1
|
Marzoog BA, Kopylov P. Volatilome and machine learning in ischemic heart disease: Current challenges and future perspectives. World J Cardiol 2025; 17:106593. [DOI: 10.4330/wjc.v17.i4.106593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/21/2025] Open
Abstract
Integrating exhaled breath analysis into the diagnosis of cardiovascular diseases holds significant promise as a valuable tool for future clinical use, particularly for ischemic heart disease (IHD). However, current research on the volatilome (exhaled breath composition) in heart disease remains underexplored and lacks sufficient evidence to confirm its clinical validity. Key challenges hindering the application of breath analysis in diagnosing IHD include the scarcity of studies (only three published papers to date), substantial methodological bias in two of these studies, and the absence of standardized protocols for clinical implementation. Additionally, inconsistencies in methodologies—such as sample collection, analytical techniques, machine learning (ML) approaches, and result interpretation—vary widely across studies, further complicating their reproducibility and comparability. To address these gaps, there is an urgent need to establish unified guidelines that define best practices for breath sample collection, data analysis, ML integration, and biomarker annotation. Until these challenges are systematically resolved, the widespread adoption of exhaled breath analysis as a reliable diagnostic tool for IHD remains a distant goal rather than an imminent reality.
Collapse
Affiliation(s)
- Basheer Abdualah Marzoog
- World-Class Research Center (Digital Biodesign and Personalized Healthcare), I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Philipp Kopylov
- World-Class Research Center (Digital Biodesign and Personalized Healthcare), I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
2
|
Chew N, Yun S, See KC. Diagnostic Accuracy of Breath Tests to Detect Pulmonary Tuberculosis: A Systematic Review. Lung 2025; 203:26. [PMID: 39841224 DOI: 10.1007/s00408-024-00779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
PURPOSE Tuberculosis (TB) is a highly contagious infection and one of the world's leading causes of death from a single infectious agent. Currently, TB diagnosis can be established via mycobacterial cultures, Acid Fast Bacilli smear and molecular studies. In the ever-evolving landscape of medical advancements, breath tests have shown considerable promise. This systematic review aimed to evaluate the diagnostic accuracy of breath tests to detect pulmonary TB in various populations. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) guidelines. We searched Embase and PubMed to identify observational studies published from database inception to May 2024. All observational studies evaluating the diagnostic accuracy of breath tests to detect pulmonary tuberculosis were included. Authors independently reviewed each article for eligibility and risk-of-bias. A senior reviewer was consulted for discrepancies. RESULTS The pooled sensitivity for the breath test in diagnosing TB was 0.85 (95% CI 0.78-0.90) whilst the pooled specificity was 0.83 (95% CI 0.72-0.90), although heterogeneity was high. Sub-group analysis by low/lower-middle World Bank income group status, high proportion of TB in test population, or use of a separate breath sampling kit did not reduce the heterogeneity. Publication bias was absent. CONCLUSION Our study found that pooled sensitivity and specificity of the breath tests in diagnosing pulmonary TB was high. Future research efforts can be directed towards investigating the diagnostic accuracy of electronic noses and gas chromatography combined with mass spectrometry, whilst improving standardisation and reproducibility of breath test techniques.
Collapse
Affiliation(s)
- Natalie Chew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Medicine, National University Hospital, NUHS Tower Block, Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| | - Sean Yun
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kay Choong See
- Department of Medicine, National University Hospital, NUHS Tower Block, Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Bardin E, Hunzinger N, Lamy E, Roquencourt C, Zhou B, Tabache Y, Clainche LL, Remus N, Roy C, Devillier P, Nguyen-Khoa T, Chedevergne F, Pontoizeau C, Kelly M, Grassin Delyle S, Sermet-Gaudelus I. Short-term modification of breathprint by Elexacaftor/Tezacaftor/Ivacaftor in a paediatric cohort. J Cyst Fibros 2025:S1569-1993(25)00004-9. [PMID: 39843342 DOI: 10.1016/j.jcf.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND The triple combination Elexacaftor/Tezacaftor/Ivacaftor (ETI) translates into major respiratory improvements in adults; yet current clinical endpoints may prove insufficiently sensitive in young children. We hypothesised that ETI rapidly modifies the lungs' metabolism, resulting in changes in breath composition. METHODS Eleven children with CF were enrolled in a longitudinal pilot study at the paediatric Necker hospital. Breath was collected on sorbent tubes using a ReCIVA® device before, after one week and one month of ETI. Samples were analysed by 2D-gas chromatography-mass spectrometry (2D-GC-MS). A linear mixed-effect model, corrected for clinical confounding factors, identified exhaled metabolites differentially expressed throughout the visits. Correlations were calculated between these and clinical indicators. RESULTS Breath collection was successful in all children from six years old. They presented a decreased sweat chloride and improved lung function as early as within one week of ETI. Breath composition gradually evolved over the visits. ETI induced significant modifications in the level of 12 breath metabolites. Amongst those, dimethyl sulphide and tetradecene changes correlated with improvements in forced expiratory volume in one second (FEV1) and forced expiratory flow (FEF25-75), whilst 3-methyldecane and 3-(chloromethyl)-heptane were predictive of changes in lung clearance index (LCI2.5). CONCLUSIONS ETI impacts the breath profile from the first week of treatment. Not only could "breathomics" bring mechanistic insights into the metabolic impact of ETI, but it may also offer novel non-invasive options to monitor CF disease and predict therapeutic response.
Collapse
Affiliation(s)
- Emmanuelle Bardin
- INSERM U1151, Institut Necker Enfants Malades, Paris, France; Hôpital Necker Enfants Malades, Centre de Référence Maladies Rares Mucoviscidose et Maladies apparentées, Paris, France; Université Paris-Saclay, UVSQ, INSERM U1173, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France; Exhalomics®, Hôpital Foch, Suresnes, France
| | - Nicolas Hunzinger
- Université Paris-Saclay, UVSQ, INSERM U1173, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
| | - Elodie Lamy
- Université Paris-Saclay, UVSQ, INSERM U1173, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
| | | | - Bingqing Zhou
- Université Paris-Saclay, UVSQ, INSERM U1173, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
| | - Yasmine Tabache
- Hôpital Necker Enfants Malades, Centre de Référence Maladies Rares Mucoviscidose et Maladies apparentées, Paris, France
| | - Laurence Le Clainche
- Hôpital Robert Debré, Centre de Ressources et de Compétences de la Mucoviscidose, Paris, France
| | - Natascha Remus
- Centre Hospitalier Intercommunal de Créteil, Centre de Ressources et de Compétences de la Mucoviscidose, Créteil, France
| | - Charlotte Roy
- INSERM U1151, Institut Necker Enfants Malades, Paris, France; Hôpital Necker Enfants Malades, Centre de Référence Maladies Rares Mucoviscidose et Maladies apparentées, Paris, France; Université Paris-Cité, Paris, France
| | - Philippe Devillier
- Exhalomics®, Hôpital Foch, Suresnes, France; Université Paris-Saclay, UVSQ, UFR Simone Veil - Santé, VIM-Suresnes, UMR_0892, Suresnes, France
| | - Thao Nguyen-Khoa
- INSERM U1151, Institut Necker Enfants Malades, Paris, France; Hôpital Necker Enfants Malades, Centre de Référence Maladies Rares Mucoviscidose et Maladies apparentées, Paris, France; Université Paris-Cité, Paris, France; Laboratoires de Biochimie et du Centre Régional de Dépistage Néonatal de l'Ile de France, Hôpital Necker-Enfants Malades, Paris, France
| | - Frédérique Chedevergne
- Hôpital Necker Enfants Malades, Centre de Référence Maladies Rares Mucoviscidose et Maladies apparentées, Paris, France
| | - Clément Pontoizeau
- Université Paris-Cité, Paris, France; Unité fonctionnelle de métabolomique, Laboratoire de Biochimie, Hôpital Necker-Enfants malades, Paris, France
| | - Mairead Kelly
- INSERM U1151, Institut Necker Enfants Malades, Paris, France; Université Paris-Cité, Paris, France
| | - Stanislas Grassin Delyle
- Université Paris-Saclay, UVSQ, INSERM U1173, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France; Exhalomics®, Hôpital Foch, Suresnes, France
| | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Paris, France; Hôpital Necker Enfants Malades, Centre de Référence Maladies Rares Mucoviscidose et Maladies apparentées, Paris, France; Université Paris-Cité, Paris, France; European Reference Network-Lung. Frankfurt, Germany.
| |
Collapse
|
4
|
Kiland KJ, Martins L, Borden SA, Lam S, Myers R. Stability of volatile organic compounds in thermal desorption tubes and in solution. J Breath Res 2025; 19:026001. [PMID: 39689424 DOI: 10.1088/1752-7163/ada05c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/17/2024] [Indexed: 12/19/2024]
Abstract
Exhaled breath volatile organic compounds (VOCs) are often collected and stored in sorbent tubes before thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis. Information about the stability of VOCs during storage is needed to account for potential artifacts and monitor for losses. Additionally, information about the stability of VOC standards in solution is required to assess their performance as quality control and internal standards. We evaluated the stability of a standard mixture of 42 VOCs in dual-sorbent tubes containing Tenax® TA and Carbotrap 1TD over 60 d at commonly used storage conditions: room temperature (∼21 °C), 4 °C, and -80 °C. The same 42 VOCs were also evaluated for their stability in methanol over 60 d while stored at -20 °C. All samples were analyzed using TD-GC-MS. During storage, most VOCs were stable on sorbent after 60 d: 36/42 (86%), 39/42 (93%), and 41/42 (98%) had not statistically changed for room temperature, 4 °C and -80 °C, respectively, based on Spearman rank correlation coefficients and linear regression analysis. The isotopically labeled VOCs tested here are well-suited to serve as internal standards for pre-analysis or storage. Degradation of VOCs in solution was apparent after 60 d: 27/42 (64%) of VOCs had statistically decreased. The total VOC mixture had dropped to 90% of its original intensity after ∼22 d and a subset of VOCs typically used as internal standards dropped to 90% in ∼16 d. Analysts using similar mixtures should make a fresh solution at least every two weeks to ensure analytical accuracy. This study provides important insights into storage practices for both sorbent tubes and standard solutions, guiding analysts toward improved reliability and accuracy in exhaled breath analysis.
Collapse
Affiliation(s)
- Kristian J Kiland
- Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Lucas Martins
- Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Scott A Borden
- Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Stephen Lam
- Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Renelle Myers
- Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Sola-Martínez RA, Jiménez-Guerrero P, Sánchez-Solís M, Lozano-Terol G, Gallego-Jara J, Martínez-Vivancos A, Morales E, García-Marcos L, de Diego Puente T. Impact of environmental exposures on exhaled breath and lung function: NELA Birth Cohort. ERJ Open Res 2025; 11:00597-2024. [PMID: 39811551 PMCID: PMC11726542 DOI: 10.1183/23120541.00597-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Exposure to environmental factors (i.e. air pollution and second-hand tobacco smoke) have been associated with impaired lung function. However, the impact of environmental factors on lung health is usually evaluated separately and not with an exposomic framework. In this regard, breath analysis could be a noninvasive tool for biomonitoring of global human environmental exposure. Methods Data come from 337 mother-child pairs from the Nutrition in Early Childhood Asthma (NELA) birth cohort. Levels of BTEX (benzene, toluene, ethylbenzene and xylenes) in exhaled breath from mothers and children at 3 months after birth were estimated using gas chromatography-mass spectrometry. Short-term residential exposures (breath sampling day and 15 days before breath sampling) to nitrogen dioxide, particulate matter (PM2.5) and ozone were determined by chemical dispersion/transport modelling. Forced vital capacity, forced expiratory volume in 0.5 s (FEV0.5) and forced expiratory flow at 75% of FVC and at 25%-75% of FVC were measured in infants according to the raised-volume rapid thoracoabdominal compression technique. Results The results showed significant associations between short-term exposure to external agents and levels of benzene and toluene in exhaled breath. It was observed that exhaled levels of benzene and toluene were influenced by smoking status and outdoor air pollution in mothers, and by air pollution in infants (3 months of age). No significant relationship was observed between exposure to maternal tobacco smoking and/or short-term air pollution and lung function in healthy infants. However, there was a significant relationship between FEV0.5 and exhaled toluene in children. Discussion These findings indicated a significant relationship between environmental exposures and exhaled levels of benzene and toluene, suggesting that breath analysis could be a helpful exposure biomonitoring tool.
