1
|
Yao J, Liu Y, Lin H, Shao C, Jin X, Peng T, Liu Y. Caffeic acid activates Nrf2 enzymes, providing protection against oxidative damage induced by ionizing radiation. Brain Res Bull 2025; 224:111325. [PMID: 40174789 DOI: 10.1016/j.brainresbull.2025.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Caffeic acid (CA) is a prevalent polyphenolic compound commonly found in various plant-derived foods. Due to its diverse pharmacological properties, including antioxidant activity, cardiovascular protection, and immune regulation, CA has garnered significant attention. Ionizing radiation (IR) is extensively utilized across industrial sectors, agriculture, defense applications, scientific research, and clinical medicine; however, the detrimental effects of radiation on human health cannot be ignored. IR can directly damage the DNA, proteins, and lipids within macromolecules or ionize water molecules to generate substantial quantities of free radicals that indirectly harm cells, especially those in the brain which are highly susceptible to radiation exposure. Consequently, effective strategies for preventing and treating IR-induced neurological damage represent an urgent medical challenge that necessitates resolution. Our study aims to investigate the protective effects of CA against IR-induced neuronal cell damage along with elucidating its potential mechanisms of action. The results indicate that CA can covalently modify active cysteine residues on Keap1 protein altering its conformation; this modification disrupts the interaction between Keap1 and Nrf2 while facilitating Nrf2's translocation into the nucleus where it activates downstream expression of cellular protective factors such as heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), Thioredoxin Reductase-1 (TrxR1) and other cellular protective factors to play a role in countering radiation-induced neurological damage. In conclusion, CA emerges as an effective radioprotective agent capable of exerting antiradiation effects. Our findings provide valuable insights for developing novel therapeutic agents aimed at preventing and treating IR-induced neurological impairment.
Collapse
Affiliation(s)
- Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Yuanyuan Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Huanhuan Lin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Changxin Shao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Ting Peng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
2
|
Bustillo JPO, Engels EEM, de Rover V, Roughley K, Posadas JRD, Inocencio ET, Warren D, Wallace GG, Tehei M, Rosenfeld AB, Lerch MLF. Three-dimensional bioprinted in vitro glioma tumor constructs for synchrotron microbeam radiotherapy dosimetry and biological study using gelatin methacryloyl hydrogel. Sci Rep 2025; 15:13868. [PMID: 40263410 PMCID: PMC12015499 DOI: 10.1038/s41598-025-88793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/30/2025] [Indexed: 04/24/2025] Open
Abstract
Synchrotron microbeam radiotherapy (MRT) is an innovative cancer treatment that uses micron-sized of ultra-high dose rate spatially fractionated X-rays to effectively control cancer growth while reducing the damage to surrounding healthy tissue. However, the current pre-clinical experiments are commonly limited with the use of conventional two-dimensional cell cultures which cannot accurately model in vivo tissue environment. This study aims to propose a three-dimensional (3D) bioprinting gelatin methacryloyl (GelMA) hydrogel protocol and to characterize 3D bioprinted glioma relative to cell monolayer and spheroid models for experimental MRT using 9L rat gliosarcoma and U87 human glioma. Synchrotron broad-beam (SBB) and MRT beams were delivered to all cell models using 5, 10, and 20 Gy. 3D bioprinting enables the creation of 3D cell models that mimic in vivo conditions using bioinks, biomaterials, and cells. Synchrotron dosimetry, Monte Carlo simulation, in vitro cell viability, and fluorescence microscopy were performed to understand the relationship of the radiation dosimetry with the radiobiological response of different cancer models. Encapsulated gliomas were placed inside 3D printed human and rat phantoms to mimic scattering conditions. Results showed that MRT kills more gliomas relative to SBB for all cell models. The 3D bioprinted culture detected the spatial clustering of dead cells due to MRT high peak doses as seen in fluorescence imaging. The result of this study progresses MRT research by integrating 3D bioprinting techniques in radiobiological experiments. The study's bioprinting protocol and results will help in reducing the use of animal experiments and possibly in clinical translation of MRT.
Collapse
Affiliation(s)
- John Paul O Bustillo
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia.
