1
|
Bin Aslam H, Häsler B, Iqbal M, Yaqub T, Alarcon P. Financial impact of low pathogenic avian influenza virus subtype H9N2 on commercial broiler chicken and egg layer production systems in Pakistan. Prev Vet Med 2024; 233:106346. [PMID: 39340955 DOI: 10.1016/j.prevetmed.2024.106346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Low Pathogenic Avian Influenza (LPAI) subtype H9N2 is endemic in Pakistan and impacts poultry farming through disease related mortality, poor weight gain and reduced egg production. This study aims to estimate the farm-level financial impact of LPAI H9N2 infection on commercial broiler and layer production systems in Pakistan. A questionnaire based cross-sectional survey of 138 broiler farms and 136 layer farms in Pakistan was conducted in 2019. Primary data collected by cross-sectional survey along with expert opinion and published literature were used to parameterize five stochastic production and gross margin models for three broiler and two layer production systems: fully integrated production (FIP), partially integrated production (PIP) and independent farming production (IP) systems. Partial budget analysis were then carried out to estimate the financial impact of LPAI H9N2. Results indicate that in broiler production systems, starting with 35,000 day old chicks (DOC) per batch, the net cost of disease (million PKR/production cycle) was estimated at 4.10 (14,862 USD), 4.62 (16,747 USD) and 2.46 (8917 USD) for IP, PIP and FIP systems, respectively. The disease produced a negative gross margin (defined here as revenue minus replacement and variable costs) in IP (-53 PKR (-0.19 USD)/DOC bought) and PI (-25 PKR (-0.091 USD)/DOC bought) systems, while remained positive for FIP systems (87 PKR (0.32 USD)/DOC bought). For layer production systems, (mean flock size as 48,000 DOCs) the net cost (million PKR/production cycle) was 29.75 (107,095.21 USD) and 29.51 (106,223.45 USD) IP and PIP systems, respectively, and produced negative gross margin in both systems. The outcomes of the study highlight the vulnerability of independent and partially integrated production systems to the disease. These findings also offer a decision-making tool to the farmers and policy makers to evaluate avian influenza surveillance systems and control interventions in Pakistan.
Collapse
Affiliation(s)
- Hassaan Bin Aslam
- Veterinary Epidemiology, Economics and Public Health Group, World Organisation for Animal Health Collaborating Centre for Risk Analysis and Modelling Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), London, United Kingdom; Avian Influenza and Newcastle Disease Group, The Pirbright Institute, Woking, United Kingdom; Institute of Microbiology, University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Barbara Häsler
- Veterinary Epidemiology, Economics and Public Health Group, World Organisation for Animal Health Collaborating Centre for Risk Analysis and Modelling Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), London, United Kingdom
| | - Munir Iqbal
- Avian Influenza and Newcastle Disease Group, The Pirbright Institute, Woking, United Kingdom
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Pablo Alarcon
- Veterinary Epidemiology, Economics and Public Health Group, World Organisation for Animal Health Collaborating Centre for Risk Analysis and Modelling Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), London, United Kingdom.
