in experiments involving an in‐house‐built box phantom including spherical targets as well as an Alderson‐Rando head phantom. In order to quantify the image quality of the reconstructed image, we use the average full‐width‐half‐maximum (FWHMavg) for the spherical target and feature similarity index (FSIM), universal quality index (UQI), and contrast‐to‐noise ratio (CNR) for an anatomical target. Results Our experiments based on both the box and head phantom showed that optimized trajectories could achieve a comparable image quality in the VOI with respect to the standard C‐arm circular CBCT while using approximately one quarter of projections. We achieved a relative deviation <7% for FWHMavg between the reconstructed images from the optimized trajectories and the standard C‐arm CBCT for all spherical targets. Furthermore, for the anatomical target, the relative deviation of FSIM, UQI, and CNR between the reconstructed image related to the proposed trajectory and the standard C‐arm circular CBCT was found to be 5.06%, 6.89%, and 8.64%, respectively. We also compared our proposed trajectories to circular trajectories with equivalent angular sampling as the optimized trajectories. Our results show that optimized trajectories can outperform simple partial circular trajectories in the VOI in term of image quality. Typically, an angular range between 116° and 152° was used for the optimized trajectories. Conclusion We demonstrated that applying limited angle noncircular trajectories with optimized orientations in 3D space can provide a suitable image quality for particular image targets and has a potential for limited angle and low‐dose CBCT‐based interventions under strong spatial constraints.
Collapse
Affiliation(s)
- Sepideh Hatamikia
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ander Biguri
- Institute of Nuclear Medicine, University College London, Bloomsbury, UK
| | - Gernot Kronreif
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Joachim Kettenbach
- Institute of Diagnostic, Interventional Radiology and Nuclear Medicine, Landesklinikum, Wiener Neustadt, Austria
| | - Tom Russ
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Hugo Furtado
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Martin Buschmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Michael Figl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Birkfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Burström G, Balicki M, Patriciu A, Kyne S, Popovic A, Holthuizen R, Homan R, Skulason H, Persson O, Edström E, Elmi-Terander A. Feasibility and accuracy of a robotic guidance system for navigated spine surgery in a hybrid operating room: a cadaver study. Sci Rep 2020; 10:7522. [PMID: 32371880 PMCID: PMC7200720 DOI: 10.1038/s41598-020-64462-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
The combination of navigation and robotics in spine surgery has the potential to accurately identify and maintain bone entry position and planned trajectory. The goal of this study was to examine the feasibility, accuracy and efficacy of a new robot-guided system for semi-automated, minimally invasive, pedicle screw placement. A custom robotic arm was integrated into a hybrid operating room (OR) equipped with an augmented reality surgical navigation system (ARSN). The robot was mounted on the OR-table and used to assist in placing Jamshidi needles in 113 pedicles in four cadavers. The ARSN system was used for planning screw paths and directing the robot. The robot arm autonomously aligned with the planned screw trajectory, and the surgeon inserted the Jamshidi needle into the pedicle. Accuracy measurements were performed on verification cone beam computed tomographies with the planned paths superimposed. To provide a clinical grading according to the Gertzbein scale, pedicle screw diameters were simulated on the placed Jamshidi needles. A technical accuracy at bone entry point of 0.48 ± 0.44 mm and 0.68 ± 0.58 mm was achieved in the axial and sagittal views, respectively. The corresponding angular errors were 0.94 ± 0.83° and 0.87 ± 0.82°. The accuracy was statistically superior (p < 0.001) to ARSN without robotic assistance. Simulated pedicle screw grading resulted in a clinical accuracy of 100%. This study demonstrates that the use of a semi-automated surgical robot for pedicle screw placement provides an accuracy well above what is clinically acceptable.