Collapse
Affiliation(s)
- Rosa A. Sola-Martínez
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Pedro Jiménez-Guerrero
- Regional Atmospheric Modelling Group, Department of Physics, University of Murcia, Murcia, Spain
| | - Manuel Sánchez-Solís
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Pediatric Respiratory and Allergy Units, “Virgen de la Arrixaca” Children's University Clinical Hospital, Murcia, Spain
- Network of Asthma and Adverse and Allergy Reactions (ARADyAL), Health Institute Carlos III, Madrid, Spain
| | - Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Adrián Martínez-Vivancos
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Department of Public Health Sciences, University of Murcia, Murcia, Spain
- CIBER Epidemiología y Salud Pública, Health Institute Carlos III, Madrid, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Pediatric Respiratory and Allergy Units, “Virgen de la Arrixaca” Children's University Clinical Hospital, Murcia, Spain
- Network of Asthma and Adverse and Allergy Reactions (ARADyAL), Health Institute Carlos III, Madrid, Spain
- T. de Diego Puente and L. García-Marcos contributed equally as joint senior authors
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- T. de Diego Puente and L. García-Marcos contributed equally as joint senior authors
| | | |
Collapse
|
6
|
Lu G, Su Z, Yu X, He Y, Sha T, Yan K, Guo H, Tao Y, Liao L, Zhang Y, Lu G, Gong W. Differentiating Pulmonary Nodule Malignancy Using Exhaled Volatile Organic Compounds: A Prospective Observational Study. Cancer Med 2025; 14:e70545. [PMID: 39777868 PMCID: PMC11706237 DOI: 10.1002/cam4.70545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Advances in imaging technology have enhanced the detection of pulmonary nodules. However, determining malignancy often requires invasive procedures or repeated radiation exposure, underscoring the need for safer, noninvasive diagnostic alternatives. Analyzing exhaled volatile organic compounds (VOCs) shows promise, yet its effectiveness in assessing the malignancy of pulmonary nodules remains underexplored. METHODS Employing a prospective study design from June 2023 to January 2024 at the Affiliated Hospital of Yangzhou University, we assessed the malignancy of pulmonary nodules using the Mayo Clinic model and collected exhaled breath samples alongside lifestyle and health examination data. We applied five machine learning (ML) algorithms to develop predictive models which were evaluated using area under the curve (AUC), sensitivity, specificity, and other relevant metrics. RESULTS A total of 267 participants were enrolled, including 210 with low-risk and 57 with moderate-risk pulmonary nodules. Univariate analysis identified 11 exhaled VOCs associated with nodule malignancy, alongside two lifestyle factors (smoke index and sites of tobacco smoke inhalation) and one clinical metric (nodule diameter) as independent predictors for moderate-risk nodules. The logistic regression model integrating lifestyle and health data achieved an AUC of 0.91 (95% CI: 0.8611-0.9658), while the random forest model incorporating exhaled VOCs achieved an AUC of 0.99 (95% CI: 0.974-1.00). Calibration curves indicated strong concordance between predicted and observed risks. Decision curve analysis confirmed the net benefit of these models over traditional methods. A nomogram was developed to aid clinicians in assessing nodule malignancy based on VOCs, lifestyle, and health data. CONCLUSIONS The integration of ML algorithms with exhaled biomarkers and clinical data provides a robust framework for noninvasive assessment of pulmonary nodules. These models offer a safer alternative to traditional methods and may enhance early detection and management of pulmonary nodules. Further validation through larger, multicenter studies is necessary to establish their generalizability. TRIAL REGISTRATION Number ChiCTR2400081283.
Collapse
Affiliation(s)
- Guangyu Lu
- Department of Health Management CenterAffiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
- School of Public HealthMedical College of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| | - Zhixia Su
- School of Public HealthMedical College of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| | - Xiaoping Yu
- Department of Health Management CenterAffiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| | - Yuhang He
- School of NursingMedical College of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| | - Taining Sha
- School of Public HealthMedical College of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| | - Kai Yan
- School of Public HealthMedical College of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| | - Hong Guo
- Department of Thoracic SurgeryAffiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| | - Yujian Tao
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| | - Liting Liao
- Department of Basic MedicineMedical College of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| | - Yanyan Zhang
- Testing Center of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| | - Guotao Lu
- Yangzhou Key Laboratory of Pancreatic DiseaseInstitute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
- Pancreatic Center, Department of GastroenterologyAffiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| | - Weijuan Gong
- Department of Health Management CenterAffiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
- Department of Basic MedicineMedical College of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
- Yangzhou Key Laboratory of Pancreatic DiseaseInstitute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
7
|
Cokorudy B, Harrison J, Chan AHY. Digital markers of asthma exacerbations: a systematic review. ERJ Open Res 2024; 10:00014-2024. [PMID: 39687395 PMCID: PMC11647917 DOI: 10.1183/23120541.00014-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 12/18/2024] Open
Abstract
Background and objective With the increase in use of digital technologies, there is growing interest in digital markers, where technology is used to detect early markers of disease deterioration. The aim of this systematic review is to summarise the evidence relating to digital markers of asthma exacerbations. Methods A systematic search of the following databases was conducted, using key search terms relating to asthma, digital and exacerbations: Ovid MEDLINE, EMBASE, Psycinfo, Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Trials. Studies that aimed to explore the relationship between any digitally measured marker and asthma exacerbations using any form of portable digital sensor technology were included. Results 23 papers were included. The digital markers related to five key categories: environmental, physiological, medication, lung function and breath-related parameters. The most commonly studied marker was lung function, which was reported in over half (13 out of 23) of the papers. However, studies were conflicting in terms of the use of lung function parameters as a predictor of asthma exacerbations. Medication parameters were measured in over a third of the studies (10 out of 23) with a focus on short-acting β-agonist (SABA) use as a marker of exacerbations. Only four and two studies measured heart rate and cough, respectively; however, both parameters were positively associated with exacerbations in all reported studies. Conclusion Several digital markers are associated with asthma exacerbations. This suggests a potential role for using parameters such as heart rate, SABA use and, potentially, cough as digital markers of asthma exacerbations.
Collapse
Affiliation(s)
- Brenda Cokorudy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Aukland, New Zealand
| | - Jeff Harrison
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Aukland, New Zealand
| | - Amy Hai Yan Chan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Aukland, New Zealand
| |
Collapse
|
8
|
Sola-Martínez RA, Turner AM, de Diego Puente T. External Validation of Potential Breath Biomarkers for Asthma: A Step Forward Toward the Clinical Implementation of Breath Analysis. Am J Respir Crit Care Med 2024; 210:1069-1071. [PMID: 38924503 PMCID: PMC11544356 DOI: 10.1164/rccm.202405-1033ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Rosa A Sola-Martínez
- Department of Biochemistry and Molecular Biology B and Immunology University of Murcia Murcia, Spain
| | - Alice M Turner
- Institute of Applied Health Research University of Birmingham Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust Birmingham, United Kingdom
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology B and Immunology University of Murcia Murcia, Spain
| |
Collapse
|
9
|
Cen Z, Huang Y, Li S, Dong S, Wang W, Li X. Advancing Breathomics through Accurate Discrimination of Endogenous from Exogenous Volatiles in Breath. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18541-18553. [PMID: 39340814 DOI: 10.1021/acs.est.4c04575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Breathomics, a growing field in exposure monitoring and clinical diagnostics, has faced accuracy challenges due to unclear contributing factors. This study aims to enhance the potential of breathomics in various frontiers by categorizing exhaled volatile organic compounds (VOCs) as endogenous or exogenous. Analyzing ambient air and breath samples from 271 volunteers via TD-GC × GC-TOF MS/FID, we identify and quantify 50 common VOCs in exhaled breath. Advanced quantitative structure-property relationships and compartment models are employed to obtain VOCs kinetic parameters. This in-depth approach allows us to accurately determine the alveolar concentration of VOCs and further discern their origins, facilitating personalized application of breathomics in exposure assessment and disease diagnosis. Our findings demonstrate that prolonged external exposure turns humans into secondary pollutant sources. Analysis of endogenous VOCs reveals that internal exposure poses more significant health risks than external. Moreover, by correcting environmental backgrounds, we improve the accuracy of gastrointestinal disease diagnostic models by 15-25%. This advancement in identifying VOC origins via compartmental models promises to elevate the clinical relevance of breathomics, marking a leap forward in exposure assessment and precision medicine.
Collapse
Affiliation(s)
- Zhengnan Cen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Yuerun Huang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shangzhewen Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shanshan Dong
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Wenshan Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Institute of Eco-Chongming (IEC), Shanghai 200062, P. R. China
| |
Collapse
|
10
|
Banga I, France K, Paul A, Prasad S. E.Co.Tech Breathalyzer: A Pilot Study of a Non-invasive COVID-19 Diagnostic Tool for Light and Non-smokers. ACS MEASUREMENT SCIENCE AU 2024; 4:496-503. [PMID: 39430966 PMCID: PMC11487758 DOI: 10.1021/acsmeasuresciau.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 10/22/2024]
Abstract
Analysis of exhaled breath offers a noninvasive approach to understanding the metabolic state of the body. This study focuses on the efficacy of an innovative Electrochemical Hand-held Breathalyzer COVID-19 Sensing Technology (E.Co.Tech) for predicting COVID-19 infection, specifically in populations of never or former light smokers. The electrochemical nose technology used in this device aims to discriminate changes in exhaled nitric oxide levels, which are associated with COVID-19-linked respiratory inflammation. The methodology combines the device with a machine learning-based algorithm trained on a diverse data set of breath profiles from both infected and noninfected individuals. A cohort of 46 participants, consisting of never or former light smokers, was recruited. Each participant was tested using the E.Co.Tech prototype device and an iHealth COVID-19 antigen rapid test. The performance of the device was assessed by calculating sensitivity, specificity, positive predictive value, and negative predictive value (NPV). The results demonstrated high specificity (91.11%) and NPV (97.62%) for the device in this demographic group. This case study underscores the potential of E.Co.Tech as a valuable tool for point-of-care COVID-19 diagnosis, particularly in populations with unique smoking histories. The technology's high sensitivity and specificity, along with its rapid results, make it a promising candidate for deployment in resource-limited settings and situations where timely detection is crucial for effective public health management. Further large-scale clinical trials and real-world validations are necessary to establish the device's utility across diverse population groups.