| |
Collapse
|
2
|
Wernike K, Beer M. More than a decade of research on Schmallenberg virus-Knowns and unknowns. Adv Virus Res 2024; 120:77-98. [PMID: 39455169 DOI: 10.1016/bs.aivir.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Schmallenberg virus, an arbovirus of the Orthobunyavirus genus that primarily infects ruminants, emerged in 2011 near the Dutch-German border region and subsequently caused a large number of abortions and the births of severely malformed newborns in the European livestock population. Immediate intensive research led to the development of reliable diagnostic tests, the identification of competent Culicoides vector species, and the elucidation of the pathogenesis in infected vertebrate hosts. In addition, the structure of the major antigenic domain has been elucidated in great detail, leading to the development of effective marker vaccine candidates. The knowledge gained over the last decade on the biology and pathogenesis of SBV and the experience acquired in its control will be of great value in the future for the control of any similar emerging pathogen of veterinary or public health importance such as Shuni or Oropouche virus. However, some important knowledge gaps remain, for example, the factors contributing to the highly variable transmission rate from dam to fetus or the viral factors responsible for the vector competence of Culicoides midges are largely unknown. Thus, questions still remain for the next decade of research on SBV and related viruses.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Wada M, Compton C, Hickson R, Bingham P. Development of LIME-NZ: a generic tool for prompt estimation of economic impacts of disease for New Zealand livestock. N Z Vet J 2024; 72:79-89. [PMID: 38252956 DOI: 10.1080/00480169.2023.2294792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/03/2023] [Indexed: 01/24/2024]
Abstract
AIMS To develop a simple and robust generic tool to measure the impacts of livestock diseases on New Zealand dairy, beef and sheep farms using enterprise gross margin models. METHODS The most recent (2018-2020) livestock production benchmarking data was extracted from industry-led economic surveys. Gross margin models were built for each enterprise type, accounting for 11 dairy farm types and 16 farm types for beef and sheep. Disease parameters, including changes in mortality, reproduction performance, milk yield, price of animals and culling rate, as well as additional expenses for veterinary intervention, were applied to the infected compartment of the herd/flock using the assumed annual within-herd disease incidence. Farm-level disease impacts were estimated as the difference in annual profit between the baseline and infected farm. The baseline gross margin models were validated against the industry data. The disease impact models were validated using a recently published study on bovine viral diarrhoea (BVD). The impact assessment tool, LIME-NZ, was developed using the statistical software R and implemented in the web-based R package Shiny. The input parameters can be varied interactively to obtain a range of disease impacts for uncertain disease parameters. RESULTS The baseline gross margin models demonstrated reasonable accuracy with a mean percentage error of <14% when compared with the industry reports. The estimated annual impacts of BVD were comparable to those reported in the BVD study, NZ$38.5-140.4 thousand and $0.9-32.6 thousand per farm per year for dairy and beef enterprises, respectively. CONCLUSIONS LIME-NZ can be used to rapidly obtain the likely economic impacts of diseases that are endemic, recently introduced or at increased risk of introduction in the New Zealand context. This will aid communication and decision-making among government agencies and the livestock industry, including veterinarians and livestock producers, about the management of diseases, until refined information becomes available to improve decision-making.
Collapse
Affiliation(s)
- M Wada
- EpiCentre, Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - C Compton
- EpiCentre, Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - R Hickson
- Farmherd Innovation, Pahiatua, New Zealand
| | - P Bingham
- Diagnostic, Surveillance and Science Directorate, Operations Branch, Ministry for Primary Industries, Wallaceville, New Zealand
| |
Collapse
|
4
|
O’Connor TW, Hick PM, Finlaison DS, Kirkland PD, Toribio JAL. Revisiting the Importance of Orthobunyaviruses for Animal Health: A Scoping Review of Livestock Disease, Diagnostic Tests, and Surveillance Strategies for the Simbu Serogroup. Viruses 2024; 16:294. [PMID: 38400069 PMCID: PMC10892073 DOI: 10.3390/v16020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Orthobunyaviruses (order Bunyavirales, family Peribunyaviridae) in the Simbu serogroup have been responsible for widespread epidemics of congenital disease in ruminants. Australia has a national program to monitor arboviruses of veterinary importance. While monitoring for Akabane virus, a novel orthobunyavirus was detected. To inform the priority that should be given to this detection, a scoping review was undertaken to (1) characterise the associated disease presentations and establish which of the Simbu group viruses are of veterinary importance; (2) examine the diagnostic assays that have undergone development and validation for this group of viruses; and (3) describe the methods used to monitor the distribution of these viruses. Two search strategies identified 224 peer-reviewed publications for 33 viruses in the serogroup. Viruses in this group may cause severe animal health impacts, but only those phylogenetically arranged in clade B are associated with animal disease. Six viruses (Akabane, Schmallenberg, Aino, Shuni, Peaton, and Shamonda) were associated with congenital malformations, neurological signs, and reproductive disease. Diagnostic test interpretation is complicated by cross-reactivity, the timing of foetal immunocompetence, and sample type. Serological testing in surveys remains a mainstay of the methods used to monitor the distribution of SGVs. Given significant differences in survey designs, only broad mean seroprevalence estimates could be provided. Further research is required to determine the disease risk posed by novel orthobunyaviruses and how they could challenge current diagnostic and surveillance capabilities.
