1
|
Provencio JJ, Inkelas S, Vergouwen MDI. Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: The Role of the Complement and Innate Immune System. Transl Stroke Res 2025; 16:18-24. [PMID: 39168941 PMCID: PMC11772402 DOI: 10.1007/s12975-024-01290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Specific inflammatory pathways are important in the development of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Understanding the specific pathways of inflammation may be critical for finding new treatments. Evidence is accumulating that innate inflammatory cells and proteins play a more important role than cells of the adaptive inflammatory system. In this work, we review the evidence from clinical and preclinical data regarding which cells of the immune system play a role in DCI with particular emphasis on the bone-marrow-derived cells monocytes and neutrophils and the brain parenchymal microglia. In addition, we will review the evidence that complement proteins, a non-cellular part of the innate immune system, play a role in the development of DCI.
Collapse
Affiliation(s)
| | - Sonya Inkelas
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Mervyn D I Vergouwen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Wang H, Dingledine RJ, Myers SJ, Traynelis SF, Fang C, Tan Y, Koszalka GW, Laskowitz DT. Clinical development of the GluN2B-selective NMDA receptor inhibitor NP10679 for the treatment of neurologic deficit after subarachnoid hemorrhage. J Pharmacol Exp Ther 2025; 392:100046. [PMID: 39892986 DOI: 10.1124/jpet.124.002334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) may be associated with cerebral vasospasm, which can lead to delayed cerebral ischemia, infarction, and worsened functional outcomes. The delayed nature of cerebral ischemia secondary to SAH-related vasculopathy presents a window of opportunity for the evaluation of well tolerated neuroprotective agents administered soon after ictus. Secondary ischemic injury in SAH is associated with increased extracellular glutamate, which can overactivate N-methyl-d-aspartate receptors (NMDARs), thereby triggering NMDAR-mediated cellular damage. In this study, we evaluated the effect of the pH-sensitive GluN2B-selective NMDAR inhibitor NP10679 on neurologic impairment after SAH. This compound demonstrates a selective increase in potency at the acidic extracellular pH levels that occur in the setting of ischemia. We found that NP10679 produced durable improvement of behavioral deficits in a well characterized murine model of SAH, and these effects were greater than those produced by nimodipine alone, the current standard of care. In addition, we observed an unexpected reduction in SAH-induced luminal narrowing of the middle cerebral artery. Neither nimodipine nor NP10679 alters each other's pharmacokinetic profile, suggesting no obvious drug-drug interactions. Based on allometric scaling of both toxicological and efficacy data, the therapeutic margin in humans should be at least 2. These results further demonstrate the utility of pH-dependent neuroprotective agents and GluN2B-selective NMDAR inhibitors as potential therapeutic strategies for the treatment of aneurysmal SAH. SIGNIFICANCE STATEMENT: This report describes the properties and utility of the GluN2B-selective pH-sensitive N-methyl-d-aspartate receptor inhibitor, NP10679, in a well characterized rodent model of subarachnoid hemorrhage. We show that the administration of NP10679 improves long-term neurological function following subarachnoid hemorrhage and that in rats, there are no drug-drug interactions between NP10679 and nimodipine, the standard of care for this indication.
Collapse
Affiliation(s)
- Haichen Wang
- Department of Neurology, Duke University, Durham, North Carolina
| | - Raymond J Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia; NeurOp Inc, Atlanta, Georgia
| | - Chuan Fang
- Department of Neurology, Duke University, Durham, North Carolina; Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanli Tan
- Department of Neurology, Duke University, Durham, North Carolina; Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | | | | |
Collapse
|
3
|
Laskowitz DT, Van Wyck DW. ApoE Mimetic Peptides as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1496-1507. [PMID: 37592168 PMCID: PMC10684461 DOI: 10.1007/s13311-023-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
The lack of targeted therapies for traumatic brain injury (TBI) remains a compelling clinical unmet need. Although knowledge of the pathophysiologic cascades involved in TBI has expanded rapidly, the development of novel pharmacological therapies has remained largely stagnant. Difficulties in creating animal models that recapitulate the different facets of clinical TBI pathology and flaws in the design of clinical trials have contributed to the ongoing failures in neuroprotective drug development. Furthermore, multiple pathophysiological mechanisms initiated early after TBI that progress in the subacute and chronic setting may limit the potential of traditional approaches that target a specific cellular pathway for acute therapeutic intervention. We describe a reverse translational approach that focuses on translating endogenous mechanisms known to influence outcomes after TBI to develop druggable targets. In particular, numerous clinical observations have demonstrated an association between apolipoprotein E (apoE) polymorphism and functional recovery after brain injury. ApoE has been shown to mitigate the response to acute brain injury by exerting immunomodulatory properties that reduce secondary tissue injury as well as protecting neurons from excitotoxicity. CN-105 represents an apoE mimetic peptide that can effectively penetrate the CNS compartment and retains the neuroprotective properties of the intact protein.
