1
|
Arévalo-Granda V, Hickey-Darquea A, Prado-Vivar B, Zapata S, Duchicela J, van ‘t Hof P. Exploring the mycobiome and arbuscular mycorrhizal fungi associated with the rizosphere of the genus Inga in the pristine Ecuadorian Amazon. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1086194. [PMID: 37746118 PMCID: PMC10512398 DOI: 10.3389/ffunb.2023.1086194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/20/2023] [Indexed: 09/26/2023]
Abstract
This study explored the composition of the mycobiome in the rhizosphere of Inga seedlings in two different but neighboring forest ecosystems in the undisturbed tropical Amazon rainforest at the Tiputini Biodiversity Station in Ecuador. In terra firme plots, which were situated higher up and therefore typically outside of the influence of river floods, and in várzea plots, the lower part of the forest located near the riverbanks and therefore seasonally flooded, tree seedlings of the genus Inga were randomly collected and measured, and the rhizosphere soils surrounding the root systems was collected. Members of the Fabaceae family and the genus Inga were highly abundant in both forest ecosystems. Inga sp. seedlings collected in terra firme showed a lower shoot to root ratio compared to seedlings that were collected in várzea, suggesting that Inga seedlings which germinated in várzea soils could invest more resources in vegetative growth with shorter roots. Results of the physical-chemical properties of soil samples indicated higher proportions of N, Mo, and V in terra firme soils, whereas várzea soils present higher concentrations of all other macro- and micronutrients, which confirmed the nutrient deposition effect of seasonal flooding by the nearby river. ITS metabarcoding was used to explore the mycobiome associated with roots of the genus Inga. Bioinformatic analysis was performed using Qiime 2 to calculate the alpha and beta diversity, species taxonomy and the differential abundance of fungi and arbuscular mycorrhizal fungi. The fungal community represented 75% of the total ITS ASVs, and although present in all samples, the subphylum Glomeromycotina represented 1.42% of all ITS ASVs with annotations to 13 distinct families, including Glomeraceae (72,23%), Gigasporaceae (0,57%), Acaulosporaceae (0,49%). AMF spores of these three AMF families were morphologically identified by microscopy. Results of this study indicate that AMF surround the rhizosphere of Inga seedlings in relatively low proportions compared to other fungal groups but present in both terra firme and várzea Neotropical ecosystems.
Collapse
Affiliation(s)
- Valentina Arévalo-Granda
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Aileen Hickey-Darquea
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Belén Prado-Vivar
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Sonia Zapata
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Tiputini Biodiversity Station, Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Jéssica Duchicela
- Department of Life Sciences and Agriculture, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Pieter van ‘t Hof
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Tiputini Biodiversity Station, Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| |
Collapse
|
2
|
Arbuscular Mycorrhizal Fungi in the Colombian Amazon: A Historical Review. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Yu Z, Liang K, Wang X, Huang G, Lin M, Zhou Z, Chen Y. Alterations in Arbuscular Mycorrhizal Community Along a Chronosequence of Teak ( Tectona grandis) Plantations in Tropical Forests of China. Front Microbiol 2021; 12:737068. [PMID: 34899624 PMCID: PMC8660861 DOI: 10.3389/fmicb.2021.737068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi play a crucial role in promoting plant growth, enhancing plant stress resistance, and sustaining a healthy ecosystem. However, little is known about the mycorrhizal status of teak plantations. Here, we evaluated how the AM fungal communities of rhizosphere soils and roots respond to different stand ages of teak: 22, 35, 45, and 55-year-old from the adjacent native grassland (CK). A high-throughput sequencing method was used to compare the differences in soil and root AM fungal community structures. In combination with soil parameters, mechanisms driving the AM fungal community were revealed by redundancy analysis and the Mantel test. Additionally, spore density and colonization rates were analyzed. With increasing stand age, the AM fungal colonization rates and spore density increased linearly. Catalase activity and ammonium nitrogen content also increased, and soil organic carbon, total phosphorous, acid phosphatase activity, available potassium, and available phosphorus first increased and then decreased. Stand age significantly changed the structure of the AM fungal community but had no significant impact on the diversity of the AM fungal community. However, the diversity of the AM fungal community in soils was statistically higher than that in the roots. In total, nine and seven AM fungal genera were detected in the soil and root samples, respectively. The majority of sequences in soils and roots belonged to Glomus. Age-induced changes in soil properties could largely explain the alterations in the structure of the AM fungal community along a chronosequence, which included total potassium, carbon-nitrogen ratio, ammonium nitrogen, catalase, and acid phosphatase levels in soils and catalase, acid phosphatase, pH, and total potassium levels in roots. Soil nutrient availability and enzyme activity were the main driving factors regulating the shift in the AM fungal community structure along a chronosequence of the teak plantations.