Collapse
Affiliation(s)
- Tiffany W. O’Connor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia;
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Paul M. Hick
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Deborah S. Finlaison
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Peter D. Kirkland
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Jenny-Ann L.M.L. Toribio
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia;
| |
Collapse
|
5
|
Whatford L, van Winden S, Häsler B. A systematic literature review on the economic impact of endemic disease in UK sheep and cattle using a One Health conceptualisation. Prev Vet Med 2022; 209:105756. [DOI: 10.1016/j.prevetmed.2022.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
|
6
|
Adeyemo P, Léger E, Hollenberg E, Diouf N, Sène M, Webster JP, Häsler B. Estimating the financial impact of livestock schistosomiasis on traditional subsistence and transhumance farmers keeping cattle, sheep and goats in northern Senegal. Parasit Vectors 2022; 15:101. [PMID: 35317827 PMCID: PMC8938966 DOI: 10.1186/s13071-021-05147-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Schistosomiasis is a disease that poses major threats to human and animal health, as well as the economy, especially in sub-Saharan Africa (SSA). Whilst many studies have evaluated the economic impact of schistosomiasis in humans, to date only one has been performed in livestock in SSA and none in Senegal. This study aimed to estimate the financial impact of livestock schistosomiasis in selected regions of Senegal. METHODS Stochastic partial budget models were developed for traditional ruminant farmers in 12 villages in northern Senegal. The models were parameterised using data from a cross-sectional survey, focus group discussions, scientific literature and available statistics. Two scenarios were defined: scenario 1 modelled a situation in which farmers tested and treated their livestock for schistosomiasis, whilst scenario 2 modelled a situation in which there were no tests or treatment. The model was run with 10,000 iterations for 1 year; results were expressed in West African CFA francs (XOF; 1 XOF was equivalent to 0.0014 GBP at the time of analysis). Sensitivity analyses were conducted to assess the impact of uncertain variables on the disease costs. RESULTS Farmers surveyed were aware of schistosomiasis in their ruminant livestock and reported hollowing around the eyes, diarrhoea and weight loss as the most common clinical signs in all species. For scenario 1, the median disease costs per year and head of cattle, sheep and goats were estimated at 13,408 XOF, 27,227 XOF and 27,694 XOF, respectively. For scenario 2, the disease costs per year and head of cattle, sheep and goats were estimated at 49,296 XOF, 70,072 XOF and 70,281 XOF, respectively. CONCLUSIONS Our findings suggest that the financial impact of livestock schistosomiasis on traditional subsistence and transhumance farmers is substantial. Consequently, treating livestock schistosomiasis has the potential to generate considerable benefits to farmers and their families. Given the dearth of data in this region, our study serves as a foundation for further in-depth studies to provide estimates of disease impact and as a baseline for future economic analyses. This will also enable One Health economic studies where the burden on both humans and animals is estimated and included in cross-sectoral cost-benefit and cost-effectiveness analyses of disease control strategies.
Collapse
Affiliation(s)
- Praise Adeyemo
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA UK
- Present Address: Dr Ameyo Stella Adadevoh (DRASA) Health Trust, Yaba, Lagos Nigeria
| | - Elsa Léger
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA UK
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| | - Elizabeth Hollenberg
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA UK
| | - Nicolas Diouf
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey, Senegal
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA UK
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| | - Barbara Häsler
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA UK
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
7
|
Foxi C, Satta G, Puggioni G, Ligios C. Biting Midges (Ceratopogonidae, Culicoides). ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:852-873. [DOI: 10.1016/b978-0-12-818731-9.00005-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Bayrou C, Lesenfants C, Paternostre J, Volpe R, Moula N, Coupeau D, Muylkens B, Desmecht D, Linden A. Schmallenberg virus, cyclical reemergence in the core region: A seroepidemiologic study in wild cervids, Belgium, 2012-2017. Transbound Emerg Dis 2021; 69:1625-1633. [PMID: 33949132 DOI: 10.1111/tbed.14136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/02/2021] [Accepted: 04/27/2021] [Indexed: 11/27/2022]
Abstract
Schmallenberg virus emerged in 2011 in Europe. The epicentre of primordial spreading was the region straddling Germany, the Netherlands and Belgium. One of the key questions is whether the newcomer would establish a lasting presence on the continent. The apparent seroprevalence in southern Belgium wild deer populations was followed for 6 years. Two years of intense circulation were revealed, 2012 and 2016, characterized by a peak seroprevalence in the two studied populations (Capreolus capreolus and Cervus elaphus). Between the peak years and after 2016, apparent seroprevalences declined rapidly among adults and became nil among juveniles. The general pattern of apparent seroprevalence evolution observed is consistent with a cyclic circulation of Schmallenberg virus, similar to what is observed for other Orthobunyaviruses in endemic areas. These data also suggest that wild cervids play no central role in the circulation dynamics of the virus.