Collapse
Affiliation(s)
- Gustav Burström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | - Sean Kyne
- Philips Research North America, Cambridge, USA
| | | | - Ronald Holthuizen
- Department of Image Guided Therapy Systems, Philips Healthcare, Best, the Netherlands
| | - Robert Homan
- Department of Image Guided Therapy Systems, Philips Healthcare, Best, the Netherlands
| | - Halldor Skulason
- Department of Neurosurgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Oscar Persson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Chang CJ, Fong YW, Su IC, Hsieh CT, Huang CT. Accuracy and safety of pedicle screws implantation using Zeego and Brainlab navigation system in hybrid operation room. FORMOSAN JOURNAL OF SURGERY 2020. [DOI: 10.4103/fjs.fjs_65_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Jiang B, Azad TD, Cottrill E, Zygourakis CC, Zhu AM, Crawford N, Theodore N. New spinal robotic technologies. Front Med 2019; 13:723-729. [PMID: 31673935 DOI: 10.1007/s11684-019-0716-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023]
Abstract
Robotic systems in surgery have developed rapidly. Installations of the da Vinci Surgical System® (Intuitive Surgical, Sunnyvale, CA, USA), widely used in urological and gynecological procedures, have nearly doubled in the United States from 2010 to 2017. Robotics systems in spine surgery have been adopted more slowly; however, users are enthusiastic about their applications in this subspecialty. Spinal surgery often requires fine manipulation of vital structures that must be accessed via limited surgical corridors and can require repetitive tasks over lengthy periods of time - issues for which robotic assistance is well-positioned to complement human ability. To date, the United States Food and Drug Administration (FDA) has approved 7 robotic systems across 4 companies for use in spinal surgery. The available clinical data evaluating their efficacy have generally demonstrated these systems to be accurate and safe. A critical next step in the broader adoption of surgical robotics in spine surgery is the design and implementation of rigorous comparative studies to interrogate the utility of robotic assistance. Here we discuss current applications of robotics in spine surgery, review robotic systems FDA-approved for use in spine surgery, summarize randomized controlled trials involving robotics in spine surgery, and comment on prospects of robotic-assisted spine surgery.
Collapse
Affiliation(s)
- Bowen Jiang
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Tej D Azad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Corinna C Zygourakis
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Alex M Zhu
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | | | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
15
|
Han Z, Yu K, Hu L, Li W, Yang H, Gan M, Guo N, Yang B, Liu H, Wang Y. A targeting method for robot-assisted percutaneous needle placement under fluoroscopy guidance. Comput Assist Surg (Abingdon) 2019; 24:44-52. [PMID: 30689445 DOI: 10.1080/24699322.2018.1557907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Minimally invasive procedures are rapidly growing in popularity thanks to advancements in medical robots, visual navigation and space registration techniques. This paper presents a precise and efficient targeting method for robot-assisted percutaneous needle placement under C-arm fluoroscopy. In this method, a special end-effector was constructed to perform fluoroscopy calibration and robot to image-space registration simultaneously. In addition, formulations were given to compute the movement of robot targeting and evaluate targeting accuracy using only one X-ray image. With these techniques, radiation exposure and operation time were reduced significantly compared to other commonly used methods. A pre-clinical experiment showed that the maximum angle error was 0.94° and the maximum position error of a target located 80mm below the end-effector was 1.31mm. And evaluation of the system in a robot-assisted pedicle screws placement surgery has justified the accuracy and reliability of proposed method in clinical applications.
Collapse
Affiliation(s)
- Zhonghao Han
- School of Mechanical Engineering and Automation, Beihang University , Beijing , China
| | - Keyi Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science , Beijing , China
| | - Lei Hu
- School of Mechanical Engineering and Automation, Beihang University , Beijing , China
| | - Weishi Li
- Orthopaedic Department, Peking University Third Hospital , Beijing , China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University , Jiangsu , Suzhou , China
| | - Minfeng Gan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University , Jiangsu , Suzhou , China
| | - Na Guo
- School of Mechanical Engineering and Automation, Beihang University , Beijing , China
| | - Biao Yang
- School of Mechanical Engineering and Automation, Beihang University , Beijing , China
| | - Hongsheng Liu
- School of Mechanical Engineering and Automation, Beihang University , Beijing , China
| | - Yuhan Wang
- School of Mechanical Engineering and Automation, Beihang University , Beijing , China
| |
Collapse
|
16
|
Fomenko A, Serletis D. Robotic Stereotaxy in Cranial Neurosurgery: A Qualitative Systematic Review. Neurosurgery 2019; 83:642-650. [PMID: 29253265 DOI: 10.1093/neuros/nyx576] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/01/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Modern-day stereotactic techniques have evolved to tackle the neurosurgical challenge of accurately and reproducibly accessing specific brain targets. Neurosurgical advances have been made in synergy with sophisticated technological developments and engineering innovations such as automated robotic platforms. Robotic systems offer a unique combination of dexterity, durability, indefatigability, and precision. OBJECTIVE To perform a systematic review of robotic integration for cranial stereotactic guidance in neurosurgery. Specifically, we comprehensively analyze the strengths and weaknesses of a spectrum of robotic technologies, past and present, including details pertaining to each system's kinematic specifications and targeting accuracy profiles. METHODS Eligible articles on human clinical applications of cranial robotic-guided stereotactic systems between 1985 and 2017 were extracted from several electronic databases, with a focus on stereotactic biopsy procedures, stereoelectroencephalography, and deep brain stimulation electrode insertion. RESULTS Cranial robotic stereotactic systems feature serial or parallel architectures with 4 to 7 degrees of freedom, and frame-based or frameless registration. Indications for robotic assistance are diversifying, and include stereotactic biopsy, deep brain stimulation and stereoelectroencephalography electrode placement, ventriculostomy, and ablation procedures. Complication rates are low, and mainly consist of hemorrhage. Newer systems benefit from increasing targeting accuracy, intraoperative imaging ability, improved safety profiles, and reduced operating times. CONCLUSION We highlight emerging future directions pertaining to the integration of robotic technologies into future neurosurgical procedures. Notably, a trend toward miniaturization, cost-effectiveness, frameless registration, and increasing safety and accuracy characterize successful stereotactic robotic technologies.