Collapse
Affiliation(s)
- Daniel T Laskowitz
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
- AegisCN LLC, 701 W Main Street, Durham, NC, 27701, USA
| | - David W Van Wyck
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
4
|
Eskandari S, Rezayof A, Asghari SM, Hashemizadeh S. Neurobiochemical characteristics of arginine-rich peptides explain their potential therapeutic efficacy in neurodegenerative diseases. Neuropeptides 2023; 101:102356. [PMID: 37390744 DOI: 10.1016/j.npep.2023.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Neurodegenerative diseases, including Alzheimer̕ s disease (AD), Parkinson̕ s disease (PD), Huntington̕ s disease (HD), and Amyotrophic Lateral Sclerosis (ALS) require special attention to find new potential treatment methods. This review aims to summarize the current knowledge of the relationship between the biochemical properties of arginine-rich peptides (ARPs) and their neuroprotective effects to deal with the harmful effects of risk factors. It seems that ARPs have portrayed a promising and fantastic landscape for treating neurodegeneration-associated disorders. With multimodal mechanisms of action, ARPs play various unprecedented roles, including as the novel delivery platforms for entering the central nervous system (CNS), the potent antagonists for calcium influx, the invader molecules for targeting mitochondria, and the protein stabilizers. Interestingly, these peptides inhibit the proteolytic enzymes and block protein aggregation to induce pro-survival signaling pathways. ARPs also serve as the scavengers of toxic molecules and the reducers of oxidative stress agents. They also have anti-inflammatory, antimicrobial, and anti-cancer properties. Moreover, by providing an efficient nucleic acid delivery system, ARPs can play an essential role in developing various fields, including gene vaccines, gene therapy, gene editing, and imaging. ARP agents and ARP/cargo therapeutics can be raised as an emergent class of neurotherapeutics for neurodegeneration. Part of the aim of this review is to present recent advances in treating neurodegenerative diseases using ARPs as an emerging and powerful therapeutic tool. The applications and progress of ARPs-based nucleic acid delivery systems have also been discussed to highlight their usefulness as a broad-acting class of drugs.
Collapse
Affiliation(s)
- Sedigheh Eskandari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Shiva Hashemizadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran
| |
Collapse
|
5
|
Oriá RB, Freitas RS, Roque CR, Nascimento JCR, Silva AP, Malva JO, Guerrant RL, Vitek MP. ApoE Mimetic Peptides to Improve the Vicious Cycle of Malnutrition and Enteric Infections by Targeting the Intestinal and Blood-Brain Barriers. Pharmaceutics 2023; 15:pharmaceutics15041086. [PMID: 37111572 PMCID: PMC10141726 DOI: 10.3390/pharmaceutics15041086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein E (apoE) mimetic peptides are engineered fragments of the native apoE protein’s LDL-receptor binding site that improve the outcomes following a brain injury and intestinal inflammation in a variety of models. The vicious cycle of enteric infections and malnutrition is closely related to environmental-driven enteric dysfunction early in life, and such chronic inflammatory conditions may blunt the developmental trajectories of children with worrisome and often irreversible physical and cognitive faltering. This window of time for microbiota maturation and brain plasticity is key to protecting cognitive domains, brain health, and achieving optimal/full developmental potential. This review summarizes the potential role of promising apoE mimetic peptides to improve the function of the gut-brain axis, including targeting the blood-brain barrier in children afflicted with malnutrition and enteric infections.