Collapse
Affiliation(s)
- Calixte Bayrou
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Christophe Lesenfants
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Julien Paternostre
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Rosario Volpe
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nassim Moula
- Animal Productions, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Damien Coupeau
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Benoît Muylkens
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Daniel Desmecht
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Annick Linden
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
9
|
Hoste ACR, Ruiz T, Fernández-Pacheco P, Jiménez-Clavero MÁ, Djadjovski I, Moreno S, Brun A, Edwards TA, Barr JN, Rueda P, Sastre P. Development of a multiplex assay for antibody detection in serum against pathogens affecting ruminants. Transbound Emerg Dis 2020; 68:1229-1239. [PMID: 32767820 PMCID: PMC8246919 DOI: 10.1111/tbed.13776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 12/03/2022]
Abstract
Numerous infectious diseases impacting livestock impose an important economic burden and in some cases also represent a threat to humans and are classified as zoonoses. Some zoonotic diseases are transmitted by vectors and, due to complex environmental and socio‐economic factors, the distribution of many of these pathogens is changing, with increasing numbers being found in previously unaffected countries. Here, we developed a multiplex assay, based on a suspension microarray, able to detect specific antibodies to five important pathogens of livestock (three of them zoonotic) that are currently emerging in new geographical locations: Rift Valley fever virus (RVFV), Crimean‐Congo haemorrhagic fever virus (CCHFV), Schmallenberg virus (SBV), Bluetongue virus (BTV) and the bacteria complex Mycobacterium tuberculosis. Using the Luminex platform, polystyrene microspheres were coated with recombinant proteins from each of the five pathogens. The mix of microspheres was used for the simultaneous detection of antibodies against the five corresponding diseases affecting ruminants. The following panel of sera was included in the study: 50 sera from sheep experimentally infected with RVFV, 74 sera from calves and lambs vaccinated with SBV, 26 sera from cattle vaccinated with Mycobacterium bovis, 30 field sera from different species of ruminants infected with CCHFV and 88 calf sera infected with BTV. Finally, to determine its diagnostic specificity 220 field sera from Spanish farms free of the five diseases were assessed. All the sera were classified using commercial ELISAs specific for each disease, used in this study as the reference technique. The results showed the multiplex assay exhibited good performance characteristics with values of sensitivity ranging from 93% to 100% and of specificity ranging from 96% to 99% depending on the pathogen. This new tool allows the simultaneous detection of antibodies against five important pathogens, reducing the volume of sample needed and the time of analysis where these pathogens are usually tested individually.