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City, Metro Manila, 1000, Philippines.
| | - Elette E M Engels
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC, 3168, Australia
| | - Vincent de Rover
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
| | - Kiarn Roughley
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
| | - Julia Rebecca D Posadas
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City, Metro Manila, 1000, Philippines
- Department of Radiology, University of the Philippines- Philippine General Hospital, Metro Manila, 1000, Philippines
| | - Elrick T Inocencio
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City, Metro Manila, 1000, Philippines
- Department of Radiology, University of the Philippines- Philippine General Hospital, Metro Manila, 1000, Philippines
| | - Danielle Warren
- AIIM Facility, Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Gordon G Wallace
- AIIM Facility, Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
| |
Collapse
|
3
|
Park DJ, Lee I, Annagiri S, Chou KN, Zamarud A, Akhavan-Sigari A, Hori YS, Persad AR, Abu-Reesh D, Lam FC, Tayag A, Ustrzynski L, Emrich SC, Gu X, Pollom EL, Chang SD. Efficacy and Safety of Donut-Shaped Circumferential Spine CyberKnife Stereotactic Body Radiotherapy for Metastatic Spine Disease. Neurosurgery 2025:00006123-990000000-01581. [PMID: 40243341 DOI: 10.1227/neu.0000000000003446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/23/2024] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Spinal metastases (SM) with epidural spinal cord compression (ESCC) present a significant challenge because of the high risk of radiation-induced injury to critical structures such as the spinal cord and nerve roots. Traditional treatment approaches often avoid circumferential stereotactic body radiotherapy (SBRT) to reduce these risks. The efficacy and safety of donut-shaped circumferential SBRT, designed to target the spinal column while sparing the spinal cord, remains underexplored. The aim of this study was to evaluate the safety and efficacy of donut-shaped circumferential CyberKnife SBRT for SM, particularly in preventing radiation-induced myelopathy and achieving local tumor control (LTC). METHODS We retrospectively analyzed data from patients treated with donut-shaped circumferential SBRT between 2014 and 2023. Key parameters examined included patient demographics, ESCC grade (Bilsky), prior treatments, clinical symptoms, and treatment parameters. We focused on SBRT dosimetric data, radiation exposure to the spinal cord and cauda equina, adherence to dose-volume constraints, and post-SBRT outcomes, including myelopathy and LTC. RESULTS Forty-eight lesions in 43 patients (median age: 65; range: 20-78) were reviewed. One patient required separation surgery for severe ESCC (Bilsky grade 3). The median clinical target volume was 63.77 cm3, and the median margin dose was 24 Gy. Over a median follow-up of 8 months, LTC was 91.1% at 6 months, 87.1% at 1 year, 82.8% at 3 years, and 62.1% at 5 years. The median overall survival was 17 months. Of the 21 lesions exceeding dose constraints, only one patient exhibited clinical myelopathy, which correlated with local tumor recurrence. No radiographic myelopathy or other radiation-induced complications were observed. CONCLUSION Donut-shaped circumferential CyberKnife SBRT is a safe and effective treatment of SM, achieving high LTC with minimal radiation-induced complications, including myelopathy.
Collapse
Affiliation(s)
- David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Isabelle Lee
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Shreyas Annagiri
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kuan-Nien Chou
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (R.O.C)
| | - Aroosa Zamarud
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | | | - Yusuke S Hori
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Amit R Persad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Deyaaldeen Abu-Reesh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Fred C Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Armine Tayag
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Louisa Ustrzynski
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sara C Emrich
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Xuejun Gu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Boutet A, Son HJ, Malik M, Haile S, Yang AZ, Pai V, Germann J, Mandell DM. Enlarging and shrinking focal perivascular spaces. Neuroradiol J 2025; 38:224-229. [PMID: 38565221 PMCID: PMC11571348 DOI: 10.1177/19714009241242642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Background and PurposePerivascular spaces (PVS) are interstitial fluid-filled spaces surrounding blood vessels traversing the deep gray nuclei and white matter of the brain. These are commonly encountered on CT and MR imaging and are generally asymptomatic and of no clinical significance. However, occasional changes in the size of focal PVS, for example, when enlarging, may mimic pathologies including neoplasms and infections, hence potentially confounding radiological interpretation. Given these potential diagnostic issues, we sought to better characterize common clinical and imaging features of focal PVS demonstrating size fluctuations.Materials and MethodsUpon institutional approval, we retrospectively identified 4 cases demonstrating PVS with size changes at our institution. To supplement our cases, we also performed a literature review, which identified an additional 14 cases. Their clinical and imaging data were analyzed to identify characteristic features.ResultsOf the 18 total cases (including the 4 institutional cases), 10 cases increased and 8 decreased in size. These focal PVS ranged from 0.4-4.5 cm in size. Whereas a decrease in size did not represent a diagnostic issue, focal increase in size of PVS led to concerning differential diagnoses in at least 30% of the radiology reports. These enlarging PVS were most found in the basal ganglia and temporal lobe, and in patients with previous brain radiation treatment.ConclusionFocal size change of PVS can occur, especially years after brain radiation treatment. Being cognizant of this benign finding is important to consider in the differential diagnosis to avoid undue patient anxiety or unnecessary medical intervention.