Collapse
Affiliation(s)
- Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Correspondence: ; Tel.: +55-85-3366-8239
| | - Raul S. Freitas
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - Cássia R. Roque
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - José Carlos R. Nascimento
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Institute of Health Sciences, Medicine, University of International Integration of Afro-Brazilian Lusofonia, Redenção 62790-970, Brazil
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João O. Malva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael P. Vitek
- Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
6
|
Van Wyck D, Kolls BJ, Wang H, Cantillana V, Maughan M, Laskowitz DT. Prophylactic treatment with CN-105 improves functional outcomes in a murine model of closed head injury. Exp Brain Res 2022; 240:2413-2423. [PMID: 35841411 DOI: 10.1007/s00221-022-06417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
The treatment of traumatic brain injury (TBI) in military populations is hindered by underreporting and underdiagnosis. Clinical symptoms and outcomes may be mitigated with an effective pre-injury prophylaxis. This study evaluates whether CN-105, a 5-amino acid apolipoprotein E (ApoE) mimetic peptide previously shown to modify the post-traumatic neuroinflammatory response, would maintain its neuroprotective effects if administered prior to closed-head injury in a clinically relevant murine model. CN-105 was synthesized by Polypeptide Inc. (San Diego, CA) and administered to C57-BL/6 mice intravenously (IV) and/or by intraperitoneal (IP) injection at various time points prior to injury while vehicle treated animals received IV and/or IP normal saline. Animals were randomized following injury and behavioral observations were conducted by investigators blinded to treatment. Vestibulomotor function was assessed using an automated Rotarod (Ugo Basile, Comerio, Italy), and hippocampal microglial activation was assessed using F4/80 immunohistochemical staining in treated and untreated mice 7 days post-TBI. Separate, in vivo assessments of the pharmacokinetics was performed in healthy CD-1. IV CN-105 administered prior to head injury improved vestibulomotor function compared to vehicle control-treated animals. CN-105 co-administered by IP and IV dosing 6 h prior to injury also improved vestibulomotor function up to 28 days following injury. Microglia counted in CN-105 treated specimens were significantly fewer (P = 0.03) than in vehicle specimens. CN-105 improves functional outcomes and reduces hippocampal microglial activation when administered prior to injury and could be adapted as a pre-injury prophylaxis for soldiers at high risk for TBI.
Collapse
Affiliation(s)
- David Van Wyck
- 3Rd Special Forces Group (A), U.S. Army Special Operations Command, 111 Enduring Freedom Drive (Stop A), Fort Bragg, NC, 28310, USA. .,Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Bradley J Kolls
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Haichen Wang
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Viviana Cantillana
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Daniel T Laskowitz
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.,Aegis-CN LLC., 701 W Main Street, Durham, NC, 27701, USA
| |
Collapse
|
7
|
Mader MMD, Czorlich P. The role of L-arginine metabolism in neurocritical care patients. Neural Regen Res 2022; 17:1446-1453. [PMID: 34916417 PMCID: PMC8771107 DOI: 10.4103/1673-5374.327331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/21/2021] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide is an important mediator of vascular autoregulation and is involved in pathophysiological changes after acute neurological disorders. Nitric oxide is generated by nitric oxide synthases from the amino acid L-arginine. L-arginine can also serve as a substrate for arginases or lead to the generation of dimethylarginines, asymmetric dimethylarginine, and symmetric dimethylarginine, by methylation. Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase and can lead to endothelial dysfunction. This review discusses the role of L-arginine metabolism in patients suffering from acute and critical neurological disorders often requiring neuro-intensive care treatment. Conditions addressed in this review include intracerebral hemorrhage, aneurysmal subarachnoid hemorrhage, and traumatic brain injury. Recent therapeutic advances in the field are described including current randomized controlled trials for traumatic brain injuries and hemorrhagic stroke.