Collapse
Affiliation(s)
- Alexis C R Hoste
- Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain.,School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Tamara Ruiz
- Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain
| | - Paloma Fernández-Pacheco
- Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - Igor Djadjovski
- Faculty of Veterinary Medicine, University Ss. Cyril & Methodius, Skopje, North Macedonia
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - Thomas A Edwards
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - John N Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Paloma Rueda
- Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain
| | - Patricia Sastre
- Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain
| |
Collapse
|
10
|
Collins ÁB, Doherty ML, Barrett DJ, Mee JF. Schmallenberg virus: a systematic international literature review (2011-2019) from an Irish perspective. Ir Vet J 2019; 72:9. [PMID: 31624588 PMCID: PMC6785879 DOI: 10.1186/s13620-019-0147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
In Autumn 2011, nonspecific clinical signs of pyrexia, diarrhoea, and drop in milk yield were observed in dairy cattle near the German town of Schmallenberg at the Dutch/German border. Targeted veterinary diagnostic investigations for classical endemic and emerging viruses could not identify a causal agent. Blood samples were collected from animals with clinical signs and subjected to metagenomic analysis; a novel orthobunyavirus was identified and named Schmallenberg virus (SBV). In late 2011/early 2012, an epidemic of abortions and congenital malformations in calves, lambs and goat kids, characterised by arthrogryposis and hydranencephaly were reported in continental Europe. Subsequently, SBV RNA was confirmed in both aborted and congenitally malformed foetuses and also in Culicoides species biting midges. It soon became evident that SBV was an arthropod-borne teratogenic virus affecting domestic ruminants. SBV rapidly achieved a pan-European distribution with most countries confirming SBV infection within a year or two of the initial emergence. The first Irish case of SBV was confirmed in the south of the country in late 2012 in a bovine foetus. Since SBV was first identified in 2011, a considerable body of scientific research has been conducted internationally describing this novel emerging virus. The aim of this systematic review is to provide a comprehensive synopsis of the most up-to-date scientific literature regarding the origin of SBV and the spread of the Schmallenberg epidemic, in addition to describing the species affected, clinical signs, pathogenesis, transmission, risk factors, impact, diagnostics, surveillance methods and control measures. This review also highlights current knowledge gaps in the scientific literature regarding SBV, most notably the requirement for further research to determine if, and to what extent, SBV circulation occurred in Europe and internationally during 2017 and 2018. Moreover, recommendations are also made regarding future arbovirus surveillance in Europe, specifically the establishment of a European-wide sentinel herd surveillance program, which incorporates bovine serology and Culicoides entomology and virology studies, at national and international level to monitor for the emergence and re-emergence of arboviruses such as SBV, bluetongue virus and other novel Culicoides-borne arboviruses.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.,2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael L Doherty
- 2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Department of Agriculture, Surveillance, Animal By-Products and TSE Division, Food and the Marine, Backweston, Celbridge, Co. Kildare Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland
| |
Collapse
|
11
|
Raboisson D, Trillat P, Cahuzac C. Failure of Passive Immune Transfer in Calves: A Meta-Analysis on the Consequences and Assessment of the Economic Impact. PLoS One 2016; 11:e0150452. [PMID: 26986832 PMCID: PMC4795751 DOI: 10.1371/journal.pone.0150452] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/14/2016] [Indexed: 12/23/2022] Open
Abstract
Low colostrum intake at birth results in the failure of passive transfer (FPT) due to the inadequate ingestion of colostral immunoglobulins (Ig). FPT is associated with an increased risk of mortality and decreased health and longevity. Despite the known management practices associated with low FPT, it remains an important issue in the field. Neither a quantitative analysis of FPT consequences nor an assessment of its total cost are available. To address this point, a meta-analysis on the adjusted associations between FPT and its outcomes was first performed. Then, the total costs of FPT in European systems were calculated using a stochastic method with adjusted values as the input parameters. The adjusted risks (and 95% confidence intervals) for mortality, bovine respiratory disease, diarrhoea and overall morbidity in the case of FPT were 2.12 (1.43–3.13), 1.75 (1.50–2.03), 1.51 (1.05–2.17) and 1.91 (1.63–2.24), respectively. The mean (and 95% prediction interval) total costs per calf with FPT were estimated to be €60 (€10–109) and €80 (€20–139) for dairy and beef, respectively. As a result of the double-step stochastic method, the proposed economic estimation constitutes the first estimate available for FPT. The results are presented in a way that facilitates their use in the field and, with limited effort, combines the cost of each contributor to increase the applicability of the economic assessment to the situations farm-advisors may face. The present economic estimates are also an important tool to evaluate the profitability of measures that aim to improve colostrum intake and FPT prevention.