Collapse
Affiliation(s)
- Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Canada
| | - Hyo Jin Son
- Temerty Faculty of Medicine, University of Toronto, Canada
| | - Mikail Malik
- Temerty Faculty of Medicine, University of Toronto, Canada
| | - Samuel Haile
- Temerty Faculty of Medicine, University of Toronto, Canada
| | - Andrew Z Yang
- Division of Neurosurgery, University of Toronto, Canada
| | - Vivek Pai
- Joint Department of Medical Imaging, University of Toronto, Canada
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Canada
| | | | - Daniel M Mandell
- Joint Department of Medical Imaging, University of Toronto, Canada
| |
Collapse
|
5
|
Srinivasan D, Subbarayan R, Krishnan M, Balakrishna R, Adtani P, Shrestha R, Chauhan A, Babu S, Radhakrishnan A. Radiation therapy-induced normal tissue damage: involvement of EMT pathways and role of FLASH-RT in reducing toxicities. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2025; 64:1-16. [PMID: 39760753 DOI: 10.1007/s00411-024-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Radiation therapy (RT) is fundamental to the fight against cancer because of its exceptional ability to target and destroy cancer cells. However, conventional radiation therapy can significantly affect the adjacent normal tissues, leading to fibrosis, inflammation, and decreased organ function. This tissue damage not only reduces the quality of life but also prevents the total elimination of cancer. The transformation of epithelial cells into mesenchymal-like cells, termed epithelial-mesenchymal transition (EMT), is essential for processes such as fibrosis, embryogenesis, and wound healing. Conventional radiation therapy increases the asymmetric activation of fibrotic and inflammatory pathways, and the resulting chronic fibrotic changes and organ dysfunction are linked to radiation-induced epithelial-mesenchymal transition. Recent advances in radiation therapy, namely flash radiation therapy (FLASH-RT), have the potential to widen the therapeutic index. Radiation delivered by FLASH-RT at very high dose rates (exceeding 40 Gy/s) can protect normal tissue from radiation-induced damage, a phenomenon referred to as the "FLASH effect". Preclinical studies have demonstrated that FLASH-RT successfully inhibits processes associated with fibrosis and epithelial-mesenchymal transition, mitigates damage to normal tissue, and enhances regeneration. Three distinct types of EMT have been identified: type-1, associated with embryogenesis; Type-2, associated with injury potential; and type-3, related with cancer spread. The regulation of EMT via pathways, including TGF-β/SMAD, WNT/β-catenin, and NF-κB, is essential for radiation-induced tissue remodelling. This study examined radiation-induced EMT, TGF-β activity, multiple signalling pathways in fibrosis, and the potential of FLASH-RT to reduce tissue damage. FLASH-RT is a novel approach to treat chronic tissue injury and fibrosis post-irradiation by maintaining epithelial properties and regulating mesenchymal markers including vimentin and N-cadherin. Understanding these pathways will facilitate the development of future therapies that can alleviate fibrosis, improve the efficacy of cancer therapy, and improve the quality of life of patients.