Collapse
Affiliation(s)
- Ivneet Banga
- Department
of Biomedical Engineering, University of
Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United States
| | - Kordel France
- Department
of Computer Science, University of Texas
at Dallas, 800 W Campbell
Road, Richardson, Texas 75080, United States
| | - Anirban Paul
- Department
of Biomedical Engineering, University of
Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United States
| | - Shalini Prasad
- Department
of Biomedical Engineering, University of
Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
11
|
Su R, Xue R, Ma X, Zeng Z, Li L, Wang S. Targeted improvement of narrow micropores in porous carbon for enhancing trace benzene vapor removal: Revealing the adsorption mechanism via experimental and molecular simulation. J Colloid Interface Sci 2024; 671:770-778. [PMID: 38830289 DOI: 10.1016/j.jcis.2024.05.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Porous carbon materials are highly desirable for removing benzene due to their low energy for capture and regeneration. Research has demonstrated that narrow microporous volume is crucial for effective adsorption of benzene at ultra-low concentration. Unfortunately, achieving directional increase in the narrow microporous volume in porous carbon remains a challenge. Here, nitrogen-doped hydrothermal carbon was prepared using urea-assisted hydrothermal method, and then porous carbon (PUC800) was prepared by KOH activation. The resulting material had 180 % higher pore volume and 179 % higher surface area compared to non-nitrogen activation methods. Then, using mechanochemical (mechanical compaction and KOH activation) approach to produce PUC800-3T, which had a 30 % increase in pore volume and a 33 % increase in surface area compared to PUC800. PUC800-3T showed benzene adsorption capacity of 4.2 mmol g-1 at 1 Pa and 5.8 mmol g-1 at 5 Pa. Experimental and molecular simulation indicate that the benzene adsorption at 1 and 5 Pa is determined by pore volume of less than 0.8 and 0.9 nm, respectively. Density functional theory calculations provided insight into the CH⋯X (X = N/O) interactions drive benzene adsorption on the carbon framework. This work provides valuable theoretical and experimental support for designing, preparing, and applying adsorbents for trace removal of benzene vapor.
Collapse
Affiliation(s)
- Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410083, Hunan, China
| | - Ruiqi Xue
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiancheng Ma
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Zheng Zeng
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Liqing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, 108 King William Street, Adelaide, SA 5005, Australia
| |
Collapse
|
12
|
Lamy E, Roquencourt C, Zhou B, Salvator H, Moine P, Annane D, Devillier P, Bardin E, Grassin-Delyle S. Combination of real-time and hyphenated mass spectrometry for improved characterisation of exhaled breath biomarkers in clinical research. Anal Bioanal Chem 2024; 416:4929-4939. [PMID: 38980330 DOI: 10.1007/s00216-024-05421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Exhaled breath volatilomics is a powerful non-invasive tool for biomarker discovery in medical applications, but compound annotation is essential for pathophysiological insights and technology transfer. This study was aimed at investigating the interest of a hybrid approach combining real-time proton transfer reaction-time-of-flight mass spectrometry (PTR-TOF-MS) with comprehensive thermal desorption-two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (TD-GCxGC-TOF-MS) to enhance the analysis and characterization of VOCs in clinical research, using COVID-19 as a use case. VOC biomarker candidates were selected from clinical research using PTR-TOF-MS fingerprinting in patients with COVID-19 and matched to the Human Breathomic Database. Corresponding analytical standards were analysed using both a liquid calibration unit coupled to PTR-TOF-MS and TD-GCxGC-TOF-MS, together with confirmation on new clinical samples with TD-GCxGC-TOF-MS. From 26 potential VOC biomarkers, 23 were successfully detected with PTR-TOF-MS. All VOCs were successfully detected using TD-GCxGC-TOF-MS, providing effective separation of highly chemically related compounds, including isomers, and enabling high-confidence annotation based on two-dimensional chromatographic separation and mass spectra. Four VOCs were identified with a level 1 annotation in the clinical samples. For future applications, the combination of real-time PTR-TOF-MS and comprehensive TD-GCxGC-TOF-MS, at least on a subset of samples from a whole study, would enhance the performance of VOC annotation, offering potential advancements in biomarker discovery for clinical research.
Collapse
Affiliation(s)
- Elodie Lamy
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
| | | | - Bingqing Zhou
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
| | - Hélène Salvator
- Exhalomics®, Hôpital Foch, Suresnes, France
- Pneumologie, Hôpital Foch, Suresnes, France
- Laboratoire de recherche en Pharmacologie Respiratoire - VIM Suresnes, UMR 0892, Université Paris-Saclay, UVSQ, Suresnes, France
| | - Pierre Moine
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
- Réanimation médicale, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris, Garches, France
| | - Djillali Annane
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
- Réanimation médicale, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris, Garches, France
| | - Philippe Devillier
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
- Exhalomics®, Hôpital Foch, Suresnes, France
- Laboratoire de recherche en Pharmacologie Respiratoire - VIM Suresnes, UMR 0892, Université Paris-Saclay, UVSQ, Suresnes, France
| | - Emmanuelle Bardin
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
- Institut Necker-Enfants Malades, Paris, France
| | - Stanislas Grassin-Delyle
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France.
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France.
- Exhalomics®, Hôpital Foch, Suresnes, France.
| |
Collapse
|
13
|
Nouri N, Sun N, Hill JE. A feasibility study of sample re-collection in the analysis of selected volatile compounds in breath samples using GC×GC-TOFMS. J Chromatogr A 2024; 1730:465125. [PMID: 38970877 DOI: 10.1016/j.chroma.2024.465125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
In this study, we aimed to assess the feasibility of re-collecting breath samples using the Centri® (Markes International, Bridgend, UK) followed by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) analysis. The work was conducted in two main phases. In the first phase, we evaluated the re-collection performance by analyzing two sets of standards, including a Grob mix primary solution and a standard mixture of 20 selected volatile compounds (VCs) covering different classes of organic species commonly found in breath samples. The intra-day and inter-day precision (reported as relative standard deviation (RSD),%) for the re-collection of the Grob mix primary solution were in the range of 1 % to14 % and 3 % to12 %, respectively. The re-collection accuracy ranged from 78 % to 97 %. The intra-day RSD for the re-collection of the standard mixture of selected VCs was within 20 % for all compounds, except for acetone and nonane. The precision was within 25 % for all compounds, except for nonane, n-hexane, 1,4-dichlorobenzene, and decane, which exhibited less than 36 % RSD. The re-collection accuracy was in the range of 67 % to 129 %. In the second phase of the study, the re-collection performance in breath analysis was evaluated via five repetitive splitting and re-collection of six breath samples obtained from healthy adults, realizing a total of 30 breath analyses. Initially, we evaluated the re-collection performance by considering all features obtained from breath analysis and then focused on the 20 VCs commonly found in breath samples. The re-collection accuracy for total breath features ranged from 86 to 103 %, and the RSDs were in the range of 1.0 % to 10.4 %. For the selected VCs, the re-collection accuracy of all compounds, except for undecane and benzene, was in the range of 71 % to 132 %.
Collapse
Affiliation(s)
- Nina Nouri
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Ning Sun
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jane E Hill
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Xu R, Zhang Y, Li Z, He M, Lu H, Liu G, Yang M, Fu L, Chen X, Deng G, Wang W. Breathomics for diagnosing tuberculosis in diabetes mellitus patients. Front Mol Biosci 2024; 11:1436135. [PMID: 39193220 PMCID: PMC11347294 DOI: 10.3389/fmolb.2024.1436135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Individuals with diabetes mellitus (DM) are at an increased risk of Mycobacterium tuberculosis (Mtb) infection and progressing from latent tuberculosis (TB) infection to active tuberculosis disease. TB in the DM population is more likely to go undiagnosed due to smear-negative results. Methods Exhaled breath samples were collected and analyzed using high-pressure photon ionization time-of-flight mass spectrometry. An eXtreme Gradient Boosting (XGBoost) model was utilized for breathomics analysis and TB detection. Results XGBoost model achieved a sensitivity of 88.5%, specificity of 100%, accuracy of 90.2%, and an area under the curve (AUC) of 98.8%. The most significant feature across the entire set was m106, which demonstrated a sensitivity of 93%, specificity of 100%, and an AUC of 99.7%. Discussion The breathomics-based TB detection method utilizing m106 exhibited high sensitivity and specificity potentially beneficial for clinical TB screening and diagnosis in individuals with diabetes.
Collapse
Affiliation(s)
- Rong Xu
- Endocrinology Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ying Zhang
- Department of Endocrinology, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China
| | - Zhaodong Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Mingjie He
- Endocrinology Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hailin Lu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Guizhen Liu
- Endocrinology Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Division Two of Pulmonary Diseases Department, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China
| | - Min Yang
- Division Two of Pulmonary Diseases Department, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China
| | - Liang Fu
- Division Two of Pulmonary Diseases Department, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Guofang Deng
- Division Two of Pulmonary Diseases Department, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China
| | - Wenfei Wang
- National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Chou H, Godbeer L, Allsworth M, Boyle B, Ball ML. Progress and challenges of developing volatile metabolites from exhaled breath as a biomarker platform. Metabolomics 2024; 20:72. [PMID: 38977623 PMCID: PMC11230972 DOI: 10.1007/s11306-024-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The multitude of metabolites generated by physiological processes in the body can serve as valuable biomarkers for many clinical purposes. They can provide a window into relevant metabolic pathways for health and disease, as well as be candidate therapeutic targets. A subset of these metabolites generated in the human body are volatile, known as volatile organic compounds (VOCs), which can be detected in exhaled breath. These can diffuse from their point of origin throughout the body into the bloodstream and exchange into the air in the lungs. For this reason, breath VOC analysis has become a focus of biomedical research hoping to translate new useful biomarkers by taking advantage of the non-invasive nature of breath sampling, as well as the rapid rate of collection over short periods of time that can occur. Despite the promise of breath analysis as an additional platform for metabolomic analysis, no VOC breath biomarkers have successfully been implemented into a clinical setting as of the time of this review. AIM OF REVIEW This review aims to summarize the progress made to address the major methodological challenges, including standardization, that have historically limited the translation of breath VOC biomarkers into the clinic. We highlight what steps can be taken to improve these issues within new and ongoing breath research to promote the successful development of the VOCs in breath as a robust source of candidate biomarkers. We also highlight key recent papers across select fields, critically reviewing the progress made in the past few years to advance breath research. KEY SCIENTIFIC CONCEPTS OF REVIEW VOCs are a set of metabolites that can be sampled in exhaled breath to act as advantageous biomarkers in a variety of clinical contexts.
Collapse
|
16
|
Wijsman PC, Goorsenberg AWM, d'Hooghe JNS, Weersink EJM, Fenn DW, Maitland van der Zee AH, Annema JT, Brinkman P, Bonta PI. Exhaled breath analyses for bronchial thermoplasty in severe asthma patients. Respir Med 2024; 225:107583. [PMID: 38447787 DOI: 10.1016/j.rmed.2024.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Bronchial thermoplasty (BT) is a bronchoscopic treatment for severe asthma. Although multiple trials have demonstrated clinical improvement after BT, optimal patient selection remains a challenge and the mechanism of action is incompletely understood. The aim of this study was to examine whether exhaled breath analysis can contribute to discriminate between BT-responders and non-responders at baseline and to explore pathophysiological insights of BT. METHODS Exhaled breath was collected from patients at baseline and six months post-BT. Patients were defined as responders or non-responders based on a half point increase in asthma quality of life questionnaire scores. Gas chromatography-mass spectrometry was used for volatile organic compounds (VOCs) detection and analyses. Analytical workflow consisted of: 1) detection of VOCs that differentiate between responders and non-responders and those that differ between baseline and six months post-BT, 2) identification of VOCs of interest and 3) explore correlations between clinical biomarkers and VOCs. RESULTS Data was available from 14 patients. Nonanal, 2-ethylhexanol and 3-thujol showed a significant difference in intensity between responders and non-responders at baseline (p = 0.04, p = 0.01 and p = 0.03, respectively). After BT, no difference was found in the compound intensity of these VOCs. A negative correlation was observed between nonanal and IgE and BALF eosinophils (r = -0.68, p < 0.01 and r = -0.61, p = 0.02 respectively) and 3-thujol with BALF neutrophils (r = -0.54, p = 0.04). CONCLUSIONS This explorative study identified discriminative VOCs in exhaled breath between BT responders and non-responders at baseline. Additionally, correlations were found between VOC's and inflammatory BALF cells. Once validated, these findings encourage research in breath analysis as a non-invasive easy to apply technique for identifying airway inflammatory profiles and eligibility for BT or immunotherapies in severe asthma.
