1
|
Xu F, Zhang Q, Liu Y, Tang R, Li H, Yang H, Lin L. The role of exosomes derived from various sources in facilitating the healing of chronic refractory wounds. Pharmacol Res 2025; 216:107753. [PMID: 40311956 DOI: 10.1016/j.phrs.2025.107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Chronic refractory wounds (CRWs) represent a common and challenging issue in clinical practice, including diabetic foot ulcers, pressure ulcers, venous ulcers, and arterial ulcers. These wounds significantly impact patients' quality of life and may lead to severe consequences such as amputation. Their treatment requires a comprehensive consideration of both the patient's overall physical condition and the local wound situation. The major challenges in treatment include complex pathogenesis, a long treatment cycle, a high recurrence rate, and heavy economic pressure on the patients. Exosomes represent an emerging therapeutic modality with characteristics such as low immunogenicity, good biostability, and high targeting efficiency in the treatment of diseases. Exosomes derived from different sources exhibit heterogeneity, demonstrating their respective advantages and unique properties in treatment. This article delves into the potential applications and mechanisms of action of exosomes from various sources in the treatment of CRWs, aiming to provide new perspectives and ideas for the management of such wounds.
Collapse
Affiliation(s)
- Fengdan Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiling Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuling Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruying Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330000, China.
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Longfei Lin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Nigi L, Pedace E, Dotta F, Sebastiani G. Neutrophils in Type 1 Diabetes: Untangling the Intricate Web of Pathways and Hypothesis. Biomolecules 2025; 15:505. [PMID: 40305198 PMCID: PMC12025241 DOI: 10.3390/biom15040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Neutrophils are increasingly recognized as key contributors to the pathogenesis of Type 1 Diabetes (T1D), yet their precise mechanistic role in disease onset and progression remains incompletely understood. While these innate immune cells reside in pancreatic tissue and support tissue homeostasis under physiological conditions, they can also drive tissue damage by triggering innate immune responses and modulating inflammation. Within the inflammatory milieu, neutrophils establish complex, bidirectional interactions with various immune cells, including macrophages, dendritic cells, natural killer cells, and lymphocytes. Once activated, they may enhance the innate immune response through direct or indirect crosstalk with immune cells, antigen presentation, and β-cell destruction or dysfunction. These mechanisms underscore the multifaceted and dynamic role of neutrophils in T1D, shaped by their intricate immunological interactions. Further research into the diverse functional capabilities of neutrophils is crucial for uncovering novel aspects of their involvement in T1D, potentially revealing new therapeutic targets to modulate disease progression.
Collapse
Affiliation(s)
- Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (L.N.); (E.P.); (G.S.)
- Fondazione Umberto Di Mario ONLUS, Toscana Life Sciences, 53100 Siena, Italy
| | - Erika Pedace
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (L.N.); (E.P.); (G.S.)
- Fondazione Umberto Di Mario ONLUS, Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (L.N.); (E.P.); (G.S.)
- Fondazione Umberto Di Mario ONLUS, Toscana Life Sciences, 53100 Siena, Italy
- Tuscany Centre for Precision Medicine, 53100 Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (L.N.); (E.P.); (G.S.)