Collapse
Affiliation(s)
- Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Madhan Krishnan
- Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Ranjith Balakrishna
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Pooja Adtani
- Department of Basic Medical and Dental Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Rupendra Shrestha
- Department of Natural and Applied Sciences, Nexus Institute of Research and Innovation (NIRI), Lalitpur, Nepal.
| | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Shyamaladevi Babu
- Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
6
|
Hong JY, Kim H, Jeon WJ, Yeo C, Kim H, Lee J, Lee YJ, Ha IH. Animal Models of Intervertebral Disc Diseases: Advantages, Limitations, and Future Directions. Neurol Int 2024; 16:1788-1818. [PMID: 39728755 DOI: 10.3390/neurolint16060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Animal models are valuable tools for studying the underlying mechanisms of and potential treatments for intervertebral disc diseases. In this review, we discuss the advantages and limitations of animal models of disc diseases, focusing on lumbar spinal stenosis, disc herniation, and degeneration, as well as future research directions. The advantages of animal models are that they enable controlled experiments, long-term monitoring to study the natural history of the disease, and the testing of potential treatments. However, they also have limitations, including species differences, ethical concerns, a lack of standardized protocols, and short lifespans. Therefore, ongoing research focuses on improving animal model standardization and incorporating advanced imaging and noninvasive techniques, genetic models, and biomechanical analyses to overcome these limitations. These future directions hold potential for improving our understanding of the underlying mechanisms of disc diseases and for developing new treatments. Overall, although animal models can provide valuable insights into pathophysiology and potential treatments for disc diseases, their limitations should be carefully considered when interpreting findings from animal studies.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| |
Collapse
|
7
|
Li X, Ding Z. Cognitive dysfunction induced by cranial radiotherapy: mechanisms and therapeutic methods. Brain Res Bull 2024; 218:111106. [PMID: 39447765 DOI: 10.1016/j.brainresbull.2024.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Cranial radiotherapy can damage normal brain tissues, inducing cognitive dysfunction in patients. Radiotherapy-induced cognitive dysfunction is associated with hippocampal injury, white matter damage and microvascular injury. In this study, the mechanisms of cognitive dysfunction induced by cranial radiotherapy and combined chemoradiotherapy are reviewed, and the advances in therapeutic methods for radiotherapy-induced brain injury are summarized. The mechanisms of radiotherapy-induced brain injury include a decline of neurogenesis, impairment of neurons and glial cells, vascular injury, oxidative stress and DNA damage, cell death, and inflammatory response. Disruption of the bloodbrain barrier (BBB) increases the exposure of the brain to chemotherapeutic agents, thus exacerbating radiotherapy-induced brain damage. The current methods used to prevent radiotherapy-induced brain injury mainly include precision radiotherapy, stem cell transplantation, and treatment with neuroprotective drugs. The combined application of precision radiotherapy and neuroprotective drugs, including antioxidants, anti-inflammatory agents and other drugs, might exert better neuroprotective effects. To resolve the issues of neuroprotective drugs, such as difficulty in crossing the BBB, nanoenzymes and drug delivery nano-systems could be applied in the future.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Gupta K, Perkerson RB, Parsons TM, Angom R, Amerna D, Burgess JD, Ren Y, McLean PJ, Mukhopadhyay D, Vibhute P, Wszolek ZK, Zubair AC, Quiñones-Hinojosa A, Kanekiyo T. Secretome from iPSC-derived MSCs exerts proangiogenic and immunosuppressive effects to alleviate radiation-induced vascular endothelial cell damage. Stem Cell Res Ther 2024; 15:230. [PMID: 39075600 PMCID: PMC11287895 DOI: 10.1186/s13287-024-03847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Radiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines. METHODS We generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit. RESULTS Increasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ≤ 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NFκB activation, TNF-α release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GROα/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and β-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment. CONCLUSIONS The iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| | - Ralph B Perkerson
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ramacharan Angom
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Danilyn Amerna
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Prasanna Vibhute
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Abba C Zubair
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
9
|
Mohamed AA, Faragalla S, Khan A, Flynn G, Rainone G, Johansen PM, Lucke-Wold B. Neurosurgical and pharmacological management of dystonia. World J Psychiatry 2024; 14:624-634. [PMID: 38808085 PMCID: PMC11129150 DOI: 10.5498/wjp.v14.i5.624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Dystonia characterizes a group of neurological movement disorders characterized by abnormal muscle movements, often with repetitive or sustained contraction resulting in abnormal posturing. Different types of dystonia present based on the affected body regions and play a prominent role in determining the potential efficacy of a given intervention. For most patients afflicted with these disorders, an exact cause is rarely identified, so treatment mainly focuses on symptomatic alleviation. Pharmacological agents, such as oral anticholinergic administration and botulinum toxin injection, play a major role in the initial treatment of patients. In more severe and/or refractory cases, focal areas for neurosurgical intervention are identified and targeted to improve quality of life. Deep brain stimulation (DBS) targets these anatomical locations to minimize dystonia symptoms. Surgical ablation procedures and peripheral denervation surgeries also offer potential treatment to patients who do not respond to DBS. These management options grant providers and patients the ability to weigh the benefits and risks for each individual patient profile. This review article explores these pharmacological and neurosurgical management modalities for dystonia, providing a comprehensive assessment of each of their benefits and shortcomings.