Collapse
Affiliation(s)
- Marius Marc-Daniel Mader
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick Czorlich
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Li S, Wangqin R, Meng X, Li H, Wang Y, Wang H, Laskowitz D, Chen X, Wang Y. Tolerability and Pharmacokinetics of Single Escalating and Repeated Doses of CN-105 in Healthy Participants. Clin Ther 2022; 44:744-754. [PMID: 35562205 DOI: 10.1016/j.clinthera.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE CN-105 is an IV, apolipoprotein E-mimetic pentapeptide. Preclinical studies have reported that CN-105 effectively down-regulates neuroinflammatory responses in microglia and mitigates neuronal excitotoxicity following acute brain injury. The CN-105 Phase I and II trials that have been done in the United States have demonstrated that CN-105 was well tolerated in US participants. Thus, the main objective of the present Phase I study was to investigate the tolerability and pharmacokinetic (PK) profiles of CN-105 in healthy Chinese participants. METHODS This randomized, double-blind, placebo-controlled, dose-escalation study was performed in healthy participants using sequential 30-minute IV administration of single and multiple doses of CN-105 (four times daily for 13 doses). Forty volunteers were randomly assigned, in an 8:2 ratio, to one of four dosing groups, receiving either CN-105 (0.03, 0.1, 0.3, or 1 mg/kg), or placebo. Serial blood samples were collected for the measurement of plasma concentrations of CN-105. Tolerability was also assessed. FINDINGS After single-dose administration, the plasma CN-105 concentration rapidly reached the peak by the end of infusion. The mean elimination half-life of CN-105 ranged from 2.3 to 3.6 hours. During single- and multiple-dosing paradigms, exposure to CN-105 (AUC) exhibited linear dependency on dose. Steady state was reached by the fourth dose, with minimal accumulation. The PK properties of CN-105 with single and multiple dosing were comparable to those observed in US participants. CN-105 was generally well tolerated in Chinese participants. A total of 13 adverse events were reported in 30% of subjects (12/40) at the 0.03 mg/kg (6/8), 0.1 mg/kg (1/8), 0.3 mg/kg (2/8), 1 mg/kg (0/8) doses and with placebo (3/8). All adverse events were mild or moderate in severity and self-limited, with no dose relationship observed. IMPLICATIONS CN-105 was well tolerated in these healthy Chinese participants at doses of 0.1 to 1 mg/kg with single and multiple IV administrations. The PK characteristics of CN-105 were comparable among Chinese and Western subjects. A Phase II study in patients with intracranial hemorrhage is being planned in China. CLINICALTRIALS gov identifiers: NCT02670824 and NCT03168581; Chinese Clinical Trial Registration identifier: CTR20202397.
Collapse
Affiliation(s)
- Shuya Li
- Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Runqi Wangqin
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Haichen Wang
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Daniel Laskowitz
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Xia Chen
- Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Yongjun Wang
- Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
10
|
Ahmed S, Pande AH, Sharma SS. Therapeutic potential of ApoE-mimetic peptides in CNS disorders: Current perspective. Exp Neurol 2022; 353:114051. [DOI: 10.1016/j.expneurol.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
|
11
|
Neuroprotective Pentapeptide, CN-105, Improves Outcomes in Translational Models of Intracerebral Hemorrhage. Neurocrit Care 2021; 35:441-450. [PMID: 33474632 DOI: 10.1007/s12028-020-01184-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/27/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a devastating form of cerebrovascular disease for which there are no approved pharmacological interventions that improve outcomes. Apolipoprotein E (apoE) has emerged as a promising therapeutic target given its isoform-specific neuroprotective properties and ability to modify neuroinflammatory responses. We developed a 5-amino acid peptide, CN-105, that mimics the polar face of the apoE helical domain involved in receptor interactions, readily crosses the blood-brain barrier, and improves outcomes in well-established preclinical ICH models. In the current study, we investigated the therapeutic potential of CN-105 in translational ICH models that account for hypertensive comorbidity, sex, species, and age. METHODS In three separate experiments, we delivered three intravenous doses of CN-105 (up to 0.20 mg/kg) or vehicle to hypertensive male BPH/2 J mice, spontaneously hypertensive female rats, or 11-month-old male mice within 24-h of ICH. Neuropathological and neurobehavioral outcomes were determined over 3, 7, and 9 days, respectively. RESULTS In spontaneously hypertensive male mice, there was a significant dose-dependent effect of CN-105 on vestibulomotor function at 0.05 and 0.20 mg/kg doses (p < 0.05; 95% CI: 0.91-153.70 and p < 0.001; 95% CI: 49.54-205.62), while 0.20 mg/kg also improved neuroseverity scores (p < 0.05; 95% CI: 0.27-11.00) and reduced ipsilateral brain edema (p < 0.05; 95% CI: - 0.037 to - 0.001). In spontaneously hypertensive female rats, CN-105 (0.05 mg/kg) had a significant effect on vestibulomotor function (p < 0.01; η2 = 0.093) and neuroseverity scores (p < 0.05; η2 = 0.083), and reduced contralateral edema expansion (p < 0.01; 95% CI: - 1.41 to - 0.39). In 11-month-old male mice, CN-105 had a significant effect on vestibulomotor function (p < 0.001; η2 = 0.111) but not neuroseverity scores (p > 0.05; η2 = 0.034). CONCLUSIONS Acute treatment with CN-105 improves outcomes in translational ICH models independent of sex, species, age, or hypertensive comorbidity.