Collapse
Affiliation(s)
- Pieta C Wijsman
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Annika W M Goorsenberg
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Julia N S d'Hooghe
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Els J M Weersink
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Dominic W Fenn
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | | | - Jouke T Annema
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Paul Brinkman
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Peter I Bonta
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands.
| |
Collapse
|
17
|
Malik M, Demetrowitsch T, Schwarz K, Kunze T. New perspectives on 'Breathomics': metabolomic profiling of non-volatile organic compounds in exhaled breath using DI-FT-ICR-MS. Commun Biol 2024; 7:258. [PMID: 38431745 PMCID: PMC10908792 DOI: 10.1038/s42003-024-05943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Breath analysis offers tremendous potential for diagnostic approaches, since it allows for easy and non-invasive sample collection. "Breathomics" as one major research field comprehensively analyses the metabolomic profile of exhaled breath providing insights into various (patho)physiological processes. Recent research, however, primarily focuses on volatile compounds. This is the first study that evaluates the non-volatile organic compounds (nVOCs) in breath following an untargeted metabolomic approach. Herein, we developed an innovative method utilizing a filter-based device for metabolite extraction. Breath samples of 101 healthy volunteers (female n = 50) were analysed using DI-FT-ICR-MS and biostatistically evaluated. The characterisation of the non-volatile core breathome identified more than 1100 metabolites including various amino acids, organic and fatty acids and conjugates thereof, carbohydrates as well as diverse hydrophilic and lipophilic nVOCs. The data shows gender-specific differences in metabolic patterns with 570 significant metabolites. Male and female metabolomic profiles of breath were distinguished by a random forest approach with an out-of-bag error of 0.0099. Additionally, the study examines how oral contraceptives and various lifestyle factors, like alcohol consumption, affect the non-volatile breathome. In conclusion, the successful application of a filter-based device combined with metabolomics-analyses delineate a non-volatile breathprint laying the foundation for discovering clinical biomarkers in exhaled breath.
Collapse
Affiliation(s)
- Madiha Malik
- Department of Clinical Pharmacy, Institute of Pharmacy, Kiel University, Kiel, Germany.
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, Kiel, Germany
| | - Thomas Kunze
- Department of Clinical Pharmacy, Institute of Pharmacy, Kiel University, Kiel, Germany.
| |
Collapse
|
18
|
Chou H, Arthur K, Shaw E, Schaber C, Boyle B, Allsworth M, Kelley EF, Stewart GM, Wheatley CM, Schwartz J, Fermoyle CC, Ziegler BL, Johnson KA, Robach P, Basset P, Johnson BD. Metabolic insights at the finish line: deciphering physiological changes in ultramarathon runners through breath VOC analysis. J Breath Res 2024; 18:026008. [PMID: 38290132 DOI: 10.1088/1752-7163/ad23f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Exhaustive exercise can induce unique physiological responses in the lungs and other parts of the human body. The volatile organic compounds (VOCs) in exhaled breath are ideal for studying the effects of exhaustive exercise on the lungs due to the proximity of the breath matrix to the respiratory tract. As breath VOCs can originate from the bloodstream, changes in abundance should also indicate broader physiological effects of exhaustive exercise on the body. Currently, there is limited published data on the effects of exhaustive exercise on breath VOCs. Breath has great potential for biomarker analysis as it can be collected non-invasively, and capture real-time metabolic changes to better understand the effects of exhaustive exercise. In this study, we collected breath samples from a small group of elite runners participating in the 2019 Ultra-Trail du Mont Blanc ultra-marathon. The final analysis included matched paired samples collected before and after the race from 24 subjects. All 48 samples were analyzed using the Breath Biopsy Platform with GC-Orbitrap™ via thermal desorption gas chromatography-mass spectrometry. The Wilcoxon signed-rank test was used to determine whether VOC abundances differed between pre- and post-race breath samples (adjustedP-value < .05). We identified a total of 793 VOCs in the breath samples of elite runners. Of these, 63 showed significant differences between pre- and post-race samples after correction for multiple testing (12 decreased, 51 increased). The specific VOCs identified suggest the involvement of fatty acid oxidation, inflammation, and possible altered gut microbiome activity in response to exhaustive exercise. This study demonstrates significant changes in VOC abundance resulting from exhaustive exercise. Further investigation of VOC changes along with other physiological measurements can help improve our understanding of the effect of exhaustive exercise on the body and subsequent differences in VOCs in exhaled breath.
Collapse
Affiliation(s)
- Hsuan Chou
- Owlstone Medical, Cambridge, United Kingdom
| | | | - Elen Shaw
- Owlstone Medical, Cambridge, United Kingdom
| | | | | | | | - Eli F Kelley
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Glenn M Stewart
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Courtney M Wheatley
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Jesse Schwartz
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Caitlin C Fermoyle
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- Utah Vascular Research Laboratory, Salt Lake City, UT, United States of America
| | - Briana L Ziegler
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Kay A Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Paul Robach
- Ecole Nationale des Sports de Montagne, Chamonix, France
| | | | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
19
|
Allosh A, Pantis-Simut CA, Filipoiu N, Preda AT, Necula G, Ghitiu I, Anghel DV, Dulea MA, Nemnes GA. Tuning phosphorene and MoS 2 2D materials for detecting volatile organic compounds associated with respiratory diseases. RSC Adv 2024; 14:1803-1812. [PMID: 38192312 PMCID: PMC10772541 DOI: 10.1039/d3ra07685g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Efficient identification of volatile organic compounds (VOCs) is essential for the rapid diagnostication of respiratory diseases. By detecting specific biomarkers associated with different pathologies one may distinguish between tuberculosis, nosocomial pneumonia, Aspergillus fumigatus, influenza and SARS-CoV-2 virus infections. Phosphorene and MoS2 are potential candidates from the class of 2D graphene-like materials, which can be used as active layers for sensing elements. However, as the target molecules poorly adhere to the pristine layers, binding centers are created by introducing substitutional impurities. The adsorbed VOCs induce modifications in the electrical properties of the customized active layers. For each biomarker and a sequence of substitutional impurities, a pattern of conductivities is obtained, which enables the detection of an unknown test specimen. Exploring multiple biosensor configurations we find an optimal design yielding a considerable selectivity for the five biomarker compounds.
Collapse
Affiliation(s)
- Alaa Allosh
- Horia Hulubei National Institute for Physics and Nuclear Engineering Magurele-Ilfov 077126 Romania
- University of Bucharest, Faculty of Physics Magurele-Ilfov 077125 Romania
| | - Calin-Andrei Pantis-Simut
- Horia Hulubei National Institute for Physics and Nuclear Engineering Magurele-Ilfov 077126 Romania
- University of Bucharest, Faculty of Physics Magurele-Ilfov 077125 Romania
- Research Institute of the University of Bucharest (ICUB) 90 Panduri Street Bucharest 050663 Romania
| | - Nicolae Filipoiu
- Horia Hulubei National Institute for Physics and Nuclear Engineering Magurele-Ilfov 077126 Romania
- University of Bucharest, Faculty of Physics Magurele-Ilfov 077125 Romania
| | - Amanda Teodora Preda
- Horia Hulubei National Institute for Physics and Nuclear Engineering Magurele-Ilfov 077126 Romania
- University of Bucharest, Faculty of Physics Magurele-Ilfov 077125 Romania
- Research Institute of the University of Bucharest (ICUB) 90 Panduri Street Bucharest 050663 Romania
| | - George Necula
- Horia Hulubei National Institute for Physics and Nuclear Engineering Magurele-Ilfov 077126 Romania
| | - Ioan Ghitiu
- University of Bucharest, Faculty of Physics Magurele-Ilfov 077125 Romania
- National Institute for Laser, Plasma and Radiation Physics Magurele-Ilfov 077125 Romania
| | - Dragos-Victor Anghel
- Horia Hulubei National Institute for Physics and Nuclear Engineering Magurele-Ilfov 077126 Romania
- University of Bucharest, Faculty of Physics Magurele-Ilfov 077125 Romania
- Research Institute of the University of Bucharest (ICUB) 90 Panduri Street Bucharest 050663 Romania
| | - Mihnea Alexandru Dulea
- Horia Hulubei National Institute for Physics and Nuclear Engineering Magurele-Ilfov 077126 Romania
| | - George Alexandru Nemnes
- Horia Hulubei National Institute for Physics and Nuclear Engineering Magurele-Ilfov 077126 Romania
- University of Bucharest, Faculty of Physics Magurele-Ilfov 077125 Romania
- Research Institute of the University of Bucharest (ICUB) 90 Panduri Street Bucharest 050663 Romania
| |
Collapse
|
20
|
Gil B, Wales D, Tan H, Yeatman E. Detection of medically relevant volatile organic compounds with graphene field-effect transistors and separated by low-frequency spectral and time signatures. NANOSCALE 2023; 16:61-71. [PMID: 38086675 DOI: 10.1039/d3nr04961b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Exhaled human breath contains a mixture of gases including nitrogen, oxygen, carbon dioxide, water vapour and low molecular weight volatile organic compounds (VOCs). Different VOCs detected in human breath condensate have been recently related to several metabolic processes occurring inside body tissues in the pathological state, as candidate biomarkers for monitoring conditions such as lung injury, airway inflammation, immunity dysfunction, infection, and cancer. Current techniques for detecting these compounds include several types of mass spectroscopy, which are highly costly, time-consuming and dependent on trained personnel for sample analysis. The need for fast and label-free biosensors is paving the way towards the design of novel and portable electronic devices for point-of-care diagnosis with VOCs such as E-noses, and based on the measurement of signal signatures derived from their chemical composition. In this paper, we propose a device for VOC detection that was tested inside a controlled gas flow setup, resorting to graphene field-effect transistors (GFETs). Electrical measurements from graphene directly exposed to nitrogen plus VOC vapours involved cyclic measurements for the variation of graphene's resistance and low-frequency spectral noise in order to obtain distinctive signatures of the tested compounds in the time and frequency domains related, respectively, to Gutmann's theory for donor-acceptor chemical species and spectral sub-band analysis.