Collapse
Affiliation(s)
- Ali Ahmed Mohamed
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Steven Faragalla
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Asad Khan
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Garrett Flynn
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Gersham Rainone
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606, United States
| | - Phillip Mitchell Johansen
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
10
|
Talapko J, Talapko D, Katalinić D, Kotris I, Erić I, Belić D, Vasilj Mihaljević M, Vasilj A, Erić S, Flam J, Bekić S, Matić S, Škrlec I. Health Effects of Ionizing Radiation on the Human Body. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:653. [PMID: 38674299 PMCID: PMC11052428 DOI: 10.3390/medicina60040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivan Kotris
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivan Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Surgery, Osijek University Hospital Center, 31000 Osijek, Croatia
| | - Dino Belić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Mila Vasilj Mihaljević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Vukovar, 32000 Vukovar, Croatia
| | - Ana Vasilj
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
11
|
de Ville de Goyet M, Kicinski M, Suciu S, Vandecruys E, Uyttebroeck A, Ferster A, Freycon C, Plat G, Thomas C, Barbati M, Dresse MF, Paillard C, Pluchart C, Simon P, Chantrain C, Minckes O, van der Werff Ten Bosch J, Bertrand Y, Rohrlich P, Millot F, Paulus R, Benoit Y, Piette C. Long-term neurotoxicity among childhood acute lymphoblastic leukaemia survivors enrolled between 1971 and 1998 in EORTC Children Leukemia Group studies. Discov Oncol 2024; 15:20. [PMID: 38285235 PMCID: PMC10825101 DOI: 10.1007/s12672-024-00869-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
Survival after childhood acute lymphoblastic leukemia (ALL) has increased over the last 40 years with an overall survival above 90%. Survivors may experience neurological late effects secondary to chemotherapy and radiotherapy. This observational retrospective study evaluated the cumulative incidence of neurological late effects among 890 childhood ALL survivors treated in EORTC CLG trials (58741, 58831/2 and 58881) between 1971 and 1998. Median follow-up was 19 years and interquartile range of the follow-up was 15-22 years. At 20 years from the end of treatment, approximately 66% of patients from the 58741 trial (accrual time: 1971-1978) and approximately 15% from the more recent trials had cognitive disturbance grade 1 or higher. Cumulative incidences at 20 years from treatment end of seizures, stroke and leukoencephalopathy were respectively 45%, 16% and 62% in study 58741, 13%, 2% and 5% in study 58831/2, and 8%, 2% and 3% in study 58881. Patients who were 10-17 years of age at diagnosis had a higher incidence of stroke and leukoencephalopathy as compared to those less than 6 years of age. Noteworthy, all neurological late effects continued to occur beyond 5 years after end of treatment. This retrospective study highlights the frequency of neurological late effects in survivors of childhood ALL. With the increase of the overall survival of ALL patients, the role and potential benefit of longitudinal neurological screening should be evaluated in further studies as these neurological late effects become an important public health challenge. This study is part of the larger EORTC CLG 58 Late Adverse Effects (LAE) study (ClinicalTrials.gov Identifier NCT01298388, date of registration February 16, 2011).