- Fondazione Umberto Di Mario ONLUS, Toscana Life Sciences, 53100 Siena, Italy
| |
Collapse
|
3
|
OuYang L, Lin Z, He X, Sun J, Liao J, Liao Y, Xie X, Hu W, Zeng R, Tao R, Liu M, Sun Y, Mi B, Liu G. Conductive Hydrogel Inspires Neutrophil Extracellular Traps to Combat Bacterial Infections in Wounds. ACS NANO 2025; 19:9868-9884. [PMID: 40029999 PMCID: PMC11924340 DOI: 10.1021/acsnano.4c14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/25/2024] [Accepted: 01/15/2025] [Indexed: 03/19/2025]
Abstract
Thetreatment of infected wounds is currently a major challenge in clinical medicine, and enhancing antimicrobial and angiogenic capacity is one of the most common strategies. However, the current treatment makes it difficult to balance the antimicrobial effect in the early stage and the angiogenic effect in the later stages of wound healing, leading to an increased rate of poor prognosis. Here, we present a nanoconductive hydrogel EF@S-HGM, consisting of HGM with ECGS, FMLP, and SWCNT. The host-guest supramolecular macromolecule (HGM) hydrogel is biocompatible and can be injected in situ in the wound. The endothelial cell growth factor (ECGS) accelerates vascular remodeling and repairs wounds by promoting the proliferation of endothelial cells. N-Formyl-Met-Leu-Phe (FMLP) recruits neutrophils and increases the antimicrobial capacity. Single-walled carbon nanotubes (SWCNT) make the hydrogel conductive, enabling the hydrogel to utilize the endogenous electric field in the wound to recruit multiple kinds of cells. In addition, we found that the EF@S-HGM hydrogel activates the glucocorticoid receptor senescence pathway and promotes the formation of NET, which enhances the antimicrobial effect. As tissue-engineered skin, the conductive hydrogel EF@S-HGM is a promising material for regenerative medicine that may provide a potential option for the treatment and care of infected wounds and significantly improve patient outcomes and prognosis.
Collapse
Affiliation(s)
- Lizhi OuYang
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ze Lin
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xi He
- Union
Hospital, Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department
of Rheumatology, Renji Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Jiaqi Sun
- Union
Hospital, Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiewen Liao
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yuheng Liao
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xudong Xie
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Weixian Hu
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ruiyin Zeng
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ranyang Tao
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Department
of Surgery, Prince of Wales Hospital, The
Chinese University of Hong Kong, Hong Kong 999077, China
| | - Mengfei Liu
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yun Sun
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Bobin Mi
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Guohui Liu
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
4
|
Wang Y, Guo X, Wang B, Zheng J, Li K, Zhang Z, Zhang Y, Huang H. Screening necroptosis genes influencing osteoarthritis development based on machine learning. Sci Rep 2025; 15:9019. [PMID: 40089565 PMCID: PMC11910570 DOI: 10.1038/s41598-025-92911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Machine learning can be applied to identify key genes associated with osteoarthritis (OA). This study aimed to explore the differential expression of necroptosis-related genes (NRGs) during the progression of OA, identify key gene modules strongly linked to the onset of OA, and assess the role of CASP1 and its correlation with immune cell infiltration in OA. Gene expression profile data were obtained for OA and normal tissues: GSE55235 (10 OA and 10 normal synovial tissues) and GSE46750 (12 OA and 12 normal synovial tissues). Differential expression analysis identified 44 NRGs. Weighted gene co-expression network analysis revealed that the turquoise module, including 2037 genes, showed a strong correlation with OA. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that these genes were predominantly involved in regulating the JNK cascade, cellular response to oxidative stress, and Toll-like receptor signalling pathways. The support vector machine model exhibited the highest predictive performance (area under the curve of 0.883). Additionally, CASP1 expression in OA tissues was considerably elevated compared to normal tissues and was strongly associated with immune cell infiltration. These findings deepen our understanding of the pathophysiological foundation of OA and identify possible molecular targets for creating innovative OA therapies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hand Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiangjun Guo
- Department of Surgery Two, Chengmai People's Hospital, Chengmai, China
| | - Bo Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jiaxuan Zheng
- Department of Pathology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Ke Li
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhijie Zhang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Yuzhuan Zhang
- Department of Orthopedics, The Second People's Hospital of Hainan Province, Wuzhishan, China.
| | - Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.
| |
Collapse
|
5
|
Pesenti L, de Oliveira Formiga R, Tamassia N, Gardiman E, Chable de la Héronnière F, Gasperini S, Chicher J, Kuhn L, Hammann P, Le Gall M, Saraceni-Tasso G, Martin C, Hosmalin A, Breckler M, Hervé R, Decker P, Ladjemi MZ, Pène F, Burgel PR, Cassatella MA, Witko-Sarsat V. Neutrophils Display Novel Partners of Cytosolic Proliferating Cell Nuclear Antigen Involved in Interferon Response in COVID-19 Patients. J Innate Immun 2025; 17:154-175. [PMID: 40015257 PMCID: PMC11867639 DOI: 10.1159/000543633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions. INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions.