Collapse
Affiliation(s)
- Bruno Gil
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Dominic Wales
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Haijie Tan
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Eric Yeatman
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
21
|
Sola-Martínez RA, Zeng J, Awchi M, Gisler A, Arnold K, Singh KD, Frey U, Díaz MC, de Diego Puente T, Sinues P. Preservation of exhaled breath samples for analysis by off-line SESI-HRMS: proof-of-concept study. J Breath Res 2023; 18:011002. [PMID: 38029449 DOI: 10.1088/1752-7163/ad10e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) is an established technique in the field of breath analysis characterized by its short analysis time, as well as high levels of sensitivity and selectivity. Traditionally, SESI-HRMS has been used for real-time breath analysis, which requires subjects to be at the location of the analytical platform. Therefore, it limits the possibilities for an introduction of this methodology in day-to-day clinical practice. However, recent methodological developments have shown feasibility on the remote sampling of exhaled breath in Nalophan® bags prior to measurement using SESI-HRMS. To further explore the range of applications of this method, we conducted a proof-of-concept study to assess the impact of the storage time of exhaled breath in Nalophan® bags at different temperatures (room temperature and dry ice) on the relative intensities of the compounds. In addition, we performed a detailed study of the storage effect of 27 aldehydes related to oxidative stress. After 2 h of storage, the mean of intensity of allm/zsignals relative to the samples analyzed without prior storage remained above 80% at both room temperature and dry ice. For the 27 aldehydes, the mean relative intensity losses were lower than 20% at 24 h of storage, remaining practically stable since the first hour of storage following sample collection. Furthermore, the mean relative intensity of most aldehydes in samples stored at room temperature was higher than those stored in dry ice, which could be related to water vapor condensation issues. These findings indicate that the exhaled breath samples could be preserved for hours with a low percentage of mean relative intensity loss, thereby allowing more flexibility in the logistics of off-line SESI-HRMS studies.
Collapse
Affiliation(s)
- Rosa A Sola-Martínez
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Jiafa Zeng
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Mo Awchi
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Amanda Gisler
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Kim Arnold
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Kapil Dev Singh
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Urs Frey
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Pablo Sinues
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| |
Collapse
|
22
|
Selvarajah B, Platé M, Chambers RC. Pulmonary fibrosis: Emerging diagnostic and therapeutic strategies. Mol Aspects Med 2023; 94:101227. [PMID: 38000335 DOI: 10.1016/j.mam.2023.101227] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Fibrosis is the concluding pathological outcome and major cause of morbidity and mortality in a number of common chronic inflammatory, immune-mediated and metabolic diseases. The progressive deposition of a collagen-rich extracellular matrix (ECM) represents the cornerstone of the fibrotic response and culminates in organ failure and premature death. Idiopathic pulmonary fibrosis (IPF) represents the most rapidly progressive and lethal of all fibrotic diseases with a dismal median survival of 3.5 years from diagnosis. Although the approval of the antifibrotic agents, pirfenidone and nintedanib, for the treatment of IPF signalled a watershed moment for the development of anti-fibrotic therapeutics, these agents slow but do not halt disease progression or improve quality of life. There therefore remains a pressing need for the development of effective therapeutic strategies. In this article, we review emerging therapeutic strategies for IPF as well as the pre-clinical and translational approaches that will underpin a greater understanding of the key pathomechanisms involved in order to transform the way we diagnose and treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Brintha Selvarajah
- Oncogenes and Tumour Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Manuela Platé
- Department of Respiratory Medicine (UCL Respiratory), Division of Medicine, University College London, UK
| | - Rachel C Chambers
- Department of Respiratory Medicine (UCL Respiratory), Division of Medicine, University College London, UK.
| |
Collapse
|
23
|
Peel A, Wang R, Ahmed W, White I, Wilkinson M, Loke YK, Wilson AM, Fowler SJ. Changes in exhaled volatile organic compounds following indirect bronchial challenge in suspected asthma. Thorax 2023; 78:966-973. [PMID: 37495368 DOI: 10.1136/thorax-2022-219708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/14/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Inhaled mannitol provokes bronchoconstriction via mediators released during osmotic degranulation of inflammatory cells, and, hence represents a useful diagnostic test for asthma and model for acute attacks. We hypothesised that the mannitol challenge would trigger changes in exhaled volatile organic compounds (VOCs), generating both candidate biomarkers and novel insights into their origin. METHODS Participants with a clinical diagnosis of asthma, or undergoing investigation for suspected asthma, were recruited. Inhaled mannitol challenges were performed, followed by a sham challenge after 2 weeks in participants with bronchial hyper-responsiveness (BHR). VOCs were collected before and after challenges and analysed using gas chromatography-mass spectrometry. RESULTS Forty-six patients (mean (SD) age 52 (16) years) completed a mannitol challenge, of which 16 (35%) were positive, and 15 of these completed a sham challenge. Quantities of 16 of 51 identified VOCs changed following mannitol challenge (p<0.05), of which 11 contributed to a multivariate sparse partial least square discriminative analysis model, with a classification error rate of 13.8%. Five of these 16 VOCs also changed (p<0.05) in quantity following the sham challenge, along with four further VOCs. In patients with BHR to mannitol distinct postchallenge VOC signatures were observed compared with post-sham challenge. CONCLUSION Inhalation of mannitol was associated with changes in breath VOCs, and in people with BHR resulted in a distinct exhaled breath profile when compared with a sham challenge. These differentially expressed VOCs are likely associated with acute airway inflammation and/or bronchoconstriction and merit further investigation as potential biomarkers in asthma.
Collapse
Affiliation(s)
- Adam Peel
- Respiratory medicine, Norfolk Community Health and Care NHS Trust, Norwich, Norfolk, UK
| | - Ran Wang
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Waqar Ahmed
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Iain White
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Maxim Wilkinson
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Yoon K Loke
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Department of Respiratory Medicine, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Andrew M Wilson
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Department of Respiratory Medicine, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Stephen J Fowler
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
24
|
Banga I, Paul A, Poudyal DC, Muthukumar S, Prasad S. Recent Advances in Gas Detection Methodologies with a Special Focus on Environmental Sensing and Health Monitoring Applications─A Critical Review. ACS Sens 2023; 8:3307-3319. [PMID: 37540230 DOI: 10.1021/acssensors.3c00959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
With the expansion of the Internet-of-Things (IoT), the use of gas sensors in the field of wearable technology, smart devices, and smart homes has increased manifold. These gas sensors have two key applications─one is the detection of gases present in the environment and the other is the detection of Volatile Organic Compounds (VOCs) that are found in the breath. In this review, we focus systematically on the advancements in the field of various spectroscopic methods such as mass spectrometry-based analysis and point-of-care approach to detect VOCs and gases for environmental monitoring and disease diagnosis. Additionally, we highlight the development of smart sensors that work on the principle of electrochemical detection and provide examples of the same through an extensive literature review. At the end of this review, we highlight various challenges and future perspectives.
Collapse
Affiliation(s)
- Ivneet Banga
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Anirban Paul
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Durgasha C Poudyal
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sriram Muthukumar
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- EnLiSense LLC, 1813 Audubon Pondway, Allen, Texas 75013, United States
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- EnLiSense LLC, 1813 Audubon Pondway, Allen, Texas 75013, United States
| |
Collapse
|
25
|
Luo Y, Fang M, Wang H, Dai X, Su R, Ma X. Revealing the Adsorption Mechanisms of Methanol on Lithium-Doped Porous Carbon through Experimental and Theoretical Calculations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2564. [PMID: 37764593 PMCID: PMC10537878 DOI: 10.3390/nano13182564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Previous reports have shown that it is difficult to improve the methanol adsorption performance of nitrogen and oxygen groups due to their low polarity. Here, we first prepared porous carbon with a high specific surface area and large pore volume using benzimidazole as a carbon precursor and KOH as an activating agent. Then, we improved the surface polarity of the porous carbon by doping with Lithium (Li) to enhance the methanol adsorption performance. The results showed that the methanol adsorption capacity of Li-doped porous carbon reached 35.4 mmol g-1, which increased by 57% compared to undoped porous carbon. Molecular simulation results showed that Li doping not only improved the methanol adsorption performance at low pressure, but also at relatively high pressure. This is mainly because Li-modified porous carbon has higher surface polarity than nitrogen and oxygen-modified surfaces, which can generate stronger electrostatic interactions. Furthermore, through density functional theory (DFT) calculations, we determined the adsorption energy, adsorption distance, and charge transfer between Li atom and methanol. Our results demonstrate that Li doping enhances the adsorption energy, reduces the adsorption distance, and increases the charge transfer in porous carbon. The mechanism of methanol adsorption by Li groups was revealed through experimental and theoretical calculations, providing a theoretical basis for the design and preparation of methanol adsorbents.
Collapse
Affiliation(s)
- Yiting Luo
- Hunan First Normal University, Changsha 410114, China
| | - Muaoer Fang
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hanqing Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiangrong Dai
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Xiancheng Ma
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
26
|
Ding X, Lin G, Wang P, Chen H, Li N, Yang Z, Qiu M. Diagnosis of primary lung cancer and benign pulmonary nodules: a comparison of the breath test and 18F-FDG PET-CT. Front Oncol 2023; 13:1204435. [PMID: 37333820 PMCID: PMC10272389 DOI: 10.3389/fonc.2023.1204435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
With the application of low-dose computed tomography in lung cancer screening, pulmonary nodules have become increasingly detected. Accurate discrimination between primary lung cancer and benign nodules poses a significant clinical challenge. This study aimed to investigate the viability of exhaled breath as a diagnostic tool for pulmonary nodules and compare the breath test with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)-computed tomography (CT). Exhaled breath was collected by Tedlar bags and analyzed by high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS). A retrospective cohort (n = 100) and a prospective cohort (n = 63) of patients with pulmonary nodules were established. In the validation cohort, the breath test achieved an area under the receiver operating characteristic curve (AUC) of 0.872 (95% CI 0.760-0.983) and a combination of 16 volatile organic compounds achieved an AUC of 0.744 (95% CI 0.7586-0.901). For PET-CT, the SUVmax alone had an AUC of 0.608 (95% CI 0.433-0.784) while after combining with CT image features, 18F-FDG PET-CT had an AUC of 0.821 (95% CI 0.662-0.979). Overall, the study demonstrated the efficacy of a breath test utilizing HPPI-TOFMS for discriminating lung cancer from benign pulmonary nodules. Furthermore, the accuracy achieved by the exhaled breath test was comparable with 18F-FDG PET-CT.
Collapse
Affiliation(s)
- Xiangxiang Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guihu Lin
- Department of Thoracic Surgery, Aerospace 731 Hospital, Beijing, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
| | - Haibin Chen
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, China
| |
Collapse
|
27
|
Cen Z, Lu B, Ji Y, Chen J, Liu Y, Jiang J, Li X, Li X. Virus-induced breath biomarkers: A new perspective to study the metabolic responses of COVID-19 vaccinees. Talanta 2023; 260:124577. [PMID: 37116359 PMCID: PMC10122548 DOI: 10.1016/j.talanta.2023.124577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Coronavirus disease 2019 (COVID-19) vaccines can protect people from the infection; however, the action mechanism of vaccine-mediated metabolism remains unclear. Herein, we performed breath tests in COVID-19 vaccinees that revealed metabolic reprogramming induced by protective immune responses. In total, 204 breath samples were obtained from COVID-19 vaccinees and non-vaccinated controls, wherein numerous volatile organic compounds (VOCs) were detected by comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry system. Subsequently, 12 VOCs were selected as biomarkers to construct a signature panel using alveolar gradients and machine learning-based procedure. The signature panel could distinguish vaccinees from control group with a high prediction performance (AUC, 0.9953; accuracy, 94.42%). The metabolic pathways of these biomarkers indicated that the host-pathogen interactions enhanced enzymatic activity and microbial metabolism in the liver, lung, and gut, potentially constituting the dominant action mechanism of vaccine-driven metabolic regulation. Thus, our findings of this study highlight the potential of measuring exhaled VOCs as rapid, non-invasive biomarkers of viral infections. Furthermore, breathomics appears as an alternative for safety evaluation of biological agents and disease diagnosis.
