1
|
Nagaoka M, Maeda T, Chatani M, Handa K, Yamakawa T, Kiyohara S, Negishi-Koga T, Kato Y, Takami M, Niida S, Lang SC, Kruger MC, Suzuki K. A Delphinidin-Enriched Maqui Berry Extract Improves Bone Metabolism and Protects against Bone Loss in Osteopenic Mouse Models. Antioxidants (Basel) 2019; 8:antiox8090386. [PMID: 31509995 PMCID: PMC6769591 DOI: 10.3390/antiox8090386] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/03/2023] Open
Abstract
In our previous investigation, delphinidin, one of the most abundant anthocyanins found in vegetables and berry fruits, had been shown to inhibit osteoclasts and prevent bone loss in mouse models of osteoporosis. In the present study, we investigated whether a delphinidin glycoside-enriched maqui berry extract (MBE, Delphinol®) exhibits beneficial effects on bone metabolism both in vitro and in vivo. MBE stimulated the osteoblastic differentiation of MC3T3-E1 cells, as indicated by enhanced mineralized nodule formation, and increased alkaline phosphatase activity, through the upregulation of bone morphogenetic protein 2 (Bmp2), runt-related transcription factor 2 (Runx2), osterix (Osx), osteocalcin (Ocn), and matrix extracellular phosphoglycoprotein (Mepe) mRNA expression. Immunostaining and immunoprecipitation assays demonstrated that MBE suppressed NF-κB transnucleation through acting as a superoxide anion/peroxynitrite scavenger in MC3T3-E1 cells. Simultaneously, MBE inhibited both osteoclastogenesis in primary bone marrow macrophages and pit formation by maturated osteoclasts on dentine slices. Microcomputed tomography (micro-CT) and bone histomorphometry analyses of femurs demonstrated that the daily ingestion of MBE significantly increased BV/TV (ratio of bone volume to tissue volume), Tb.Th (trabecular thickness), Tb.N (trabecular number), N.Nd/N.Tm (node to terminus ratio), OV/TV (ratio of osteoid volume to tissue volume), BFR/TV (bone formation rate per tissue volume), and significantly decreased Tb.Sp (trabecular separation), ES/BS (ratio of eroded surface to bone surface) and N.Oc/BS (number of osteoclast per unit of bone surface), compared to vehicle controls in osteopenic mouse models. These findings suggest that MBE can be a promising natural agent for the prevention of bone loss in osteopenic conditions by not only inhibiting bone resorption, but also stimulating bone formation.
Collapse
Affiliation(s)
- Masahiro Nagaoka
- Department of Pharmacology, School of Dentistry, Ohu University, Fukushima 963-8611, Japan.
| | - Toyonobu Maeda
- Department of Oral Function and Molecular Biology, School of Dentistry, Ohu University, Fukushima 963-8611, Japan.
| | - Masahiro Chatani
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo 142-8551, Japan.
| | - Kazuaki Handa
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo 142-8551, Japan.
| | - Tomoyuki Yamakawa
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo 142-8551, Japan.
| | - Shuichi Kiyohara
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo 142-8551, Japan.
| | - Takako Negishi-Koga
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo 142-8551, Japan.
| | - Yasumasa Kato
- Department of Oral Function and Molecular Biology, School of Dentistry, Ohu University, Fukushima 963-8611, Japan.
| | - Masamichi Takami
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo 142-8551, Japan.
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology (NCGG), Aichi 474-8511, Japan.
| | - Stefanie C Lang
- Anklam Extrakt GmbH, Marienbergstr. 92, 90411 Nuremberg, Germany.
| | - Marlena C Kruger
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand.
| | - Keiko Suzuki
- Department of Pharmacology, School of Dentistry, Ohu University, Fukushima 963-8611, Japan.