Collapse
Affiliation(s)
- Maëlle de Ville de Goyet
- Department of Paediatric Haematology-Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | | | - Els Vandecruys
- Department of Paediatric Haematology-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Anne Uyttebroeck
- Department of Paediatric Haematology-Oncology, University Hospital Leuven, Louvain, Belgium
| | - Alina Ferster
- Department of Haemato Oncology, HUDERF (ULB), Brussels, Belgium
| | - Claire Freycon
- Department of Paediatric Haematology-Oncology, CHU Grenoble, Grenoble, France
| | - Geneviève Plat
- Department of Haematology, CHU Toulouse, Toulouse, France
| | | | - Mélissa Barbati
- Department of Paediatric Haematology-Oncology, CHRU Lille, Lille, France
| | - Marie-Françoise Dresse
- Department of Paediatrics, University Hospital Liège and University of Liège, Liège, Belgium
| | - Catherine Paillard
- Department of Paediatric Haematology-Oncology, CHRU Strasbourg, Strasbourg, France
| | - Claire Pluchart
- Department of Paediatric Haematology and Oncology, CHU Reims, Reims, France
| | | | | | - Odile Minckes
- Department of Paediatric Haematology-Oncology, CHU Caen, Caen, France
| | | | - Yves Bertrand
- Department of Paediatric Onco-Haematology, Lyon University Hospital, Hospices Civils de Lyon and, Université Claude Bernard Lyon, Lyon, France
| | - Pierre Rohrlich
- Division of Paediatric Haematology-Oncology, CHU Nice, Nice, France
| | - Frederic Millot
- Department of Paediatric Haematology-Oncology, CHU Poitiers, Poitiers, France
| | | | - Yves Benoit
- Department of Paediatric Haematology-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Caroline Piette
- Department of Paediatrics, University Hospital Liège and University of Liège, Liège, Belgium.
- Service de Pédiatrie, CHU Liège, Avenue de l'Hôpital 1, 4000 Liège, Belgium.
| |
Collapse
|
12
|
Rios-Hoyo A, Arriola E. Immunotherapy and brain metastasis in lung cancer: connecting bench side science to the clinic. Front Immunol 2023; 14:1221097. [PMID: 37876939 PMCID: PMC10590916 DOI: 10.3389/fimmu.2023.1221097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Brain metastases (BMs) are the most common form of intracranial malignant neoplasms in adults, with a profound impact on quality of life and traditionally associated with a dismal prognosis. Lung cancer accounts for approximately 40%-50% of BM across different tumors. The process leading to BMs is complex and includes local invasion, intravasation, tumor cells circulation into the bloodstream, disruption of the blood-brain barrier, extravasation of tumor cells into the brain parenchyma, and interaction with cells of the brain microenvironment, among others. Once the tumor cells have seeded in the brain parenchyma, they encounter different glial cells of the brain, as well as immune cells. The interaction between these cells and tumor cells is complex and is associated with both antitumoral and protumoral effects. To overcome the lethal prognosis associated with BMs, different treatment strategies have been developed, such as immunotherapy with immune checkpoint inhibitors, particularly inhibitors of the PD-1/PD-L1 axis, which have demonstrated to be an effective treatment in both non-small cell lung cancer and small cell lung cancer. These antibodies have shown to be effective in the treatment of BM, alone or in combination with chemotherapy or radiotherapy. However, many unsolved questions remain to be answered, such as the sequencing of immunotherapy and radiotherapy, the optimal management in symptomatic BMs, the role of the addition of anti-CTLA-4 antibodies, and so forth. The complexity in the management of BMs in the era of immunotherapy requires a multidisciplinary approach to adequately treat this devastating event. The aim of this review is to summarize evidence regarding epidemiology of BM, its pathophysiology, current approach to treatment strategies, as well as future perspectives.