Collapse
Affiliation(s)
- Anton Fomenko
- Manitoba Neurosurgery Laboratory, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Demitre Serletis
- Manitoba Neurosurgery Laboratory, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Venturi D, Glossop N, Bale R. Patient-specific templates for image-guided intervention - a phantom study. MINIM INVASIV THER 2019; 29:251-260. [PMID: 31204536 DOI: 10.1080/13645706.2019.1626251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: To evaluate the in vitro accuracy of a new device and method for simultaneous stereotactic CT-guided punctures.Material and methods: 240 needle paths were planned in 1 mm, 1.5 mm and 3 mm slice thickness with a custom-designed software. The data were transferred to a three-axis tabletop CNC machine that then drilled the hole pattern for the needles into square plastic plates. Kirschner wires were slid through the holes of the two parallel fixed plates to aim at the chosen targets inside the phantom. The accuracy was calculated by taking control CTs and measuring the Euclidean distance and the normal distance between the wire and the entry and target point.Results: The mean Euclidean distance of the wire tip to the target for the 1 mm, 1.5mm and 3 mm slice thickness were 2.5 mm (SD ± 0.64), 2.71mm (SD ± 0.78) and 2.8 mm (SD ± 1.0). The mean normal distance was 1.42 mm (SD ± 0.65), 1.43mm (SD ± 0.75) and 1.9 mm (SD ± 1.1), respectively.Conclusion: The system yields satisfactory accuracy comparable to other image-guided intervention systems. Involuntary movements of the patient need to be taken into account in a clinical setting.
Collapse
Affiliation(s)
- David Venturi
- Interventional Oncology - Microinvasive Therapy (SIP), Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Neil Glossop
- Queen's University School of Computing, Kingston, Canada.,ArciTrax Inc, Toronto, Canada
| | - Reto Bale
- Interventional Oncology - Microinvasive Therapy (SIP), Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Fuhrmann I, Probst U, Wiggermann P, Beyer L. Navigation Systems for Treatment Planning and Execution of Percutaneous Irreversible Electroporation. Technol Cancer Res Treat 2018; 17:1533033818791792. [PMID: 30071779 PMCID: PMC6077881 DOI: 10.1177/1533033818791792] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The application of navigational systems has the potential to improve percutaneous interventions. The accuracy of ablation probe placement can be increased and radiation doses reduced. Two different types of systems can be distinguished, tracking systems and robotic systems. This review gives an overview of navigation devices for clinical application and summarizes first findings in the implementation of navigation in percutaneous interventions using irreversible electroporation. Because of the high number of navigation systems, this review focuses on commercially available ones.