Collapse
Affiliation(s)
- Lucie Pesenti
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Morgane Le Gall
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Clémence Martin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Magali Breckler
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Roxane Hervé
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Patrice Decker
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Maha Zohra Ladjemi
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Frédéric Pène
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Intensive Medicine and Reanimation, AP-HP, Cochin Hospital, Paris, France
| | - Pierre-Régis Burgel
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Marco A. Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | |
Collapse
|
6
|
Dutta S, Dutta S, Somanath PR, Narayanan SP, Wang X, Zhang D. Circulating Nucleosomes and Histones in the Development of Lung Injury and Sepsis. Curr Issues Mol Biol 2025; 47:133. [PMID: 39996854 PMCID: PMC11854804 DOI: 10.3390/cimb47020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Cellular nucleosomes-the structural and functional units of chromatin-are inherently present in cells. During cellular damage or cell death, nucleosomes are released into circulation, either actively or passively. Once released, nucleosomes can become immunogenic entities through various mechanisms. The nucleosomal proteins in nucleosomes, called histones, play a pivotal role in inducing immunogenicity. However, intact nucleosomes are more immunogenic than the histones alone, as nucleosomal double-stranded deoxyribonucleic acid (dsDNA) enhances its immunogenic potential. Our recent study has shown that circulating histones are predominantly nucleosomal histones rather than free histones. Consequently, circulating histones primarily function as integral parts of circulating nucleosomes rather than acting independently. Circulating nucleosomes and their associated histones are implicated in the pathogenesis of a wide array of diseases. Notably, they are critical in the pathogenesis of lung injury and sepsis. These diseases have high morbidity and mortality rates and lack early diagnostic biomarkers. Further investigation is required to fully elucidate the role of circulating nucleosomes and their associated histones in disease processes. This review aims to discuss the current understanding of circulating nucleosomes and histones in the pathogenesis of lung injury and sepsis, with a focus on the underlying mechanisms.
Collapse
Affiliation(s)
- Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Sauradeep Dutta
- Department of Computer Science & Engineering, Southern University Bangladesh, Chattogram 4210, Bangladesh
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Porfírio
do Nascimento PR, Mendes-Aguiar CO, Morais IC, Rodrigues Neto JF, Wilson ME, Jerônimo SMB. Neutrophil- Leishmania infantum Interaction Induces Neutrophil Extracellular Traps, DAMPs, and Inflammatory Molecule Release. ACS Infect Dis 2025; 11:483-492. [PMID: 39887021 PMCID: PMC11833875 DOI: 10.1021/acsinfecdis.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Neutrophils, the first cells to arrive at infection sites, release neutrophil extracellular traps (NETs) comprising nuclear and/or mitochondrial DNA webs decorated with proteins. Similar to other parasites, Leishmania infantum induces NET extrusion. However, our understanding of NET formation and neutrophil fate after NET release in a Leishmania infection context is limited. Our study aimed to determine the DNA origin of the NET scaffolds released by human neutrophils in response to chemical or L. infantum stimulation. Neutrophils were incubated with PMA, PHA, LPS, or L. infantum, followed by DNA and elastase activity quantification; additionally, we evaluated the source of DNA that composes NETs. Neutrophil viability was evaluated by annexin-V/7AAd labeling. Expression of IL6, TNFA, IL10, CXCL1, CXCL8, and FPR1 in response to the L. infantum interaction was assessed. Neutrophils incubated with chemicals or L. infantum released NETs. However, neutrophils stimulated by the chemicals showed lower viability after 1 h in comparison to neutrophils incubated with parasites. NETs from chemically stimulated neutrophils were mainly composed of nuclear DNA. Conversely, the NET induced by the parasites was of mitochondrial DNA origin and had no leishmanicidal activity. After 4 h of parasite stimulation, neutrophils peak the expression of genes such as IL6, TNFA, CXCL1, CXCL8, and FPR1. Our study demonstrates that neutrophils produce NETs after chemical or L. infantum exposure. Although they are not toxic to the parasite, NETs are released as danger signals. These findings support the role of neutrophils in releasing signaling molecules, which influence the inflammatory environment in which the infectious process occurs.