Collapse
Affiliation(s)
- Zhi Yu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Kunnan Liang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Xianbang Wang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Guihua Huang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Mingping Lin
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zaizhi Zhou
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Yinglong Chen
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Weathering Intensity and Presence of Vegetation Are Key Controls on Soil Phosphorus Concentrations: Implications for Past and Future Terrestrial Ecosystems. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4040073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorus (P) is an essential limiting nutrient in marine and terrestrial ecosystems. Understanding the natural and anthropogenic influence on P concentration in soils is critical for predicting how its distribution in soils may shift as climate changes. While it is known that P is sourced from bedrock weathering, relationships between weathering, P, and other soil-forming factors have not been quantified at continental scales, limiting our ability to predict large-scale changes in P concentrations. Additionally, while we know that Fe oxide-associated P is an important P phase in terrestrial environments, the range in and controls on soil Fe concentrations and species (e.g., Fe in oxides, labile Fe) are poorly constrained. Here, we explore the relationships between soil P and Fe concentrations, soil order, climate, and vegetation in over 5000 soils, and Fe speciation in ca. 400 soils. Weathering intensity has a nuanced control on P concentrations in soils, with P concentrations peaking at intermediate weathering intensities (Chemical Index of Alteration, CIA~60). The presence of vegetation (but not plant functional types) affected soils’ ability to accumulate P. Contrary to expectations, P was not more strongly associated with Fe in oxides than other Fe phases. These results are useful both for predicting changes in potential P fluxes from soils to rivers under climate change and for reconstructing changes in terrestrial nutrient limitations in Earth’s past. In particular, soils’ tendency to accumulate more P with the presence of vegetation suggests that biogeochemical models invoking the evolution and spread of land plants as a driver for increased P fluxes in the geological record may need to be revisited.
Collapse
|
5
|
The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch Microbiol 2020; 202:1581-1596. [PMID: 32448964 DOI: 10.1007/s00203-020-01915-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 11/27/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) contribute predominantly to soil organic matter by creating a sink demand for plant C and distributing to below-ground hyphal biomass. The extra-radical hyphae along with glomalin-related soil protein significantly influence the soil carbon dynamics through their larger extent and turnover period need to discuss. The role of AMF is largely overlooked in terrestrial C cycling and climate change models despite their greater involvement in net primary productivity augmentation and further accumulation of this additional photosynthetic fixed C in the soil. However, this buffering mechanism against elevated CO2 condition to sequester extra C by AMF can be described only after considering their potential interaction with other microbes and associated mineral nutrients such as nitrogen cycling. In this article, we try to review the potential of AMF in C sequestration paving the way towards a better understanding of possible AMF mechanism by which C balance between biosphere and atmosphere can be moved forward in more positive direction.
Collapse
|
6
|
Paymaneh Z, Sarcheshmehpour M, Bukovská P, Jansa J. Could indigenous arbuscular mycorrhizal communities be used to improve tolerance of pistachio to salinity and/or drought? Symbiosis 2019. [DOI: 10.1007/s13199-019-00645-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Bennett JA, Klironomos J. Climate, but not trait, effects on plant-soil feedback depend on mycorrhizal type in temperate forests. Ecosphere 2018. [DOI: 10.1002/ecs2.2132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jonathan A. Bennett
- Department of Biology; University of British Columbia - Okanagan Campus; Kelowna British Columbia V1V 1V7 Canada
| | - John Klironomos
- Department of Biology; University of British Columbia - Okanagan Campus; Kelowna British Columbia V1V 1V7 Canada
| |
Collapse
|
8
|
Plant-mycorrhizal fungi associations along an urbanization gradient: implications for tree seedling survival. Urban Ecosyst 2016. [DOI: 10.1007/s11252-016-0630-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Walter J, Kreyling J, Singh BK, Jentsch A. Effects of extreme weather events and legume presence on mycorrhization of Plantago lanceolata and Holcus lanatus in the field. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:262-270. [PMID: 26284575 DOI: 10.1111/plb.12379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