Collapse
|
12
|
James ML, Troy J, Nowacki N, Komisarow J, Swisher CB, Tucker K, Hatton K, Babi MA, Worrall BB, Andrews C, Woo D, Kranz PG, Lascola C, Maughan M, Laskowitz DT. CN-105 in Participants with Acute Supratentorial Intracerebral Hemorrhage (CATCH) Trial. Neurocrit Care 2021; 36:216-225. [PMID: 34424490 DOI: 10.1007/s12028-021-01287-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Endogenous apolipoprotein (apo) E mediates neuroinflammatory responses and recovery after brain injury. Exogenously administered apoE-mimetic peptides effectively penetrate the central nervous system compartment and downregulate acute inflammation. CN-105 is a novel apoE-mimetic pentapeptide with excellent evidence of functional and histological improvement in preclinical models of intracerebral hemorrhage (ICH). The CN-105 in participants with Acute supraTentorial intraCerebral Hemorrhage (CATCH) trial is a first-in-disease-state multicenter open-label trial evaluating safety and feasability of CN-105 administration in patients with acute primary supratentorial ICH. METHODS Eligible patients were aged 30-80 years, had confirmed primary supratentorial ICH, and were able to intiate CN-105 administration (1.0 mg/kg every 6 h for 72 h) within 12 h of symptom onset. A priori defined safety end points, including hematoma volume, pharmacokinetics, and 30-day neurological outcomes, were analyzed. For clinical outcomes, CATCH participants were compared 1:1 with a closely matched contemporary ICH cohort through random selection. Hematoma volumes determined from computed tomography images on days 0, 1, 2, and 5 and ordinal modified Rankin Scale score at 30 days after ICH were compared. RESULTS In 38 participants enrolled across six study sites in the United States, adverse events occurred at an expected rate without increase in hematoma expansion or neurological deterioration. CN-105 treatment had an odds ratio (95% confidence interval) of 2.69 (1.31-5.51) for lower 30-day modified Rankin Scale score, after adjustment for ICH score, sex, and race/ethnicity, as compared with a matched contemporary cohort. CONCLUSIONS CN-105 administration represents an excellent translational candidate for treatment of acute ICH because of its safety, dosing feasibility, favorable pharmacokinetics, and possible improvement in neurological recovery.
Collapse
Affiliation(s)
- Michael L James
- Department of Anesthesiology, Duke University, Durham, NC, USA. .,Department of Neurology, Duke University, Durham, NC, USA. .,Duke Clinical Research Institute, Duke University, Durham, NC, USA.
| | - Jesse Troy
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | | | | | | | - Kristi Tucker
- Department of Neurology, Wake Forest-Baptist Health, Winston-Salem, NC, USA
| | - Kevin Hatton
- Department of Anesthesiology, University of Kentucky, Lexington, KY, USA
| | - Marc A Babi
- Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Bradford B Worrall
- Departments of Neurology and Public Health Sciences, University of Virginia, Charlottesvile, VA, USA
| | - Charles Andrews
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel Woo
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Peter G Kranz
- Department of Radiology, Duke University, Durham, NC, USA
| | | | | | - Daniel T Laskowitz
- Department of Anesthesiology, Duke University, Durham, NC, USA.,Department of Neurology, Duke University, Durham, NC, USA.,Duke Clinical Research Institute, Duke University, Durham, NC, USA.,AegisCN, LLC, Durham, NC, USA
| | | |
Collapse
|
13
|
Gong K, Chen Y, Liu W, Wang Z. Global research trends of Apolipoprotein E in central nervous system: A scientometric analysis. Int Immunopharmacol 2021; 98:107919. [PMID: 34217139 DOI: 10.1016/j.intimp.2021.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Apolipoprotein E (apoE, protein; APOE, gene) involves in cholesterol recycling and redistribution by mediating lipoprotein pathways unique to central nervous system (CNS), which is a potential therapeutic target for diseases. We visually analyzed the research hotspots of APOE related to CNS in this work, by scientometric analysis from the Web of Science Core Collection (WOSCC) database over the past two decades. A total of 25,719 references of "APOE" and 836 references of "APOE in CNS" were retrieved from the WOSCC on October 26, 2020, and then VOSviewer 1.6.15, Citespace 5.7.R2 were used for visual analysis. Over the last two decades, the research on the field of APOE in CNS is not faddish. Although many funds, organizations, and scholars were affiliated in this field, organizations and scholars, especially the top teams in this field, still lacked close cooperation with other teams around the world. Few articles with high citations had been published in the last decade, but recent studies still lacked scale and breakthrough, and the keywords associated with APOE appeared more outdated. However, the current researches have not fully elucidated the crosstalk between APOE and neuroinflammation in CNS, some new ideas may rekindle the research enthusiasm of scholars. Although the field of APOE in CNS appeared more outdated. Based on keyword analysis, we hypothesized new ideas for further investigation of neuroinflammation would light the interest of APOE in CNS for the scholars. The crosstalk between ApoE and inflammasome may be the focus of future researches. How APOE modulates the time course or intensity of the inflammasome activation, inflammatory response (proinflammatory or anti-inflammatory), and pathological process of CNS disease deserves future attention in both basic and clinical studies. More apoE/APOE-targeted pharmacological interventions will be available for preclinical experiments and clinical trials and bring hope for patients with CNS diseases.