Collapse
Affiliation(s)
- Zhengnan Cen
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Bingqing Lu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Yongyan Ji
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Jian Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Yongqian Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Jiakui Jiang
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, PR China
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
28
|
Yates DH. Physiology and Biomarkers for Surveillance of Occupational Lung Disease. Semin Respir Crit Care Med 2023; 44:349-361. [PMID: 37072024 DOI: 10.1055/s-0043-1766119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Respiratory surveillance is the process whereby a group of exposed workers are regularly tested (or screened) for those lung diseases which occur as a result of a specific work exposure. Surveillance is performed by assessing various measures of biological or pathological processes (or biomarkers) for change over time. These traditionally include questionnaires, lung physiological assessments (especially spirometry), and imaging. Early detection of pathological processes or disease can enable removal of a worker from a potentially harmful exposure at an early stage. In this article, we summarize the physiological biomarkers currently used for respiratory surveillance, while commenting on differences in interpretative strategies between different professional groups. We also briefly review the many new techniques which are currently being assessed for respiratory surveillance in prospective research studies and which are likely to significantly broaden and enhance this field in the near future.
Collapse
Affiliation(s)
- Deborah H Yates
- Department of Thoracic Medicine, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
29
|
Pelling M, Chandrapalan S, West E, Arasaradnam RP. A Systematic Review and Meta-Analysis: Volatile Organic Compound Analysis in the Detection of Hepatobiliary and Pancreatic Cancers. Cancers (Basel) 2023; 15:2308. [PMID: 37190235 PMCID: PMC10136496 DOI: 10.3390/cancers15082308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Hepatobiliary cancers are notoriously difficult to detect, frequently leading to diagnosis in later stages of disease when curative treatment is not an option. The currently used biomarkers such as AFP (alpha-fetoprotein) and CA19.9 lack sensitivity and specificity. Hence, there is an unmet need for an alternative biomarker. AIM To evaluate the diagnostic accuracy of volatile organic compounds (VOCs) for the detection of hepatobiliary and pancreatic cancers. METHODS A systematic review of VOCs' use in the detection of hepatobiliary and pancreatic cancers was performed. A meta-analysis was performed using the software R. Heterogeneity was explored through meta-regression analysis. RESULTS A total of 18 studies looking at 2296 patients were evaluated. Pooled sensitivity and specificity of VOCs for the detection of hepatobiliary and pancreatic cancer were 0.79 (95% CI, 0.72-0.85) and 0.81 (97.5% CI, 0.76-0.85), respectively. The area under the curve was 0.86. Meta-regression analysis showed that the sample media used contributed to heterogeneity. Bile-based VOCs showed the highest precision values, although urine and breath are preferred for their feasibility. CONCLUSIONS Volatile organic compounds have the potential to be used as an adjunct tool to aid in the early diagnosis of hepatobiliary cancers.
Collapse
Affiliation(s)
- Melina Pelling
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | | | - Emily West
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ramesh P. Arasaradnam
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Department of Gastroenterology, University Hospital of Coventry and Warwickshire, Coventry CV2 2DX, UK
- Health, Biological & Experimental Sciences, University of Coventry, Coventry CV1 5FB, UK
- School of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
30
|
Fu L, Feng Y, Ren T, Yang M, Yang Q, Lin Y, Zeng H, Zhang J, Liu L, Li Q, He M, Zhang P, Chen H, Deng G. Detecting latent tuberculosis infection with a breath test using mass spectrometer: A pilot cross-sectional study. Biosci Trends 2023; 17:73-77. [PMID: 36596559 DOI: 10.5582/bst.2022.01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mycobacterium tuberculosis (M.tb) infects a quarter of the world's population and may progress to active tuberculosis (ATB). There is no gold standard for diagnosing latent tuberculosis infection (LTBI). Some immunodiagnostic tests are recommended to detect LTBI but can not distinguish ATB from LTBI. The breath test is useful for diagnosing ATB compared to healthy subjects but was never studied for LTBI. This proof-of-concept study (Chinese Clinical Trials Registry number: ChiCTR2200058346) was the first to explore a novel, rapid, and simple LTBI detection method via breath test on high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS). The case group of LTBI subjects (n = 185) and the control group (n = 250), which included ATB subgroup (n = 121) and healthy control (HC) subgroup (n = 129), were enrolled. The LTBI detection model indicated that a breath test via HPPI-TOFMS could distinguish LTBI from the control with a sensitivity of 80.0% (95% CI: 67.6%, 92.4%) and a specificity of 80.8% (95% CI: 71.8%, 89.9%). Nevertheless, further intensive studies with a larger sample size are required for clinical application.
Collapse
Affiliation(s)
- Liang Fu
- Division Two of Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National clinical research center for infectious disease, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yong Feng
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, China
| | - Tantan Ren
- Division Two of Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National clinical research center for infectious disease, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Min Yang
- Division Two of Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National clinical research center for infectious disease, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qianting Yang
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious Disease, The Third People's Hospital of Shenzhen, National clinical research center for infectious disease, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yi Lin
- Division Two of Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National clinical research center for infectious disease, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hui Zeng
- Medical Examination Department, The Third People's Hospital of Shenzhen, National clinical research center for infectious disease, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiaohong Zhang
- Pulmonary Diseases Out-patient Department, The Third People's Hospital of Shenzhen, National clinical research center for infectious disease, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Liu
- Division Two of Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National clinical research center for infectious disease, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qingyun Li
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, China
| | - Mengqi He
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, China
| | - Peize Zhang
- Division Two of Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National clinical research center for infectious disease, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Haibin Chen
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, China
| | - Guofang Deng
- Division Two of Pulmonary Diseases Department, The Third People's Hospital of Shenzhen, National clinical research center for infectious disease, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
31
|
Exhaled breath condensate as bioanalyte: from collection considerations to biomarker sensing. Anal Bioanal Chem 2023; 415:27-34. [PMID: 36396732 PMCID: PMC9672542 DOI: 10.1007/s00216-022-04433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Since the SARS-CoV-2 pandemic, the potential of exhaled breath (EB) to provide valuable information and insight into the health status of a person has been revisited. Mass spectrometry (MS) has gained increasing attention as a powerful analytical tool for clinical diagnostics of exhaled breath aerosols (EBA) and exhaled breath condensates (EBC) due to its high sensitivity and specificity. Although MS will continue to play an important role in biomarker discovery in EB, its use in clinical setting is rather limited. EB analysis is moving toward online sampling with portable, room temperature operable, and inexpensive point-of-care devices capable of real-time measurements. This transition is happening due to the availability of highly performing biosensors and the use of wearable EB collection tools, mostly in the form of face masks. This feature article will outline the last developments in the field, notably the novel ways of EBA and EBC collection and the analytical aspects of the collected samples. The inherit non-invasive character of the sample collection approach might open new doors for efficient ways for a fast, non-invasive, and better diagnosis.
Collapse
|
32
|
Chung J, Akter S, Han S, Shin Y, Choi TG, Kang I, Kim SS. Diagnosis by Volatile Organic Compounds in Exhaled Breath in Exhaled Breath from Patients with Gastric and Colorectal Cancers. Int J Mol Sci 2022; 24:129. [PMID: 36613569 PMCID: PMC9820758 DOI: 10.3390/ijms24010129] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
One in three cancer deaths worldwide are caused by gastric and colorectal cancer malignancies. Although the incidence and fatality rates differ significantly from country to country, the rates of these cancers in East Asian nations such as South Korea and Japan have been increasing each year. Above all, the biggest danger of this disease is how challenging it is to recognize in its early stages. Moreover, most patients with these cancers do not present with any disease symptoms before receiving a definitive diagnosis. Currently, volatile organic compounds (VOCs) are being used for the early prediction of several other diseases, and research has been carried out on these applications. Exhaled VOCs from patients possess remarkable potential as novel biomarkers, and their analysis could be transformative in the prevention and early diagnosis of colon and stomach cancers. VOCs have been spotlighted in recent studies due to their ease of use. Diagnosis on the basis of patient VOC analysis takes less time than methods using gas chromatography, and results in the literature demonstrate that it is possible to determine whether a patient has certain diseases by using organic compounds in their breath as indicators. This study describes how VOCs can be used to precisely detect cancers; as more data are accumulated, the accuracy of this method will increase, and it can be applied in more fields.
Collapse
Affiliation(s)
- Jinwook Chung
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
33
|
Ibrahim W, Wilde MJ, Cordell RL, Richardson M, Salman D, Free RC, Zhao B, Singapuri A, Hargadon B, Gaillard EA, Suzuki T, Ng LL, Coats T, Thomas P, Monks PS, Brightling CE, Greening NJ, Siddiqui S. Visualization of exhaled breath metabolites reveals distinct diagnostic signatures for acute cardiorespiratory breathlessness. Sci Transl Med 2022; 14:eabl5849. [PMID: 36383685 PMCID: PMC7613858 DOI: 10.1126/scitranslmed.abl5849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acute cardiorespiratory breathlessness accounts for one in eight of all emergency hospitalizations. Early, noninvasive diagnostic testing is a clinical priority that allows rapid triage and treatment. Here, we sought to find and replicate diagnostic breath volatile organic compound (VOC) biomarkers of acute cardiorespiratory disease and understand breath metabolite network enrichment in acute disease, with a view to gaining mechanistic insight of breath biochemical derangements. We collected and analyzed exhaled breath samples from 277 participants presenting acute cardiorespiratory exacerbations and aged-matched healthy volunteers. Topological data analysis phenotypes differentiated acute disease from health and acute cardiorespiratory exacerbation subtypes (acute heart failure, acute asthma, acute chronic obstructive pulmonary disease, and community-acquired pneumonia). A multibiomarker score (101 breath biomarkers) demonstrated good diagnostic sensitivity and specificity (≥80%) in both discovery and replication sets and was associated with all-cause mortality at 2 years. In addition, VOC biomarker scores differentiated metabolic subgroups of cardiorespiratory exacerbation. Louvain clustering of VOCs coupled with metabolite enrichment and similarity assessment revealed highly specific enrichment patterns in all acute disease subgroups, for example, selective enrichment of correlated C5-7 hydrocarbons and C3-5 carbonyls in heart failure and selective depletion of correlated aldehydes in acute asthma. This study identified breath VOCs that differentiate acute cardiorespiratory exacerbations and associated subtypes and metabolic clusters of disease-associated VOCs.