Collapse
Affiliation(s)
- Irene Fuhrmann
- 1 Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Ute Probst
- 1 Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Wiggermann
- 1 Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Beyer
- 1 Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Croissant Y, Zangos S, Albrecht MH, Eichler K, Schomerus C, Spandorfer A, Schoepf UJ, Vogl TJ, Czerny C. Robot-assisted percutaneous placement of K-wires during minimally invasive interventions of the spine. MINIM INVASIV THER 2018; 28:373-380. [PMID: 30428741 DOI: 10.1080/13645706.2018.1544567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: To assess the accuracy and time requirements of image-guided percutaneous K-wire insertion in the spine using an advanced robot assistance device for needle guidance and to demonstrate a radiation-free workflow for the physician. Material and methods: A planning CT-scan was acquired of a cadaver specimen and analyzed using a 3D-interventional software integrated in the robotic device. The optimal needle path was simulated and the needle holder of the robot was used for guidance during K-wire insertion. Twenty-four K-wires were inserted percutaneously in a transpedicular approach in the following vertebrae: thoracic (T) 2, 7-12 and lumbar (L) 1-5. A post-procedural CT scan was performed to analyze the accuracy of the K-wire insertion. Results: All procedures were carried out without any perforation of the pedicle wall. The mean duration of planning the intervention path was 2:54 ± 2:22 min, mean positioning time was 2:04 ± 0:42 min and the mean time for K-wire insertion was 2:13 ± 0:54 min. In total, the average intervention time was 7:10 ± 3:06 min per pedicle. Compared to the planning, the K-wire position showed a mean deviation of 0.5 mm in the vertical-axis and 1.2 mm in the horizontal-axis. The average intervention path length was 8.1 cm. Conclusion: Our findings show a high accuracy in robot-assisted K-wire insertion during spinal interventions without any exposure of the operator to radiation.
Collapse
Affiliation(s)
- Yann Croissant
- Department of Orthopedic and Trauma Surgery, St Josefs-Hospital Wiesbaden, Wiesbaden, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stephan Zangos
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Katrin Eichler
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christof Schomerus
- Institute of Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adam Spandorfer
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston SC, United States
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston SC, United States
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christoph Czerny
- Department of Trauma Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Goshi A, Fukunishi S, Okahisa S, Okada T, Yoshiya S. Curved periacetabular osteotomy using intraoperative real-time 3-dimensional computed tomography with a robotic C-arm system: A case report. Medicine (Baltimore) 2018; 97:e13519. [PMID: 30508981 PMCID: PMC6283227 DOI: 10.1097/md.0000000000013519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
RATIONALE Curved periacetabular osteotomy (CPO) is a procedure with excellent surgical outcome that has been proposed for patients with development dysplasia of the hip (DDH). However, the surgical outcomes depend on the surgeon's experience and proficiency. PATIENT CONCERNS A 38-year-old female indicated she was experiencing left hip pain while walking. DIAGNOSES The patient was diagnosed with early-stage hip osteoarthritis due to DDH. INTERVENTIONS The patient underwent CPO while a 3-dimensional flat-panel C-arm (Artis zeego; Sciemens Healthcare, Forchheim, Germany) was used to confirm the real-time 3-dimensional computed tomography (CT) images during surgery. It was possible to confirm the accurate osteotomy curve using CT images twice during surgery: at the time of the ischial osteotomy and the quadrilateral surface osteotomy. OUTCOMES An ideal C-shaped osteotomy line was created as shown on the postoperative CT images. In addition, neither posterior column fracture nor intra-articular osteotomy was confirmed. LESSONS The CPO using Artis zeego resulted is a satisfactory outcome, and this is the 1st report in the world to discuss the benefits of Artis zeego in pelvic osteotomy.
Collapse
|
21
|
KAGEYAMA H, YOSHIMURA S, UCHIDA K, IIDA T. Advantages and Disadvantages of Multi-axis Intraoperative Angiography Unit for Percutaneous Pedicle Screw Placement in the Lumbar Spine. Neurol Med Chir (Tokyo) 2017; 57:481-488. [PMID: 28768918 PMCID: PMC5638792 DOI: 10.2176/nmc.oa.2017-0059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/22/2017] [Indexed: 11/20/2022] Open
Abstract
We analyzed clinical usefulness of the high resolution imaging system in a hybrid operation room (OR) for posterior lumbar interbody fusion. A total of 17 patients with lumbar spondylolisthesis between February 2014 and August 2016 were included. Multi-axis imaging system in a hybrid OR was used in 12 patients (hybrid OR group); the conventional C-arm fluoroscopy, in 5 patients (C-arm group). The time to confirm the first percutaneous pedicle screw (PPS) angle (hybrid OR, 80 vs C-arm, 249 s; P = 0.0026) and the second to the last PPS angle (77 vs 90 s; P = 0.040) were shorter in the hybrid OR group. Placement accuracy was higher in the hybrid OR group (88.0 vs 59.1%; P = 0.010). Irradiation dose was significantly lower in the C-arm group (462 vs 102 mGy; P = 0.0013). This study suggested that the accuracy of PPS placement and time to confirm the PPS angle are the advantages in a hybrid OR.