Collapse
Affiliation(s)
- Kai Gong
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China
| | - Yuhua Chen
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China
| | - Wei Liu
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China.
| | - Zhanxiang Wang
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China.
| |
Collapse
|
14
|
Husain MA, Laurent B, Plourde M. APOE and Alzheimer's Disease: From Lipid Transport to Physiopathology and Therapeutics. Front Neurosci 2021; 15:630502. [PMID: 33679311 PMCID: PMC7925634 DOI: 10.3389/fnins.2021.630502] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by extracellular amyloid β (Aβ) and intraneuronal tau protein aggregations. One risk factor for developing AD is the APOE gene coding for the apolipoprotein E protein (apoE). Humans have three versions of APOE gene: ε2, ε3, and ε4 allele. Carrying the ε4 allele is an AD risk factor while carrying the ε2 allele is protective. ApoE is a component of lipoprotein particles in the plasma at the periphery, as well as in the cerebrospinal fluid (CSF) and in the interstitial fluid (ISF) of brain parenchyma in the central nervous system (CNS). ApoE is a major lipid transporter that plays a pivotal role in the development, maintenance, and repair of the CNS, and that regulates multiple important signaling pathways. This review will focus on the critical role of apoE in AD pathogenesis and some of the currently apoE-based therapeutics developed in the treatment of AD.
Collapse
Affiliation(s)
- Mohammed Amir Husain
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
15
|
Lanfranco MF, Sepulveda J, Kopetsky G, Rebeck GW. Expression and secretion of apoE isoforms in astrocytes and microglia during inflammation. Glia 2021; 69:1478-1493. [PMID: 33556209 DOI: 10.1002/glia.23974] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation is a common feature in neurodegenerative diseases, modulated by the Alzheimer's disease risk factor, apolipoprotein E (APOE). In the brain, apoE protein is synthesized by astrocytes and microglia. We examined primary cultures of astrocytes and microglia from human APOE (E2, E3, and E4) targeted-replacement mice. Astrocytes secreted two species of apoE, whereas cellular apoE consisted of only one. Both forms of secreted astrocytic apoE were bound during glycoprotein isolation, and enzymatic removal of glycans produced a convergence of the two forms of apoE to a single form; thus, the two species of astrocyte-secreted apoE are differentially glycosylated. Microglia released only a single species of apoE, while cellular apoE consisted of two forms; the secreted apoE and one of the two forms of cellular apoE were glycosylated. We treated the primary glia with either endogenous (TNFα) or exogenous (LPS) pro-inflammatory stimuli. While LPS had no effect on astrocytic apoE, APOE2, and APOE3 microglia increased release of apoE; APOE4 microglia showed no effect. APOE4 microglia showed higher baseline secretion of TNFα compared to APOE2 and APOE3 microglia. TNFα treatment reduced the secretion and cellular expression of apoE only in APOE4 astrocytes. The patterns of apoE species produced by astrocytes and microglia were not affected by inflammation. No changes in APOE mRNA were observed in astrocytes after both treatments. Together, our data demonstrate that astrocytes and microglia differentially express and secrete glycosylated forms of apoE and that APOE4 astrocytes and microglia are deficient in immunomodulation compared to APOE2 and APOE3.