Collapse
Affiliation(s)
| | | | - Ingryd Câmara Morais
- Institute
of Tropical Medicine of Rio Grande do Norte, Sen. Salgado Filho Av. 3000. Lagoa Nova, 59078970 Natal, RN, Brazil
| | - João Firmino Rodrigues Neto
- Institute
of Tropical Medicine of Rio Grande do Norte, Sen. Salgado Filho Av. 3000. Lagoa Nova, 59078970 Natal, RN, Brazil
- Multicamp
School of Medical Sciences, Federal University
of Rio Grande do Norte. Manuel Elpídio St. 610, Penedo, 59300000 Caicó, RN, Brazil
| | - Mary E. Wilson
- Departments
of Internal Medicine and Microbiology & Immunology, University of Iowa, 601, Hwy 6 West. 52242 Iowa City, Iowa, United States
- National
Institute of Science and Technology of Tropical Diseases, INCT-DT, 59078970 Natal, RN, Brazil
| | - Selma Maria Bezerra Jerônimo
- Institute
of Tropical Medicine of Rio Grande do Norte, Sen. Salgado Filho Av. 3000. Lagoa Nova, 59078970 Natal, RN, Brazil
- National
Institute of Science and Technology of Tropical Diseases, INCT-DT, 59078970 Natal, RN, Brazil
- Department
of Biochemistry, Federal University of Rio
Grande do Norte, Sen.
Salgado Filho Av., 3000, Lagoa Nova, 59078970 Natal, RN, Brazil
| |
Collapse
|
8
|
Wang P, Zhu Z, Hou C, Xu D, Guo F, Zhi X, Liang W, Xue J. FGF19 is a biomarker associated with prognosis and immunity in colorectal cancer. Int J Immunopathol Pharmacol 2025; 39:3946320251324401. [PMID: 40162957 PMCID: PMC11960187 DOI: 10.1177/03946320251324401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the relationship between fibroblast growth factor 19 (FGF19) and the prognosis and immune infiltration of colorectal cancer (CRC) and identify the related genes and pathways influencing the onset and progression of CRC. INTRODUCTION The potential of FGF19 to guide the prognosis of CRC and inform immunotherapeutic strategies warrants further investigation. METHODS We performed Quantitative Real-Time PCR to assess the expression of FGF19 and conducted a bioinformatics analysis to evaluate the impact of FGF19 expression on the clinical prognosis of CRC. We also analyzed the association between FGF19 expression and immune cell infiltration in CRC, and explored the related genes and pathways through which FGF19 influences CRC development. RESULTS CRC patients with higher FGF19 expression exhibited a poorer prognosis. In terms of the Receiver Operating Characteristic (ROC), FGF19 achieved an area under the curve (AUC) of 0.904. FGF19 expression correlated with the N stage, M stage, and pathological stage in patients with CRC. Functional enrichment analysis revealed significant enrichment of FGF19 in pathways associated with tumor development. ssGSEA and Spearman correlation analysis demonstrated that FGF19 expression was linked to tumor immune cells. We discovered that FGF19 is closely related to neutrophil extracellular traps (NETs), which play a significant role in the immune microenvironment. CONCLUSION FGF19 is a key gene associated with immunity and prognosis in CRC patients. Our findings suggest that FGF19 may influence CRC progression by promoting NETs expression, which leads to suppression of immune cells.