Little is known about direct and indirect effects of extreme weather events on arbuscular mycorrhizal fungi (AMF) under field conditions. In a field experiment, we investigated the response of mycorrhization to drought and heavy rain in grassland communities. We quantified AMF biomass in soil, mycorrhization of roots of the grass Holcus lanatus and the forb Plantago lanceolata, as well as plant performance. Plants were grown in four-species communities with or without a legume. We hypothesised that drought increases and heavy rain decreases mycorrhization, and that higher mycorrhization will be linked to improved stress resistance and higher biomass production. Soil AMF biomass increased under both weather extremes. Heavy rain generally benefitted plants and increased arbuscules in P. lanceolata. Drought neither reduced plant performance nor root mycorrhization. Arbuscules increased in H. lanatus several weeks after drought, and in P. lanceolata several weeks after heavy rain spells. These long-lasting effects of weather events on mycorrhization highlight the indirect influence of climate on AMF via their host plant. Legume presence increased plant community biomass, but had only minor effects on mycorrhization. Arbuscule colonisation was negatively correlated with senescence during the dry summer. Mycorrhization and biomass production in P. lanceolata were positively related. However, increased mycorrhization was related to less biomass in the grass. AMF mycelium in soil might generally increase under extreme events, root colonisation, however, is host species specific. This might amplify community shifts in grassland under climate change by further increasing stress resistance of species that already benefit from changed precipitation.
Collapse
Affiliation(s)
- J Walter
- Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, Germany
- Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - J Kreyling
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, Greifswald University, Greifswald, Germany
| | - B K Singh
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, Australia
| | - A Jentsch
- Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
10
|
Wang F, Shi N, Jiang R, Zhang F, Feng G. In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1689-701. [PMID: 26802172 PMCID: PMC4783358 DOI: 10.1093/jxb/erv561] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study used a [(13)C]DNA stable isotope probing (SIP) technique to elucidate a direct pathway for the translocation of (13)C-labeled photoassimilate from maize plants to extraradical mycelium-associated phosphate-solubilizing bacteria (PSB) that mediate the mineralization and turnover of soil organic phosphorus (P) in the hyphosphere. Inoculation with PSB alone did not provide any benefit to maize plants but utilized the added phytate-P to their own advantage, while inoculation with Rhizophagus irregularis alone significantly promoted shoot biomass and P content compared with the control. However, compared with both sole inoculation treatments, combined inoculation with PSB and R. irregularis in the hyphosphere enhanced organic P mineralization and increased microbial biomass P in the soil. There was no extra benefit to plant P uptake but the hyphal growth of R. irregularis was reduced, suggesting that PSB benefited from the arbuscular mycorrhizal (AM) fungal mycelium and competed for soil P with the fungus. The combination of T-RFLP (terminal restriction fragment length polymorphism) analysis with a clone library revealed that one of the bacteria that actively assimilated carbon derived from pulse-labeled maize plants was Pseudomonas alcaligenes (Pseudomonadaceae) that was initially inoculated into the hyphosphere soil. These results provide the first in situ demonstration of the pathway underlying the carbon flux from plants to the AM mycelium-associated PSB, and the PSB assimilated the photosynthates exuded by the fungus and promoted mineralization and turnover of organic P in the soil.
Collapse
Affiliation(s)
- Fei Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ning Shi
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Rongfeng Jiang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Gu Feng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
11
|
Sikes BA, Maherali H, Klironomos JN. Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune succession. MYCORRHIZA 2014; 24:219-226. [PMID: 24141906 DOI: 10.1007/s00572-013-0531-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.
Collapse
Affiliation(s)
- Benjamin A Sikes
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada,
| | | | | |
Collapse
|
12
|
Jansa J, Erb A, Oberholzer HR, Smilauer P, Egli S. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 2014; 23:2118-35. [PMID: 24611988 DOI: 10.1111/mec.12706] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/29/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi, forming mutualistic symbiosis with a majority of terrestrial plant species. They are abundant in nearly all soils, less diverse than soil prokaryotes and other intensively studied soil organisms and thus are promising candidates for universal indicators of land management legacies and soil quality degradation. However, insufficient data on how the composition of indigenous AMF varies along soil and landscape gradients have hampered the definition of baselines and effect thresholds to date. Here, indigenous AMF communities in 154 agricultural soils collected across Switzerland were profiled by quantitative real-time PCR with taxon-specific markers for six widespread AMF species. To identify the key determinants of AMF community composition, the profiles were related to soil properties, land management and site geography. Our results indicate a number of well-supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles. Site geography, especially the altitude and large geographical distance, strongly affected AMF communities. Unexpected was the apparent lack of a strong land management effect on the AMF communities as compared to the other predictors, which could be due to the rarity of highly intensive and unsustainable land management in Swiss agriculture. In spite of the extensive coverage of large geographical and soil gradients, we did not identify any taxon suitable as an indicator of land use among the six taxa we studied.