Collapse
Affiliation(s)
- Maria Fe Lanfranco
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jordy Sepulveda
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Gregory Kopetsky
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
16
|
Cancer Chemotherapy Related Cognitive Impairment and the Impact of the Alzheimer's Disease Risk Factor APOE. Cancers (Basel) 2020; 12:cancers12123842. [PMID: 33352780 PMCID: PMC7766535 DOI: 10.3390/cancers12123842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer related cognitive impairment (CRCI) is a serious impairment to maintaining quality of life in cancer survivors. Cancer chemotherapy contributes to this condition through several potential mechanisms, including damage to the blood brain barrier, increases in oxidative stress and inflammation in the brain, and impaired neurogenesis, each of which lead to neuronal dysfunction. A genetic predisposition to CRCI is the E4 allele of the Apolipoprotein E gene (APOE), which is also the strongest genetic risk factor for Alzheimer's disease. In normal brains, APOE performs essential lipid transport functions. The APOE4 isoform has been linked to altered lipid binding, increased oxidative stress and inflammation, reduced turnover of neural progenitor cells, and impairment of the blood brain barrier. As chemotherapy also affects these processes, the influence of APOE4 on CRCI takes on great significance. This review outlines the main areas where APOE genotype could play a role in CRCI. Potential therapeutics based on APOE biology could mitigate these detrimental cognitive effects for those receiving chemotherapy, emphasizing that the APOE genotype could help in developing personalized cancer treatment regimens.
Collapse
|
17
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
18
|
Meloni BP, Blacker DJ, Mastaglia FL, Knuckey NW. Emerging cytoprotective peptide therapies for stroke. Expert Rev Neurother 2020; 20:887-890. [PMID: 32580598 DOI: 10.1080/14737175.2020.1788390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bruno P Meloni
- Perron Institute for Neurological and Translational Science , Nedlands, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre , Nedlands, Western Australia, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia , Nedlands, Western Australia, Australia
| | - David J Blacker
- Perron Institute for Neurological and Translational Science , Nedlands, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre , Nedlands, Western Australia, Australia.,Department of Neurology, Sir Charles Gairdner Hospital, QEII Medical Centre , Nedlands, Western Australia, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science , Nedlands, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre , Nedlands, Western Australia, Australia
| | - Neville W Knuckey
- Perron Institute for Neurological and Translational Science , Nedlands, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre , Nedlands, Western Australia, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia , Nedlands, Western Australia, Australia
| |
Collapse
|
19
|
James ML, Komisarow JM, Wang H, Laskowitz DT. Therapeutic Development of Apolipoprotein E Mimetics for Acute Brain Injury: Augmenting Endogenous Responses to Reduce Secondary Injury. Neurotherapeutics 2020; 17:475-483. [PMID: 32318912 PMCID: PMC7283431 DOI: 10.1007/s13311-020-00858-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the last few decades, increasing evidence demonstrates that the neuroinflammatory response is a double-edged sword. Although overly robust inflammatory responses may exacerbate secondary tissue injury, inflammatory processes are ultimately necessary for recovery. Traditional drug discovery often relies on reductionist approaches to isolate and modulate specific intracellular pathways believed to be involved in disease pathology. However, endogenous brain proteins are often pleiotropic in order to regulate neuroinflammation and recovery mechanisms. Thus, a process of "backward translation" aims to harness the adaptive properties of endogenous proteins to promote earlier and greater recovery after acute brain injury. One such endogenous protein is apolipoprotein E (apoE), the primary apolipoprotein produced in the brain. Robust preclinical and clinical evidence demonstrates that endogenous apoE produced within the brain modulates the neuroinflammatory response of the acutely injured brain. Thus, one innovative approach to improve outcomes following acute brain injury is administration of exogenous apoE-mimetic drugs optimized to cross the blood-brain barrier. In particular, one promising apoE mimetic peptide, CN-105, has demonstrated efficacy across a wide variety of preclinical models of brain injury and safety and feasibility in early-phase clinical trials. Preclinical and clinical evidence for apoE's neuroprotective effects and downregulation of neuroinflammatory and the resulting translational therapeutic development strategy for an apoE-based therapeutic are reviewed.