Collapse
Affiliation(s)
- Peng Wang
- Graduate School, Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Zhenpeng Zhu
- Graduate School, Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Chenyang Hou
- Graduate School, Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Dandan Xu
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Fei Guo
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Weizheng Liang
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Jun Xue
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| |
Collapse
|
9
|
Pereira-Silva GC, Medina JM, Paschoaletto L, Mangeth L, Coelho FS, Attias M, Domont GB, Nogueira FCS, Sosa-Acosta P, de Oliveira Santos E, Ferreira CV, de Miranda BT, Mignaco JA, Calegari-Silva T, Lopes UG, Saraiva EM. Leishmania amazonensis-derived extracellular vesicles (EVs) induce neutrophil extracellular traps (NETs). J Leukoc Biol 2024; 117:qiae196. [PMID: 39241110 DOI: 10.1093/jleuko/qiae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 09/08/2024] Open
Abstract
Neutrophils interact with Leishmania when the sandfly vector inoculates these parasites in the host with saliva and promastigotes-derived extracellular vesicles (EVs). It has been shown that this co-injection induces inflammation and exacerbates leishmaniasis lesions. EVs are a heterogeneous group of vesicles released by cells that play a crucial role in intercellular communication. Neutrophils are among the first cells to interact with the parasites and release neutrophil extracellular traps (NETs) that ensnare and kill the promastigotes. Here, we show that Leishmania amazonensis EVs induce NET formation and identify molecular mechanisms involved. We showed the requirement of neutrophils' toll-like receptors for EVs-induced NET. EVs carrying the virulence factors lipophosphoglycan and the zinc metalloproteases were endocytosed by some neutrophils and snared by NETs. EVs-induced NET formation required reactive oxygen species, myeloperoxidase, elastase, peptidyl arginine deiminase, and Ca++. The proteomic analysis of the EVs cargo revealed 1,189 proteins; the 100 most abundant identified comprised some known Leishmania virulent factors. Importantly, L. amazonensis EVs-induced NETs lead to the killing of promastigotes and could participate in the exacerbated inflammatory response induced by the EVs, which may play a role in the pathogenesis process.
Collapse
Affiliation(s)
- Gean C Pereira-Silva
- Laboratório de Imunidade Inata, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Jorge Mansur Medina
- Laboratório de Estrutura e Regulação de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Letícia Paschoaletto
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Luana Mangeth
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Felipe Soares Coelho
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Márcia Attias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Gilberto B Domont
- Centro de Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Fábio C S Nogueira
- Centro de Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Patrícia Sosa-Acosta
- Centro de Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Eidy de Oliveira Santos
- Laboratório de Tecnologia em Bioquímica e Microbiologia, Faculdade de Ciências Biológicas e Saúde, Universidade Estadual do Rio de Janeiro (UERJ), Rio de Janeiro 20950-000, Brazil
| | - Carlos Vinicius Ferreira
- Laboratório de Microbiologia, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Beatriz Toja de Miranda
- Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-599, Brazil
| | - Julio Alberto Mignaco
- Laboratório de Estrutura e Regulação de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Teresa Calegari-Silva
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Ulisses Gazos Lopes
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Elvira Maria Saraiva
- Laboratório de Imunidade Inata, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
10
|
Wang Y, Song M, Chang W. Antimicrobial peptides and proteins against drug-resistant pathogens. Cell Surf 2024; 12:100135. [PMID: 39687062 PMCID: PMC11646788 DOI: 10.1016/j.tcsw.2024.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The rise of drug-resistant pathogens, driven by the misuse and overuse of antibiotics, has created a formidable challenge for global public health. Antimicrobial peptides and proteins have garnered considerable attention as promising candidates for novel antimicrobial agents. These bioactive molecules, whether derived from natural sources, designed synthetically, or predicted using artificial intelligence, can induce lethal effects on pathogens by targeting key microbial structures or functional components, such as cell membranes, cell walls, biofilms, and intracellular components. Additionally, they may enhance overall immune defenses by modulating innate or adaptive immune responses in the host. Of course, development of antimicrobial peptides and proteins also face some limitations, including high toxicity, lack of selectivity, insufficient stability, and potential immunogenicity. Despite these challenges, they remain a valuable resource in the fight against drug-resistant pathogens. Future research should focus on overcoming these limitations to fully realize the therapeutic potential of antimicrobial peptides in the infection control.