| |
Collapse
|
2
|
Petunidin, a B-ring 5'- O-Methylated Derivative of Delphinidin, Stimulates Osteoblastogenesis and Reduces sRANKL-Induced Bone Loss. Int J Mol Sci 2019; 20:ijms20112795. [PMID: 31181661 PMCID: PMC6600628 DOI: 10.3390/ijms20112795] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence suggest that oxidative stress is one of the key pathogenic mechanisms of osteoporosis. We aimed to elucidate the bone protective effects of petunidin, one of the most common anthocyanidins, considering its potent antioxidative activity. Petunidin (>5 μg/mL) significantly inhibited osteoclastogenesis and downregulated c-fos, Nfatc1, Mmp9, Ctsk, and Dc-stamp mRNA expression in RAW264.7 cells. Conversely, petunidin (>16 μg/mL) stimulated mineralized matrix formation and gene expression of Bmp2 and Ocn, whereas it suppressed Mmp13, Mmp2, and Mmp9 mRNA expression and proteolytic activities of MMP13 and MMP9 in MC3T3-E1 cells. Micro-CT and bone histomorphometry analyses of sRANKL-induced osteopenic C57BL/6J mice showed that daily oral administration of petunidin (7.5 mg/kg/day) increased bone volume to tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), the ratio of osteoid volume to tissue volume (OV/TV), osteoid thickness (O.Th), the ratio of osteoid surface to bone surface (OS/BS), the ratio of osteoblast surface to bone surface (Ob.S/BS), and the number of osteoblast per unit of bone surface (N.Ob/BS), and decreased trabecular separation (Tb.Sp), the ratio of eroded surface to bone surface (ES/BS), the ratio of osteoclast surface to bone surface (Oc.S/BS), and number of osteoclast per unit of bone surface (N.Oc/BS), compared to untreated mice. Furthermore, histological sections of the femurs showed that oral administration of petunidin to sRANKL-induced osteopenic mice increased the size of osteoblasts located along the bone surface and the volume of osteoid was consistent with the in vitro osteoblast differentiation and MMP inhibition. These results suggest that petunidin is a promising natural agent to improve sRANKL-induced osteopenia in mice through increased osteoid formation, reflecting accelerated osteoblastogenesis, concomitant with suppressed bone resorption.
Collapse
|
3
|
Ardura JA, Alonso V, Esbrit P, Friedman PA. Oxidation inhibits PTH receptor signaling and trafficking. Biochem Biophys Res Commun 2016; 482:1019-1024. [PMID: 27908723 DOI: 10.1016/j.bbrc.2016.11.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 02/07/2023]
Abstract
Reactive Oxygen Species (ROS) increase during aging, potentially affecting many tissues including brain, heart, and bone. ROS alter signaling pathways and constitute potential therapeutic targets to limit oxidative damaging effects in aging-associated diseases. Parathyroid hormone receptors (PTHR) are widely expressed and PTH is the only anabolic therapy for osteoporosis. The effects of oxidative stress on PTHR signaling and trafficking have not been elucidated. Here, we used Fluorescence Resonance Energy Transfer (FRET)-based cAMP, ERK, and calcium fluorescent biosensors to analyze the effects of ROS on PTHR signaling and trafficking by live-cell imaging. PTHR internalization and recycling were measured in HEK-293 cells stably transfected with HA-PTHR. PTH increased cAMP production, ERK phosphorylation, and elevated intracellular calcium. Pre-incubation with H2O2 reduced all PTH-dependent signaling pathways. These inhibitory effects were not a result of PTH oxidation since PTH incubated with H2O2 triggered similar responses. PTH promoted internalization and recycling of the PTHR. Both events were significantly reduced by H2O2 pre-incubation. These findings highlight the role of oxidation on PTHR signaling and trafficking, and suggest the relevance of ROS as a putative target in diseases associated with oxidative stress such as age-related osteoporosis.