Collapse
Affiliation(s)
- Didier Raboisson
- Université de Toulouse, Institut National Polytechnique (INP), Ecole Nationale Vétérinaire de Toulouse (ENVT), UMR 1225, Interaction Hôte Agent Pathogène (IHAP), F-31076 Toulouse, France
- INRA, UMR1225, IHAP, F-31076 Toulouse, France
- * E-mail:
| | - Pauline Trillat
- Université de Toulouse, Institut National Polytechnique (INP), Ecole Nationale Vétérinaire de Toulouse (ENVT), F-31076 Toulouse, France
| | - Clélia Cahuzac
- Université de Toulouse, Institut National Polytechnique (INP), Ecole Nationale Vétérinaire de Toulouse (ENVT), UMR 1225, Interaction Hôte Agent Pathogène (IHAP), F-31076 Toulouse, France
- INRA, UMR1225, IHAP, F-31076 Toulouse, France
| |
Collapse
|
12
|
Alarcon P, Häsler B, Raboisson D, Waret-Szkuta A, Corbière F, Rushton J. Application of integrated production and economic models to estimate the impact of Schmallenberg virus for various sheep production types in the UK and France. Vet Rec Open 2014; 1:e000036. [PMID: 26392876 PMCID: PMC4562446 DOI: 10.1136/vetreco-2014-000036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 11/08/2022] Open
Abstract
Objective The present study aimed to estimate and compare the economic impact of Schmallenberg virus (SBV) in different sheep production holdings using partial budget and gross margin analyses in combination with production models. Participants The sheep production types considered were lowland spring lambing, upland spring lambing and early lambing flocks in the UK, and grass lamb flocks of the Centre and West of France, extensive lambing flocks and dairy sheep flocks in France. Methodology Two disease scenarios with distinct input parameters associated with reproductive problems were considered: low and high impact. Sensitivity analyses were performed for the most uncertain input parameters, and the models were run with all of the lowest and highest values to estimate the range of disease impact. Results The estimated net SBV disease cost per year and ewe for the UK was £19.65–£20.85 for the high impact scenario and £6.40–£6.58 for the low impact scenario. No major differences were observed between the different production types. For France, the net SBV disease cost per year and ewe for the meat sheep holdings was £15.59–£17.20 for the high impact scenario and £4.75–£5.26 for the low impact scenario. For the dairy sheep, the costs per year and ewe were £29.81 for the high impact scenario and £10.34 for the low impact scenario. Conclusions The models represent a useful decision support tool for farmers and veterinarians who are facing decisions regarding disease control measures. They allow estimating disease impact on a farm accounting for differing production practices, which creates the necessary basis for cost effectiveness analysis of intervention strategies, such as vaccination.
Collapse
Affiliation(s)
- Pablo Alarcon
- Veterinary Epidemiology Economics and Public Health Group , Royal Veterinary College , London , UK
| | - Barbara Häsler
- Veterinary Epidemiology Economics and Public Health Group , Royal Veterinary College , London , UK ; Leverhulme Centre for Integrative Research on Agriculture and Health, Royal Veterinary College , London , UK
| | - Didier Raboisson
- UMR1225, Interaction Hôte Agent Pathogène (IHAP), INRA-Ecole Nationale Vétérinaire de Toulouse (ENVT) , Toulouse , France ; INRA, UMR 1225, IHAP, F-31076 Toulouse, France
| | - Agnes Waret-Szkuta
- UMR1225, Interaction Hôte Agent Pathogène (IHAP), INRA-Ecole Nationale Vétérinaire de Toulouse (ENVT) , Toulouse , France ; INRA, UMR 1225, IHAP, F-31076 Toulouse, France
| | - Fabien Corbière
- UMR1225, Interaction Hôte Agent Pathogène (IHAP), INRA-Ecole Nationale Vétérinaire de Toulouse (ENVT) , Toulouse , France ; INRA, UMR 1225, IHAP, F-31076 Toulouse, France
| | - Jonathan Rushton
- Veterinary Epidemiology Economics and Public Health Group , Royal Veterinary College , London , UK ; Leverhulme Centre for Integrative Research on Agriculture and Health, Royal Veterinary College , London , UK
| |
Collapse
|