Collapse
Affiliation(s)
- Yeji Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minghui Song
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
Zhu Z, Zhou S, Li S, Gong S, Zhang Q. Neutrophil extracellular traps in wound healing. Trends Pharmacol Sci 2024; 45:1033-1045. [PMID: 39419742 DOI: 10.1016/j.tips.2024.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Wound healing is a complex and orchestrated process that involves hemostasis, inflammation, proliferation, and tissue remodeling. Neutrophil extracellular traps (NETs) are intricate web-like structures released by neutrophils, comprising decondensed chromatin, myeloperoxidase (MPO), and neutrophil elastase (NE), which play vital roles in regulating neutrophil-mediated immune regulation. While NETs contribute to wound healing, excessive activation induced by dysregulated inflammation can hinder the healing process. Understanding the pivotal role of NETs in wound healing and tissue remodeling, as well as their intricate interactions within the wound microenvironment, presents opportunities for innovative wound healing strategies. In this review we discuss the process of NET formation, explore the interactions between NETs and skin cells, and examine therapeutic strategies targeting NETs and drug delivery platforms to accelerate wound healing. Additionally, we discuss current clinical investigations and research challenges towards advancing wound care practices.
Collapse
Affiliation(s)
- Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shengzhi Zhou
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| |
Collapse
|
12
|
Liu Y, Qu Y, Liu C, Zhang D, Xu B, Wan Y, Jiang P. Neutrophil extracellular traps: Potential targets for the treatment of rheumatoid arthritis with traditional Chinese medicine and natural products. Phytother Res 2024; 38:5067-5087. [PMID: 39105461 DOI: 10.1002/ptr.8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Abnormal formation of neutrophil extracellular traps (NETs) at the synovial membrane leads to the release of many inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Elastase, histone H3, and myeloperoxidase, which are carried by NETs, damage the soft tissues of the joints and aggravate the progression of RA. The balance of NET formation coordinates the pro-inflammatory and anti-inflammatory effects and plays a key role in the development of RA. Therefore, when NETs are used as effector targets, highly targeted drugs with fewer side effects can be developed to treat RA without damaging the host immune system. Currently, an increasing number of studies have shown that traditional Chinese medicines and natural products can regulate the formation of NETs through multiple pathways to counteract RA, which shows great potential for the treatment of RA and has a promising future for clinical application. In this article, we review the latest biological progress in understanding NET formation, the mechanism of NETs in RA, and the potential targets or pathways related to the modulation of NET formation by Chinese medicines and natural products. This review provides a relevant basis for the use of Chinese medicines and natural products as natural adjuvants in the treatment of RA.
Collapse
Affiliation(s)
- Yuan Liu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Yuan Qu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yakun Wan
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Liguori A, D'Ambrosio F, Napodano C, Gentili V, Giustiniani MC, Pompili M, Grieco A, Rapaccini G, Urbani A, Gasbarrini A, Basile U, Miele L. Serum-free light chains as a dependable biomarker for stratifying patients with metabolic dysfunction-associated steatotic liver disease. Liver Int 2024; 44:2625-2638. [PMID: 39016540 DOI: 10.1111/liv.16036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND AND AIMS Adaptive immunity is gaining a significant role in progression of metabolic dysfunction-associated steatotic liver disease (MASLD). B-cell activity can be assessed by serum-free light chains (sFLCs) k and λ levels. The objective of the present investigation is to examine the utility of sFLCs as non-invasive biomarkers for the stratification of MASLD. METHODS We enrolled a consecutive cohort from an outpatient liver unit. Diagnosis of metabolic dysfunction-associated steatohepatitis (MASH) was made with liver biopsy according to current guidelines. Compensated advanced chronic liver disease (cACLD) and clinically significant portal hypertension (CSPH) were defined according to Baveno VII criteria. sFLCs were measured by turbidimetry using an immunoassay. RESULTS We evaluated 254 patients, 162/254 (63.8%) were male. Median age was 54 years old, and the median body mass index was 28.4 kg/m2. A total of 157/254 (61.8%) subjects underwent liver biopsy: 88 had histological diagnosis of MASH, 89 were considered as simple metabolic dysfunction-associated steatotic liver (MASL) and 77/254 (30.3%) patients with compensated metabolic dysfunction-associated cirrhosis. By using Baveno VII criteria, 101/254 (39.7%) patients had cACLD; among them, 45/101 (44.5%) had CSPH. Patients with cACLD showed higher sFLC levels compared with patients without cACLD (p < .01), and patients with CSPH showed higher sFLC levels than patients without CSPH (p < .01). At multivariable analysis, sFLCs were associated with cACLD (p < .05) independently from γ-globulins and other known dysmetabolic risk factors. κFLC was associated with CSPH (p < .05) independently from γ-globulins and other known dysmetabolic risk factors. CONCLUSION sFLCs could be a simple biomarker for stratification of cACLD in MASLD patients.