Collapse
Affiliation(s)
- Juan A Ardura
- Instituto de Medicina Molecular Aplicada (IMMA)-Universidad San Pablo CEU, Madrid, Spain; Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, UAM and Red Temática de Investigación Cooperativa de Envejecimiento y Fragilidad (RETICEF)-Instituto de Salud Carlos III, Madrid, Spain; Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Verónica Alonso
- Instituto de Medicina Molecular Aplicada (IMMA)-Universidad San Pablo CEU, Madrid, Spain; Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pedro Esbrit
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, UAM and Red Temática de Investigación Cooperativa de Envejecimiento y Fragilidad (RETICEF)-Instituto de Salud Carlos III, Madrid, Spain
| | - Peter A Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Hunter RL, Agnew AM. Intraskeletal variation in human cortical osteocyte lacunar density: Implications for bone quality assessment. Bone Rep 2016; 5:252-261. [PMID: 28580394 PMCID: PMC5441015 DOI: 10.1016/j.bonr.2016.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 01/23/2023] Open
Abstract
Osteocytes and their lacunocanalicular network have been identified as the regulator of bone quality and function by exerting extensive influence over metabolic processes, mechanical adaptation, and mineral homeostasis. Recent research has shown that osteocyte apoptosis leads to a decrease in bone quality and increase in bone fragility mediated through its effects on remodeling. The purpose of this study is to investigate variation in cortical bone osteocyte lacunar density with respect to major factors including sex, age, and intracortical porosity to establish both regional and systemic trends. Samples from the midshaft femur, midshaft rib and distal one-third diaphysis of the radius were recovered from 30 modern cadaveric individuals (15 males and 15 females) ranging from 49 to 100 years old. Thick ground undecalcified histological (80 μm) cross-sections were made and imaged under bright field microscopy. Osteocyte lacunar density (Ot.Lc.N/B.Ar) and intracortical porosity (%Po.Ar) were quantified. No significant sex differences in Ot.Lc.N/B.Ar or %Po.Ar were found in any element. Linear regressions demonstrated a significant decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar) and increase in intracortical porosity (%Po.Ar) with age for the sex-pooled sample in the femur (R2 = 0.208, 0.297 respectively) and radius (R2 = 0.108, 0.545 respectively). Age was unable to significantly predict osteocyte lacunar density or intracortical porosity in the rib (R2 = 0.058, 0.114 respectively). Comparisons of regression coefficients demonstrated a systemic trend in the decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar) and increase in intracortical porosity (%Po.Ar) with age. In each element, intracortical porosity was significantly negatively correlated with lacunar density for which the radius demonstrated the strongest relationship (r = - 0.746). Using pore number (Po.N) as a proxy for available vascularity to support the osteocyte population, Po.N was able to predict 61.8% of variation in osteocyte lacunar number (Ot.Lc.N) in the rib. The femur and radius also demonstrated significant relationships between these variables (R2 = 0.560 and 0.397 respectively). The results from this study indicate that although the femur, radius and rib may be experiencing systemically influenced declines in osteocyte lacunar density, there may be differential effects at each anatomical site potentially due to age related changes in mechanical loading. With decreasing osteocyte lacunar density in each element, intracortical porosity increased with likely direct impacts on gross bone strength. This study provides a foundation upon which to build interpretations of osteocyte lacunar density values and their effect on differential fracture risk for aging individuals.
Collapse
Affiliation(s)
- Randee L. Hunter
- Skeletal Biology Research Laboratory, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
- Division of Radiologic Sciences and Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
- Corresponding author at: Skeletal Biology Research Laboratory, 2063 Graves Hall, 333 W. 10th Avenue, Columbus, OH 43210–2205, United States.Skeletal Biology Research Laboratory2063 Graves Hall, 333 W. 10th AvenueColumbusOH43210–2205United States
| | - Amanda M. Agnew
- Skeletal Biology Research Laboratory, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
- Department of Anthropology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Ding L, Liu Y. Borrowing nuclear DNA helicases to protect mitochondrial DNA. Int J Mol Sci 2015; 16:10870-87. [PMID: 25984607 PMCID: PMC4463680 DOI: 10.3390/ijms160510870] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 01/20/2023] Open
Abstract
In normal cells, mitochondria are the primary organelles that generate energy, which is critical for cellular metabolism. Mitochondrial dysfunction, caused by mitochondrial DNA (mtDNA) mutations or an abnormal mtDNA copy number, is linked to a range of human diseases, including Alzheimer's disease, premature aging and cancer. mtDNA resides in the mitochondrial lumen, and its duplication requires the mtDNA replicative helicase, Twinkle. In addition to Twinkle, many DNA helicases, which are encoded by the nuclear genome and are crucial for nuclear genome integrity, are transported into the mitochondrion to also function in mtDNA replication and repair. To date, these helicases include RecQ-like helicase 4 (RECQ4), petite integration frequency 1 (PIF1), DNA replication helicase/nuclease 2 (DNA2) and suppressor of var1 3-like protein 1 (SUV3). Although the nuclear functions of some of these DNA helicases have been extensively studied, the regulation of their mitochondrial transport and the mechanisms by which they contribute to mtDNA synthesis and maintenance remain largely unknown. In this review, we attempt to summarize recent research progress on the role of mammalian DNA helicases in mitochondrial genome maintenance and the effects on mitochondria-associated diseases.
Collapse
Affiliation(s)
- Lin Ding
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA.
| | - Yilun Liu
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA.
| |
Collapse
|
6
|
Beckmann R, Tohidnezhad M, Lichte P, Wruck C, Jahr H, Pape H, Pufe T. Aus alt mach neu. DER ORTHOPADE 2014; 43:298-305. [DOI: 10.1007/s00132-013-2160-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|