Collapse
Affiliation(s)
- Jan Jansa
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Praha 4 - Krč, Czech Republic; Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315, Lindau (ZH), Switzerland
| | | | | | | | | |
Collapse
|
13
|
Diversity of arbuscular mycorrhizal fungal spore communities and its relations to plants under increased temperature and precipitation in a natural grassland. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5961-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Twanabasu BR, Stevens KJ, Venables BJ. The effects of triclosan on spore germination and hyphal growth of the arbuscular mycorrhizal fungus Glomus intraradices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 454-455:51-60. [PMID: 23538136 DOI: 10.1016/j.scitotenv.2013.02.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 06/02/2023]
Abstract
The effect of triclosan (5-chloro-2-[2,4-dichlorophenoxy]phenol; TCS), on spore germination, hyphal growth, and hyphal branching of the arbuscular mycorrhizal (AM) fungus, Glomus intraradices spores was evaluated at exposure concentrations of 0.4 and 4.0 μg/L in a static renewal exposure system. To determine if potential effects were mycotoxic or a consequence of impaired signaling between a host plant and the fungal symbiont, spores were incubated with and without the addition of a root exudate. Exposed spores were harvested at days 7, 14, and 21. AM spore germination, hyphal growth, and hyphal branching were significantly lower in both TCS concentrations compared to controls in non-root exudate treatments suggesting direct mycotoxic effects of TCS on AM development. Greater hyphal growth and hyphal branching in controls and 0.4μg/L TCS treatments with root exudate compared to non-root exudate treatments demonstrated growth stimulation by signaling chemicals present in the root exudate. This stimulatory effect was absent in the 4.0 μg/L TCS treatments indicating a direct effect on plant signaling compounds or plant signal response.
Collapse
Affiliation(s)
- Bishnu R Twanabasu
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| | | | | |
Collapse
|
15
|
|
16
|
The effect of experimental warming on the root-associated fungal community of Salix arctica. ISME JOURNAL 2007; 2:105-14. [DOI: 10.1038/ismej.2007.89] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Jansa J, Wiemken A, Frossard E. The effects of agricultural practices on arbuscular mycorrhizal fungi. ACTA ACUST UNITED AC 2006. [DOI: 10.1144/gsl.sp.2006.266.01.08] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractArbuscular mycorrhizal fungi (AMF) form symbiotic associations with the majority of land plants, including many important agricultural crops. These fungi facilitate plant nutrient uptake, promote soil aggregation and use a significant portion of reduced carbon from the plants. AMF functional traits differ considerably among and within species, meaning that functional properties of a mycorrhizal community depend on its composition. Here we review studies exploring the effects of agricultural practices such as tillage, crop rotation, fertilization, pesticide application, irrigation and grazing on AMF communities. Although it is difficult to generalize the results of studies performed under different soil and climatic conditions, some universal patterns emerge. For example, soil tillage reduces the abundance of Scutellospora spp.; phosphorus fertilization lowers the extent of AMF root colonization; and diversification of crops results in more diverse AMF communities. We now need to design simple and reliable field tests for quantifying the effects of AMF communities on crop growth, yields and sustainability of the agro-ecosystems.
Collapse
Affiliation(s)
- Jan Jansa
- ETH Zurich, Institute of Plant SciencesEschikon 33, CH-8315 Lindau (ZH), Switzerland (e-mail: )
| | - Andres Wiemken
- University of Basel, Institute of BotanyHebelstrasse 1, CH-4056 Basel, Switzerland
| | - Emmanuel Frossard
- ETH Zurich, Institute of Plant SciencesEschikon 33, CH-8315 Lindau (ZH), Switzerland (e-mail: )
| |
Collapse
|
18
|
Staddon PL. Mycorrhizal fungi and environmental change: the need for a mycocentric approach. THE NEW PHYTOLOGIST 2005; 167:635-7. [PMID: 16101902 DOI: 10.1111/j.1469-8137.2005.01521.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Philip L Staddon
- School of Biology, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|