Collapse
Affiliation(s)
- Wadah Ibrahim
- Department of Respiratory Sciences, University of Leicester, Leicester, LE1 7RH UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester LE3 9QP
| | - Michael J. Wilde
- School of Chemistry, University of Leicester, Leicester, LE1 7RH UK
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
- joint corresponding authorship. (M.J.W.); (S.S.)
| | | | - Matthew Richardson
- Department of Respiratory Sciences, University of Leicester, Leicester, LE1 7RH UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester LE3 9QP
| | - Dahlia Salman
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TT UK
| | - Robert C. Free
- Department of Respiratory Sciences, University of Leicester, Leicester, LE1 7RH UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester LE3 9QP
| | - Bo Zhao
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, OX1 1JD United Kingdom
- Nuffield College, University of Oxford, Oxford, OX1 1NF United Kingdom
| | - Amisha Singapuri
- Department of Respiratory Sciences, University of Leicester, Leicester, LE1 7RH UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester LE3 9QP
| | - Beverley Hargadon
- Department of Respiratory Sciences, University of Leicester, Leicester, LE1 7RH UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester LE3 9QP
| | - Erol A. Gaillard
- Department of Respiratory Sciences, University of Leicester, Leicester, LE1 7RH UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester LE3 9QP
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield General Hospital, Leicester, LE3 9QP UK
- Leicester NIHR Biomedical Research Centre (Cardiovascular theme), Glenfield Hospital, Groby Road, Leicester LE3 9QP
- The Institute of Medical Science, The University of Tokyo Shirokane-dai, Minato-ku 4-6-1, 108-8639 Tokyo, Japan
| | - Leong L. Ng
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield General Hospital, Leicester, LE3 9QP UK
- Leicester NIHR Biomedical Research Centre (Cardiovascular theme), Glenfield Hospital, Groby Road, Leicester LE3 9QP
| | - Tim Coats
- Emergency Medicine Academic Group, Department of Cardiovascular Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Paul Thomas
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TT UK
| | - Paul S. Monks
- School of Chemistry, University of Leicester, Leicester, LE1 7RH UK
| | - Christopher E. Brightling
- Department of Respiratory Sciences, University of Leicester, Leicester, LE1 7RH UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester LE3 9QP
| | - Neil J. Greening
- Department of Respiratory Sciences, University of Leicester, Leicester, LE1 7RH UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester LE3 9QP
| | - Salman Siddiqui
- Department of Respiratory Sciences, University of Leicester, Leicester, LE1 7RH UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester LE3 9QP
- National Heart and Lung Institute, Imperial College, London, SW3 6LY UK
- joint corresponding authorship. (M.J.W.); (S.S.)
| | | |
Collapse
|
34
|
Xu F, Zhou J, Yang H, Chen L, Zhong J, Peng Y, Wu K, Wang Y, Fan H, Yang X, Zhao Y. Recent advances in exhaled breath sample preparation technologies for drug of abuse detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Azim A, Rezwan FI, Barber C, Harvey M, Kurukulaaratchy RJ, Holloway JW, Howarth PH. Measurement of Exhaled Volatile Organic Compounds as a Biomarker for Personalised Medicine: Assessment of Short-Term Repeatability in Severe Asthma. J Pers Med 2022; 12:1635. [PMID: 36294774 PMCID: PMC9604907 DOI: 10.3390/jpm12101635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
The measurement of exhaled volatile organic compounds (VOCs) in exhaled breath (breathomics) represents an exciting biomarker matrix for airways disease, with early research indicating a sensitivity to airway inflammation. One of the key aspects to analytical validity for any clinical biomarker is an understanding of the short-term repeatability of measures. We collected exhaled breath samples on 5 consecutive days in 14 subjects with severe asthma who had undergone extensive clinical characterisation. Principal component analysis on VOC abundance across all breath samples revealed no variance due to the day of sampling. Samples from the same patients clustered together and there was some separation according to T2 inflammatory markers. The intra-subject and between-subject variability of each VOC was calculated across the 70 samples and identified 30.35% of VOCs to be erratic: variable between subjects but also variable in the same subject. Exclusion of these erratic VOCs from machine learning approaches revealed no apparent loss of structure to the underlying data or loss of relationship with salient clinical characteristics. Moreover, cluster evaluation by the silhouette coefficient indicates more distinct clustering. We are able to describe the short-term repeatability of breath samples in a severe asthma population and corroborate its sensitivity to airway inflammation. We also describe a novel variance-based feature selection tool that, when applied to larger clinical studies, could improve machine learning model predictions.
Collapse
Affiliation(s)
- Adnan Azim
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Faisal I. Rezwan
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Clair Barber
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Matthew Harvey
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Ramesh J. Kurukulaaratchy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Newport PO30 5TG, UK
| | - John W. Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Peter H. Howarth
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
36
|
Fouka E, Domvri K, Gkakou F, Alevizaki M, Steiropoulos P, Papakosta D, Porpodis K. Recent insights in the role of biomarkers in severe asthma management. Front Med (Lausanne) 2022; 9:992565. [PMID: 36226150 PMCID: PMC9548530 DOI: 10.3389/fmed.2022.992565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Contemporary asthma management requires a proactive and individualized approach, combining precision diagnosis and personalized treatment. The introduction of biologic therapies for severe asthma to everyday clinical practice, increases the need for specific patient selection, prediction of outcomes and monitoring of these costly and long-lasting therapies. Several biomarkers have been used in asthma in disease identification, prediction of asthma severity and prognosis, and response to treatment. Novel advances in the area of personalized medicine regarding disease phenotyping and endotyping, encompass the development and application of reliable biomarkers, accurately quantified using robust and reproducible methods. The availability of powerful omics technologies, together with integrated and network-based genome data analysis, and microbiota changes quantified in serum, body fluids and exhaled air, will lead to a better classification of distinct phenotypes or endotypes. Herein, in this review we discuss on currently used and novel biomarkers for the diagnosis and treatment of asthma.
Collapse
Affiliation(s)
- Evangelia Fouka
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Evangelia Fouka
| | - Kalliopi Domvri
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Foteini Gkakou
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Alevizaki
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Despoina Papakosta
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Porpodis
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
- Konstantinos Porpodis
| |
Collapse
|
37
|
Hung RJ, Khodayari Moez E, Kim SJ, Budhathoki S, Brooks JD. Considerations of biomarker application for cancer continuum in the era of precision medicine. CURR EPIDEMIOL REP 2022; 9:200-211. [PMID: 36090700 PMCID: PMC9454320 DOI: 10.1007/s40471-022-00295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Purpose of the review The goal of this review is to highlight emerging biomarker research by the key phases of the cancer continuum and outline the methodological considerations for biomarker application. Recent findings While biomarkers have an established role in targeted therapy and to some extent, disease monitoring, their role in early detection and survivorship remains to be elucidated. With the advent of omics technology, the discovery of biomarkers has been accelerated exponentially, therefore careful consideration to ensure an unbiased study design and robust validity is crucial. Summary The rigor of biomarker research holds the key to the success of precision health care. The potential clinical utility and the feasibility of implementation should be central to future biomarker research study design.
Collapse
Affiliation(s)
- Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Elham Khodayari Moez
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | - Shana J Kim
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sanjeev Budhathoki
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | - Jennifer D Brooks
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Exhaled Breath Analysis for Investigating the Use of Inhaled Corticosteroids and Corticosteroid Responsiveness in Wheezing Preschool Children. J Clin Med 2022; 11:jcm11175160. [PMID: 36079088 PMCID: PMC9456576 DOI: 10.3390/jcm11175160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
Exhaled breath analysis has great potential in diagnosing various respiratory and non-respiratory diseases. In this study, we investigated the influence of inhaled corticosteroids (ICS) on exhaled volatile organic compounds (VOCs) of wheezing preschool children. Furthermore, we assessed whether exhaled VOCs could predict a clinical steroid response in wheezing preschool children. We performed a crossover 8-week ICS trial, in which 147 children were included. Complete data were available for 89 children, of which 46 children were defined as steroid-responsive. Exhaled VOCs were measured by GC-tof-MS. Statistical analysis by means of Random Forest was used to investigate the effect of ICS on exhaled VOCs. A set of 20 VOCs could best discriminate between measurements before and after ICS treatment, with a sensitivity of 73% and specificity of 67% (area under ROC curve = 0.72). Most discriminative VOCs were branched C11H24, butanal, octanal, acetic acid and methylated pentane. Other VOCs predominantly included alkanes. Regularised multivariate analysis of variance (rMANOVA) was used to determine treatment response, which showed a significant effect between responders and non-responders (p < 0.01). These results show that ICS significantly altered the exhaled breath profiles of wheezing preschool children, irrespective of clinical treatment response. Furthermore, exhaled VOCs were capable of determining corticosteroid responsiveness in wheezing preschool children.
Collapse
|
39
|
Freddi S, Sangaletti L. Trends in the Development of Electronic Noses Based on Carbon Nanotubes Chemiresistors for Breathomics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172992. [PMID: 36080029 PMCID: PMC9458156 DOI: 10.3390/nano12172992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 06/12/2023]
Abstract
The remarkable potential of breath analysis in medical care and diagnosis, and the consequent development of electronic noses, is currently attracting the interest of the research community. This is mainly due to the possibility of applying the technique for early diagnosis, screening campaigns, or tracking the effectiveness of treatment. Carbon nanotubes (CNTs) are known to be good candidates for gas sensing, and they have been recently considered for the development of electronic noses. The present work has the aim of reviewing the available literature on the development of CNTs-based electronic noses for breath analysis applications, detailing the functionalization procedure used to prepare the sensors, the breath sampling techniques, the statistical analysis methods, the diseases under investigation, and the population studied. The review is divided in two main sections: one focusing on the e-noses completely based on CNTs and one reporting on the e-noses that feature sensors based on CNTs, along with sensors based on other materials. Finally, a classification is presented among studies that report on the e-nose capability to discriminate biomarkers, simulated breath, and animal or human breath.
Collapse
|
40
|
Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. NATURE REVIEWS. MATERIALS 2022; 7:887-907. [PMID: 35910814 PMCID: PMC9306444 DOI: 10.1038/s41578-022-00460-x] [Citation(s) in RCA: 304] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 05/03/2023]
Abstract
Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals. Next-generation wearable sensors that enable the multimodal and/or multiplexed measurement of physical parameters and biochemical markers in real time and continuously could be a transformative technology for diagnostics, allowing for high-resolution and time-resolved historical recording of the health status of an individual. In this Review, we examine the building blocks of such wearable sensors, including the substrate materials, sensing mechanisms, power modules and decision-making units, by reflecting on the recent developments in the materials, engineering and data science of these components. Finally, we synthesize current trends in the field to provide predictions for the future trajectory of wearable sensors.
Collapse
Affiliation(s)
- H. Ceren Ates
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Peter Q. Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | | | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, León, Mexico
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London, UK
| | - James J. Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
- Institute of Medical Engineering & Science, Department of Biological Engineering, MIT, Cambridge, MA USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
Influence of Home Indoor Dampness Exposure on Volatile Organic Compounds in Exhaled Breath of Mothers and Their Infants: The NELA Birth Cohort. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Currently, the effect of exposure to indoor air contaminants and the presence of dampness at home on respiratory/atopic health is of particular concern to physicians. The measurement of volatile organic compounds (VOCs) in exhaled breath is a useful approach for monitoring environmental exposures. A great advantage of this strategy is that it allows the study of the impact of pollutants on the metabolism through a non-invasive method. In this paper, the levels of nine VOCs (acetone, isoprene, toluene, p/m-xylene, o-xylene, styrene, benzaldehyde, naphthalene, and 2-ethyl-1-hexanol) in the exhaled breath of subjects exposed and not exposed to home dampness were assessed. Exhaled breath samples were collected from 337 mother–child pairs of a birth cohort and analysed by gas-chromatography–mass-spectrometry. It was observed that the levels of 2-ethyl-1-hexanol in the exhaled breath of the mothers were significantly influenced by exposure to household humidity. In the case of the infants, differences in some of the VOC levels related to home dampness exposure; however, they did not reach statistical significance. In addition, it was also found that the eosinophil counts of the mothers exposed to home dampness were significantly elevated compared to those of the non-exposed mothers. To our knowledge, these findings show, for the first time, that exposure to home dampness may influence VOC patterns in exhaled breath.