Collapse
Affiliation(s)
- Hiroto KAGEYAMA
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shinichi YOSHIMURA
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kazutaka UCHIDA
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Tomoko IIDA
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
22
|
Richter PH, Gebhard F, Salameh M, Schuetze K, Kraus M. Feasibility of laser-guided percutaneous pedicle screw placement in the lumbar spine using a hybrid-OR. Int J Comput Assist Radiol Surg 2017; 12:873-879. [PMID: 28188485 DOI: 10.1007/s11548-017-1529-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE Innovations in intraoperative imaging lead to major changes in orthopaedic surgery. In our setting, a 3D flat-panel c-arm (Artis zeego) is mounted on a robotic arm offering an integrated aiming tool (Syngo iGuide). Our aim was to investigate the feasibility of Syngo iGuide for pedicle screw placement in comparison with fluoroscopic screw implantation. METHODS In 10 lumbar models, 100 screws were implanted. In 5 models, a standard fluoroscopic technique was used. Syngo iGuide was used in all other models. Afterwards, CT-scans were performed and screw accuracy was investigated. RESULTS The procedure time for the new technique was significantly longer in comparison with the standard technique. The post-operative CT showed the same accuracy in both groups. CONCLUSIONS Syngo iGuide proofed feasible for percutaneous implantation of pedicle screws in anatomic models. Syngo iGuide can be a help for screw implantation in difficult anatomic regions without the need of an additional navigation system.
Collapse
Affiliation(s)
- P H Richter
- Department of Trauma-, Hand- and Reconstructive Surgery, Ulm University, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - F Gebhard
- Department of Trauma-, Hand- and Reconstructive Surgery, Ulm University, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - M Salameh
- Department of Trauma-, Hand- and Reconstructive Surgery, Ulm University, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - K Schuetze
- Department of Trauma-, Hand- and Reconstructive Surgery, Ulm University, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - M Kraus
- Centre for Orthopaedic, Trauma and Spine Surgery, Donau-Ries Hospital Donauwoerth, Neudegger Allee 6, 86609, Donauwoerth, Germany
| |
Collapse
|
23
|
Fiorella D, Arthur A, Schafer S. Minimally invasive cone beam CT-guided evacuation of parenchymal and ventricular hemorrhage using the Apollo system: proof of concept in a cadaver model. J Neurointerv Surg 2014; 7:569-73. [PMID: 24984709 PMCID: PMC4516001 DOI: 10.1136/neurintsurg-2014-011293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022]
Abstract
Introduction The Apollo system (Penumbra Inc, Alameda, California, USA) is a low profile irrigation–aspiration system designed for the evacuation of intracranial hemorrhage. Objective To demonstrate the feasibility of using Apollo in combination with cone beam CT guidance. Methods Parenchymal (n=1) and mixed parenchymal–intraventricular hematomas (n=1) were created in cadaver heads using a transvascular (n=1) or transcranial (n=1) approach. Hematomas were then imaged with cone beam CT (CB-CT), and the long axis of the hematoma defined. The CB-CT data were then used to guide transcranial access to the hematoma—defining the location of the burr hole and the path to the leading edge of the hematoma. An 8F vascular sheath was then placed under live fluoroscopic guidance into the hematoma. A second CB-CT was performed to confirm localization of the sheath. The hematoma was then demarcated on the CB-CT and the Apollo wand was introduced through the 8F sheath and irrigation–aspiration was performed under (periodic) live fluoroscopic guidance. The operators manipulated the wand within the visible boundaries of the hematoma. After irrigation–aspiration, a control CB-CT was performed to document reduction in hematoma volume. Results Transvascular and transcranial techniques were both successful in creating intracranial hematomas. Hematomas could be defined with conspicuity sufficient for localization and volumetric measurement using CB-CT. Live fluoroscopic guidance was effective in navigating a sheath into the leading aspect of a parenchymal hematoma and guiding irrigation–aspiration with the Apollo system. Irrigation–aspiration reduced the parenchymal hemorrhage volume from 14.8 to 1.7 cc in 189 s in the first case (parenchymal hemorrhage) and from 26.4 to 4.1 cc in 300 s in the second case (parenchymal and intraventricular hemorrhage). Conclusions The cadaver model described is a useful means of studying interventional techniques for intracranial hemorrhage. It seems feasible to use CB-CT to guide the evacuation of intraparenchymal and intraventricular hemorrhage using the Apollo system through a minimally invasive transcranial access.
Collapse
Affiliation(s)
- David Fiorella
- Department of Neurological Surgery, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Adam Arthur
- Semmes-Murphey Clinic, Memphis, Tennessee, USA
| | | |
Collapse
|