Collapse
Affiliation(s)
- Antonio Liguori
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Internal Medicine and Liver Transplant Unit, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
- CEMAD, Digestive Disease Center, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| | - Francesca D'Ambrosio
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cecilia Napodano
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Vanessa Gentili
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Cristina Giustiniani
- Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| | - Maurizio Pompili
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Grieco
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianludovico Rapaccini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Urbani
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Internal Medicine and Liver Transplant Unit, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti HospitalAUSL Latina, Latina, Italy
| | - Luca Miele
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Internal Medicine and Liver Transplant Unit, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
- CEMAD, Digestive Disease Center, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| |
Collapse
|
14
|
Ma X, Li J, Li M, Qi G, Wei L, Zhang D. Nets in fibrosis: Bridging innate immunity and tissue remodeling. Int Immunopharmacol 2024; 137:112516. [PMID: 38906006 DOI: 10.1016/j.intimp.2024.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Fibrosis, a complex pathological process characterized by excessive deposition of extracellular matrix components, leads to tissue scarring and dysfunction. Emerging evidence suggests that neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, significantly contribute to fibrotic diseases pathogenesis. This review summarizes the process of NETs production, molecular mechanisms, and related diseases, and outlines the cellular and molecular mechanisms associated with fibrosis. Subsequently, this review comprehensively summarizes the current understanding of the intricate interplay between NETs and fibrosis across various organs, including the lung, liver, kidney, skin, and heart. The mechanisms by which NETs contribute to fibrogenesis, including their ability to promote inflammation, induce epithelial-mesenchymal transition (EMT), activate fibroblasts, deposit extracellular matrix (ECM) components, and trigger TLR4 signaling were explored. This review aimed to provide insights into the complex relationship between NETs and fibrosis via a comprehensive analysis of existing reports, offering novel perspectives for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jipin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
15
|
Tang H, Zhong Y, Wu Y, Huang Y, Liu Y, Chen J, Xi T, Wen Y, He T, Yang S, Liu F, Xiong R, Jin R. Increased neutrophil extracellular trap formation in oligoarticular, polyarticular juvenile idiopathic arthritis and enthesitis-related arthritis: biomarkers for diagnosis and disease activity. Front Immunol 2024; 15:1436193. [PMID: 39185410 PMCID: PMC11341361 DOI: 10.3389/fimmu.2024.1436193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Objective Neutrophil extracellular traps (NETs) are important factors in initiating and perpetuating inflammation. However, the role of NETs in different subtypes of juvenile idiopathic arthritis (JIA) has been rarely studied. Therefore, we aimed to explore the ability of JIA-derived neutrophils to release NETs and the effect of TNF-α (tumor necrosis factor-alpha) inhibitors on NET formation both in vitro and in vivo, and evaluate the associations of NET-derived products with clinical and immune-related parameters. Methods The ability of neutrophils to release NETs and the effect of adalimumab on NET formation was assessed via in vitro stimulation and inhibition studies. Plasma NET-derived products were detected to assess the incidence of NET formation in vivo. Furthermore, flow cytometry and western blotting were used to detect NET-associated signaling components in neutrophils. Results Compared to those derived from HCs, neutrophils derived from patients with oligoarticular-JIA, polyarticular-JIA and enthesitis-related arthritis were more prone to generate NETs spontaneously and in response to TNF-α or PMA in vitro. Excessive NET formation existed in peripheral circulation of JIA patients, and elevated plasma levels of NET-derived products (cell-free DNA and MPO-DNA complexes) could accurately distinguish JIA patients from HCs and were positively correlated with disease activity. Multiple linear regression analysis showed that erythrocyte sedimentation rate and TNF-α levels were independent variables and were positively correlated with cell-free DNA concentration. Notably, TNF-α inhibitors could effectively prevent NET formation both in vitro and in vivo. Moreover, the phosphorylation levels of NET-associated kinases in JIA-derived neutrophils were markedly increased. Conclusion Our data suggest that NETs might play pathogenic roles and may be involved in TNF-α-mediated inflammation in JIA. Circulating NET-derived products possess potential diagnostic and disease monitoring value. Furthermore, the preliminary results related to the molecular mechanisms of NET formation in JIA patients provide a theoretical basis for NET-targeted therapy.