Collapse
|
42
|
Cope H, Willis CR, MacKay MJ, Rutter LA, Toh LS, Williams PM, Herranz R, Borg J, Bezdan D, Giacomello S, Muratani M, Mason CE, Etheridge T, Szewczyk NJ. Routine omics collection is a golden opportunity for European human research in space and analog environments. PATTERNS 2022; 3:100550. [PMID: 36277820 PMCID: PMC9583032 DOI: 10.1016/j.patter.2022.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Zhang L, Li X, Chen H, Wu Z, Hu M, Yao M. Haze Air Pollution Health Impacts of Breath-Borne VOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8541-8551. [PMID: 35559607 DOI: 10.1021/acs.est.2c01778] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we investigated the use of breath-borne volatile organic compounds (VOCs) for rapid monitoring of air pollution health effects on humans. Forty-seven healthy college students were recruited, and their exhaled breath samples (n = 235) were collected and analyzed for VOCs before, on, and after two separate haze pollution episodes using gas chromatography-ion mobility spectrometry (GC-IMS). Using a paired t-test and machine learning model (Gradient Boosting Machine, GBM), six exhaled VOC species including propanol and isoprene were revealed to differ significantly among pre-, on-, and post-exposure in both haze episodes, while none was found between clean control days. The GBM model was shown capable of differentiating between pre- and on-exposure to haze pollution with a precision of 90-100% for both haze episodes. However, poor performance was detected for the same model between two different clean days. In addition to gender and particular haze occurrence influences, correlation analysis revealed that NH4+, NO3-, acetic acid, mesylate, CO, NO2, PM2.5, and O3 played important roles in the changes in breath-borne VOC fingerprints following haze air pollution exposure. This work has demonstrated direct evidence of human health impacts of haze pollution while identifying potential breath-borne VOC biomarkers such as propanol and isoprene for haze air pollution exposure.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Reinke SN, Chaleckis R, Wheelock CE. Metabolomics in pulmonary medicine - extracting the most from your data. Eur Respir J 2022; 60:13993003.00102-2022. [PMID: 35618271 PMCID: PMC9386331 DOI: 10.1183/13993003.00102-2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022]
Abstract
The metabolome enables unprecedented insight into biochemistry, providing an integrated signature of the genome, transcriptome, proteome and exposome. Measurement requires rigorous protocols combined with specialised data analysis to achieve its promise.https://bit.ly/3yPiYkQ
Collapse
Affiliation(s)
- Stacey N Reinke
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Romanas Chaleckis
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden .,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
45
|
Swinarew AS, Flak T, Jarosińska A, Garczyk Ż, Gabor J, Skoczyński S, Brożek G, Paluch J, Popczyk M, Stanula A, Stach S. Polyurethane-Based Porous Carbons Suitable for Medical Application. MATERIALS 2022; 15:ma15093313. [PMID: 35591653 PMCID: PMC9101738 DOI: 10.3390/ma15093313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
The main aim of the study was to synthesize and analyze spectral data to determine the structure and stereometry of the carbon-based porous material internal structure. Samples of a porous biomaterial were synthesized through anionic polymerization following our own patent and then carbonized. The samples were investigated using MALDI ToF MS, FTIR ATR spectroscopy, optic microscopy, SEM, confocal laser scanning microscopy and CMT imaging. The analysis revealed the chemical and stereological structure of the obtained porous biomaterial. Then, the parameters characterizing the pore geometry and the porosity of the samples were calculated. The developed material can be used to collect adsorption of breathing phase samples to determine the parity composition of exhaled air.
Collapse
Affiliation(s)
- Andrzej S. Swinarew
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
- Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72A, 40-065 Katowice, Poland;
- Correspondence:
| | - Tomasz Flak
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
| | - Agnieszka Jarosińska
- Department of Internal Medicine, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 14, 40-572 Katowice, Poland;
| | - Żaneta Garczyk
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
| | - Jadwiga Gabor
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
| | - Szymon Skoczyński
- Department of Pneumonology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Grzegorz Brożek
- Department of Epidemiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Jarosław Paluch
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, ul. Francuska 20-24, 40-027 Katowice, Poland;
| | - Magdalena Popczyk
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
| | - Arkadiusz Stanula
- Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72A, 40-065 Katowice, Poland;
| | - Sebastian Stach
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
| |
Collapse
|
46
|
Issitt T, Wiggins L, Veysey M, Sweeney S, Brackenbury W, Redeker K. Volatile compounds in human breath: critical review and meta-analysis. J Breath Res 2022; 16. [PMID: 35120340 DOI: 10.1088/1752-7163/ac5230] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Volatile compounds contained in human breath reflect the inner workings of the body. A large number of studies have been published that link individual components of breath to disease, but diagnostic applications remain limited, in part due to inconsistent and conflicting identification of breath biomarkers. New approaches are therefore required to identify effective biomarker targets. Here, volatile organic compounds have been identified in the literature from four metabolically and physiologically distinct diseases and grouped into chemical functional groups (e.g. - methylated hydrocarbons or aldehydes; based on known metabolic and enzymatic pathways) to support biomarker discovery and provide new insight on existing data. Using this functional grouping approach, principal component analysis doubled explanatory capacity from 19.1% to 38% relative to single individual compound approaches. Random forest and linear discriminant analysis reveal 93% classification accuracy for cancer. This review and meta-analysis provides insight for future research design by identifying volatile functional groups associated with disease. By incorporating our understanding of the complexities of the human body, along with accounting for variability in methodological and analytical approaches, this work demonstrates that a suite of targeted, functional volatile biomarkers, rather than individual biomarker compounds, will improve accuracy and success in diagnostic research and application.
Collapse
Affiliation(s)
- Theo Issitt
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Laura Wiggins
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Martin Veysey
- The University of Newcastle, School of Medicine & Public Health, Callaghan, New South Wales, 2308, AUSTRALIA
| | - Sean Sweeney
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - William Brackenbury
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Kelly Redeker
- Biology, University of York, Biology Dept. University of York, York, York, North Yorkshire, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
47
|
Abstract
Biomarkers may be diagnostic of asthma, they may predict or reflect response to therapy or they may identify patients at risk of asthma exacerbation. A biomarker is most often measured in biologic fluids that are sampled using relatively non-invasive sampling techniques such as blood, sputum, urine or exhaled breath. Biomarkers should be stable, readily quantifiable and their measurement should be reproducible and not confounded by other host factors, or the presence of comorbidities. However, asthma comprises multiple molecular endotypes and single, sensitive, specific, biomarkers reflecting these endotypes may not exist. Combining biomarkers may improve their predictive capability in asthma. The most well-established endotypes are those described as Type2 and non-Type2 asthma. Clinical trials established the fraction of exhaled nitric oxide (FeNO) and blood eosinophil counts as key biomarkers of response to corticosteroid or targeted anti-inflammatory therapy in Type2 asthma. However, these biomarkers may have limited value in the management of asthma in real-life settings or routine clinical practise. Biomarkers for Type2 asthma are not well described or validated and more research is needed. Breathomics has provided evidence to propose a number of exhaled volatile organic compounds (VOCs) as surrogate biomarkers for airway inflammatory phenotypes, disease activity and adherence to therapy. Analysis of urinary eicosanoids has identified eicosanoids related to Type2 and non-Type2 inflammation. Future clinical trials will be important in determining how exhaled VOCs or urinary eicosanoid profiles can be used to direct precision treatments. Their future clinical use will also depend on developing simplified instrumentation for biomarker analysis at the point-of-care.
Collapse
Affiliation(s)
- Janis Shute
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK -
| |
Collapse
|
48
|
Ibrahim W, Cordell RL, Wilde MJ, Richardson M, Carr L, Sundari Devi Dasi A, Hargadon B, Free RC, Monks PS, Brightling CE, Greening NJ, Siddiqui S. Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography-mass spectrometry. ERJ Open Res 2021; 7:00139-2021. [PMID: 34235208 PMCID: PMC8255539 DOI: 10.1183/23120541.00139-2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ongoing coronavirus disease 2019 (COVID-19) pandemic has claimed over two and a half million lives worldwide so far. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is perceived to be seasonally recurrent, and a rapid noninvasive biomarker to accurately diagnose patients early on in their disease course will be necessary to meet the operational demands for COVID-19 control in the coming years. OBJECTIVE The aim of this study was to evaluate the role of exhaled breath volatile biomarkers in identifying patients with suspected or confirmed COVID-19 infection, based on their underlying PCR status and clinical probability. METHODS A prospective, real-world, observational study was carried out, recruiting adult patients with suspected or confirmed COVID-19 infection. Breath samples were collected using a standard breath collection bag, modified with appropriate filters to comply with local infection control recommendations, and samples were analysed using gas chromatography-mass spectrometry (TD-GC-MS). RESULTS 81 patients were recruited between April 29 and July 10, 2020, of whom 52 out of 81 (64%) tested positive for COVID-19 by reverse transcription-polymerase chain reaction (RT-PCR). A regression analysis identified a set of seven exhaled breath features (benzaldehyde, 1-propanol, 3,6-methylundecane, camphene, beta-cubebene, iodobenzene and an unidentified compound) that separated PCR-positive patients with an area under the curve (AUC): 0.836, sensitivity: 68%, specificity: 85%. CONCLUSIONS GC-MS-detected exhaled breath biomarkers were able to identify PCR-positive COVID-19 patients. External replication of these compounds is warranted to validate these results.
Collapse
Affiliation(s)
- Wadah Ibrahim
- Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Leicester, UK
- These authors contributed equally
| | - Rebecca L. Cordell
- School of Chemistry, University of Leicester, Leicester, UK
- These authors contributed equally
| | | | - Matthew Richardson
- Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Leicester, UK
| | - Liesl Carr
- Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Leicester, UK
| | - Ananga Sundari Devi Dasi
- Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Leicester, UK
| | - Beverley Hargadon
- Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Leicester, UK
| | - Robert C. Free
- Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Leicester, UK
| | - Paul S. Monks
- School of Chemistry, University of Leicester, Leicester, UK
| | - Christopher E. Brightling
- Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Leicester, UK
| | - Neil J. Greening
- Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Leicester, UK
| | - Salman Siddiqui
- Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Leicester, UK
| |
Collapse
|
49
|
Dragonieri S, Quaranta VN, Carratù P, Ranieri T, Buonamico E, Carpagnano GE. Breathing Rhythm Variations during Wash-In Do Not Influence Exhaled Volatile Organic Compound Profile Analyzed by an Electronic Nose. Molecules 2021; 26:2695. [PMID: 34064506 PMCID: PMC8124182 DOI: 10.3390/molecules26092695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
E-noses are innovative tools used for exhaled volatile organic compound (VOC) analysis, which have shown their potential in several diseases. Before obtaining a full validation of these instruments in clinical settings, a number of methodological issues still have to be established. We aimed to assess whether variations in breathing rhythm during wash-in with VOC-filtered air before exhaled air collection reflect changes in the exhaled VOC profile when analyzed by an e-nose (Cyranose 320). We enrolled 20 normal subjects and randomly collected their exhaled breath at three different breathing rhythms during wash-in: (a) normal rhythm (respiratory rate (RR) between 12 and 18/min), (b) fast rhythm (RR > 25/min) and (c) slow rhythm (RR < 10/min). Exhaled breath was collected by a previously validated method (Dragonieri et al., J. Bras. Pneumol. 2016) and analyzed by the e-nose. Using principal component analysis (PCA), no significant variations in the exhaled VOC profile were shown among the three breathing rhythms. Subsequent linear discriminant analysis (LDA) confirmed the above findings, with a cross-validated accuracy of 45% (p = ns). We concluded that the exhaled VOC profile, analyzed by an e-nose, is not influenced by variations in breathing rhythm during wash-in.
Collapse
Affiliation(s)
- Silvano Dragonieri
- Respiratory Diseases, University of Bari, 70121 Bari, Italy; (T.R.); (E.B.); (G.E.C.)
| | | | - Pierluigi Carratù
- Internal Medicine “A. Murri”, University of Bari, 70121 Bari, Italy;
| | - Teresa Ranieri
- Respiratory Diseases, University of Bari, 70121 Bari, Italy; (T.R.); (E.B.); (G.E.C.)
| | - Enrico Buonamico
- Respiratory Diseases, University of Bari, 70121 Bari, Italy; (T.R.); (E.B.); (G.E.C.)
| | | |
Collapse
|