Collapse
Affiliation(s)
- Alejandro Rios-Hoyo
- Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Edurne Arriola
- Department of Medical Oncology, Hospital del Mar-CIBERONC (Centro de Investigación Biomédica en Red de Oncología), Barcelona, Spain
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| |
Collapse
|
13
|
Söderström H, Walfridsson A, Martinsson U, Isacsson U, Brocki K, Kleberg JL, Ljungman G. Neurocognition and mean radiotherapy dose to vulnerable brain structures: new organs at risk? Radiat Oncol 2023; 18:132. [PMID: 37568180 PMCID: PMC10416465 DOI: 10.1186/s13014-023-02324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Children with brain tumors are at high risk of neurocognitive decline after radiotherapy (RT). However, there is a lack of studies on how RT doses to organs at risk (OARs) impacts neurocognition. The aim of this study was to examine dose-risk relationships for mean RT dose to different brain structures important for neurocognitive networks. We explored previously established OARs and potentially new OARs. METHODS A sample of 44 pediatric brain tumor survivors who had received proton and/or photon RT were included. Correlations between mean RT doses to OARs and IQ were analyzed. Previously established OARs were cochleae, optic chiasm, optic nerve, pituitary gland, hypothalamus, hippocampus and pons. Potential new OARs for RT-induced neurocognitive decline were cerebellum, vermis and thalamus. RESULTS Mean RT dose to different OARs correlated with several IQ subtests. Higher mean RT dose to cochleae, optic nerve, cerebellum, vermis and pons was correlated with lower performance on particularly full-scale IQ (FIQ), Perceptual Reasoning (PRI), Working Memory (WMI) and Processing Speed Index (PSI). Higher mean RT dose to hippocampus correlated with lower performance on processing speed and working memory. For those receiving whole brain RT (WBRT), higher mean RT dose to the pituitary gland correlated with lower performance on working memory. CONCLUSION A high dose-risk correlation was found between IQ subtests and mean RT dose in established and potential new OARs. Thus, in the lack of validated dose constraints for vulnerable brain structures, a parsimonious approach in RT planning should be considered to preserve neurocognitive networks.
Collapse
Affiliation(s)
- Helena Söderström
- Present Address: Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Angelica Walfridsson
- Department of Hematology and Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Ulla Martinsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulf Isacsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Brocki
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Johan Lundin Kleberg
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Ljungman
- Present Address: Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Rübe CE, Raid S, Palm J, Rübe C. Radiation-Induced Brain Injury: Age Dependency of Neurocognitive Dysfunction Following Radiotherapy. Cancers (Basel) 2023; 15:cancers15112999. [PMID: 37296960 DOI: 10.3390/cancers15112999] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Cranial radiotherapy is a known risk factor for neurocognitive impairment in cancer survivors. Although radiation-induced cognitive dysfunction is observed in patients of all ages, children seem to be more vulnerable than adults to suffering age-related deficits in neurocognitive skills. So far, the underlying mechanisms by which IR negatively influences brain functions as well as the reasons for the profound age dependency are still insufficiently known. We performed a comprehensive Pubmed-based literature search to identify original research articles that reported on age dependency of neurocognitive dysfunction following cranial IR exposure. Numerous clinical trials in childhood cancer survivors indicate that the severity of radiation-induced cognitive dysfunction is clearly dependent on age at IR exposure. These clinical findings were related to the current state of experimental research providing important insights into the age dependency of radiation-induced brain injury and the development of neurocognitive impairment. Research in pre-clinical rodent models demonstrates age-dependent effects of IR exposure on hippocampal neurogenesis, radiation-induced neurovascular damage and neuroinflammation.
Collapse
Affiliation(s)
- Claudia E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany
| | - Silvia Raid
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany
| | - Jan Palm
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany
| | - Christian Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany
| |
Collapse
|
15
|
McKevitt FM. What neurologists can do for neuro-oncology patients. Pract Neurol 2023:pn-2022-003665. [PMID: 37019612 DOI: 10.1136/pn-2022-003665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 04/07/2023]
Abstract
Neuro-oncology is a branch of medical science concerned with managing central nervous system tumours and neurological complications of cancer. Patients with brain tumours need a multidisciplinary approach to their care and neurologists can play a key part within that team. This review shows how neurologists can contribute to the care of patients with neuro-oncological disease at various points during the illness, including at initial diagnosis, during symptom management and at end of life assisting with palliative seizure management. The review focuses on brain tumour-related epilepsy, the complications of brain tumour treatments and the neurological complications of systemic cancer treatments including immunotherapies.
Collapse
Affiliation(s)
- Fiona M McKevitt
- Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|