Collapse
Affiliation(s)
- Hongxia Tang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yucheng Zhong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yali Wu
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yanmei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jing Chen
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ting Xi
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yini Wen
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ting He
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shanshan Yang
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Fan Liu
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Runji Xiong
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Bork F, Greve CL, Youn C, Chen S, N C Leal V, Wang Y, Fischer B, Nasri M, Focken J, Scheurer J, Engels P, Dubbelaar M, Hipp K, Zalat B, Szolek A, Wu MJ, Schittek B, Bugl S, Kufer TA, Löffler MW, Chamaillard M, Skokowa J, Kramer D, Archer NK, Weber ANR. naRNA-LL37 composite DAMPs define sterile NETs as self-propagating drivers of inflammation. EMBO Rep 2024; 25:2914-2949. [PMID: 38783164 PMCID: PMC11239898 DOI: 10.1038/s44319-024-00150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are a key antimicrobial feature of cellular innate immunity mediated by polymorphonuclear neutrophils (PMNs). NETs counteract microbes but are also linked to inflammation in atherosclerosis, arthritis, or psoriasis by unknown mechanisms. Here, we report that NET-associated RNA (naRNA) stimulates further NET formation in naive PMNs via a unique TLR8-NLRP3 inflammasome-dependent pathway. Keratinocytes respond to naRNA with expression of psoriasis-related genes (e.g., IL17, IL36) via atypical NOD2-RIPK signaling. In vivo, naRNA drives temporary skin inflammation, which is drastically ameliorated by genetic ablation of RNA sensing. Unexpectedly, the naRNA-LL37 'composite damage-associated molecular pattern (DAMP)' is pre-stored in resting neutrophil granules, defining sterile NETs as inflammatory webs that amplify neutrophil activation. However, the activity of the naRNA-LL37 DAMP is transient and hence supposedly self-limiting under physiological conditions. Collectively, upon dysregulated NET release like in psoriasis, naRNA sensing may represent both a potential cause of disease and a new intervention target.
Collapse
Affiliation(s)
- Francesca Bork
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Carsten L Greve
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sirui Chen
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Vinicius N C Leal
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Masoud Nasri
- Division of Translational Oncology, Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller Str. 10, 72076, Tübingen, Germany
| | - Jule Focken
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Jasmin Scheurer
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Pujan Engels
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Marissa Dubbelaar
- Institute of Immunology, Department of Peptide-based Immunotherapy, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Baher Zalat
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Andras Szolek
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Birgit Schittek
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- CMFI - Cluster of Excellence (EXC 2124) "Controlling microbes to fight infection", University of Tübingen, Tübingen, Germany
| | - Stefanie Bugl
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Markus W Löffler
- Institute of Immunology, Department of Peptide-based Immunotherapy, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty, University of Tübingen, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany
| | - Mathias Chamaillard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Julia Skokowa
- Division of Translational Oncology, Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller Str. 10, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Alexander N R Weber
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- CMFI - Cluster of Excellence (EXC 2124) "Controlling microbes to fight infection", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
17
|
Conedera FM, Kokona D, Zinkernagel MS, Stein JV, Lin CP, Alt C, Enzmann V. Macrophages coordinate immune response to laser-induced injury via extracellular traps. J Neuroinflammation 2024; 21:68. [PMID: 38500151 PMCID: PMC10949579 DOI: 10.1186/s12974-024-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland.
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|