Collapse
Affiliation(s)
- Michael L James
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Jordan M Komisarow
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Haichen Wang
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Daniel T Laskowitz
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
20
|
Williams T, Borchelt DR, Chakrabarty P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer's disease. Mol Neurodegener 2020; 15:8. [PMID: 32005122 PMCID: PMC6995170 DOI: 10.1186/s13024-020-0358-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
One of the primary genetic risk factors for Alzheimer’s disease (AD) is the presence of the Ɛ4 allele of apolipoprotein E (APOE). APOE is a polymorphic lipoprotein that is a major cholesterol carrier in the brain. It is also involved in various cellular functions such as neuronal signaling, neuroinflammation and glucose metabolism. Humans predominantly possess three different allelic variants of APOE, termed E2, E3, and E4, with the E3 allele being the most common. The presence of the E4 allele is associated with increased risk of AD whereas E2 reduces the risk. To understand the molecular mechanisms that underlie APOE-related genetic risk, considerable effort has been devoted towards developing cellular and animal models. Data from these models indicate that APOE4 exacerbates amyloid β plaque burden in a dose-dependent manner. and may also enhance tau pathogenesis in an isoform-dependent manner. Other studies have suggested APOE4 increases the risk of AD by mechanisms that are distinct from modulation of Aβ or tau pathology. Further, whether plasma APOE, by influencing systemic metabolic pathways, can also possibly alter CNS function indirectly is not complete;y understood. Collectively, the available studies suggest that APOE may impact multiple signaling pathways and thus investigators have sought therapeutics that would disrupt pathological functions of APOE while preserving or enhancing beneficial functions. This review will highlight some of the therapeutic strategies that are currently being pursued to target APOE4 towards preventing or treating AD and we will discuss additional strategies that holds promise for the future.
Collapse
Affiliation(s)
- Tosha Williams
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
21
|
ApoE mimetic improves pathology and memory in a model of Alzheimer's disease. Brain Res 2020; 1733:146685. [PMID: 32007397 DOI: 10.1016/j.brainres.2020.146685] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized pathologically by Aβ plaques. Current treatments are purely symptomatic despite decades of intensive research interest. Notably, patients with the APOE4 allele are at increased risk for developing AD. One hypothesis regarding the mechanism by which the APOE4 allele might increase AD risk is loss of adaptive function, raising the possibility that the exogenous administration of apoE mimetics would have therapeutic effects. In this study, we utilized a previously characterized murine model of AD containing human APP, PS1 and APOE4TR, the APP/PS1/APOETR mouse. We treated male APP/PS1/APOETR mice with the apoE mimetic CN-105 or vehicle for 40d, beginning either at 14-18 or 25-28 weeks of age. After termination of treatment we tested animals in both Morris water maze and contextual fear conditioning, and examined soluble Aβ by biochemistery and Aβ deposition in cortex by unbiased stereology. We found that transient treatment with CN-105 for 40d beginning at 14-18 weeks reduced Aβ pathology and rescued memory deficits in male APP/PS1/APOETR mice. Notably, delaying treatment onset to 25-28 weeks did not produce as robust an effect. These results suggest CN-105 treatment in a mouse model of AD results in a reduction in AD pathology and improved behavioral outcomes when administered early in the course of disease. As CN-105 has an excellent safety profile and is already in clinical trials, these findings raise the possibility that CN-105 represents a novel and translatable therapeutic strategy for AD.
Collapse
|
22
|
Toro CA, Das DK, Cai D, Cardozo CP. Elucidating the Role of Apolipoprotein E Isoforms in Spinal Cord Injury-Associated Neuropathology. J Neurotrauma 2019; 36:3317-3322. [PMID: 31218915 DOI: 10.1089/neu.2018.6334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating, life-altering, neurological event that affects ∼300,000 individuals in the United States. Currently, there are no effective treatments to reverse the neurological impairments caused by the lesion. Until a cure is available, there is an urgent need for strategies that can either spare injured neurons or promote neuroplasticity and functional recovery. Genetic links to outcomes after SCI may provide insights into the pathological mechanisms, and possible new avenues for drug development. In the present review, we discuss the current knowledge linking apolipoprotein E genotypes with better or worse functional outcomes after an SCI, and the possible molecular mechanisms that may contribute to this association.
Collapse
Affiliation(s)
- Carlos A Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
| | - Dibash K Das
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
| | - Dongming Cai
- Neurology Service, James J. Peters VA, Bronx, New York
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Bronx, New York
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
- Department of Rehabilitative Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
| |
Collapse
|