1
|
Huang HL, Suchenko A, Grandinetti G, Balasubramanian MK, Chinthalapudi K, Heissler SM. Cryo-EM structures of cardiac muscle α-actin mutants M305L and A331P give insights into the structural mechanisms of hypertrophic cardiomyopathy. Eur J Cell Biol 2024; 103:151460. [PMID: 39393252 PMCID: PMC11611453 DOI: 10.1016/j.ejcb.2024.151460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024] Open
Abstract
Cardiac muscle α-actin is a key protein of the thin filament in the muscle sarcomere that, together with myosin thick filaments, produce force and contraction important for normal heart function. Missense mutations in cardiac muscle α-actin can cause hypertrophic cardiomyopathy, a complex disorder of the heart characterized by hypercontractility at the molecular scale that leads to diverse clinical phenotypes. While the clinical aspects of hypertrophic cardiomyopathy have been extensively studied, the molecular mechanisms of missense mutations in cardiac muscle α-actin that cause the disease remain largely elusive. Here we used cryo-electron microscopy to reveal the structures of hypertrophic cardiomyopathy-associated actin mutations M305L and A331P in the filamentous state. We show that the mutations have subtle impacts on the overall architecture of the actin filament with mutation-specific changes in the nucleotide binding cleft active site, interprotomer interfaces, and local changes around the mutation site. This suggests that structural changes induced by M305L and A331P have implications for the positioning of the thin filament protein tropomyosin and the interaction with myosin motors. Overall, this study supports a structural model whereby altered interactions between thick and thin filament proteins contribute to disease mechanisms in hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Hsiang-Ling Huang
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Andrejus Suchenko
- Centre for Mechanochemical Cell Biology and Warwick Medical School, Division of Biomedical Sciences, Coventry, United Kingdom
| | - Giovanna Grandinetti
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA; Center for Electron Microscopy and Analysis, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology and Warwick Medical School, Division of Biomedical Sciences, Coventry, United Kingdom
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Gencheva D, Angelova P, Genova K, Atemin S, Sleptsova M, Todorov T, Nikolov F, Ruseva D, Mitev V, Todorova A. A Cautionary Tale of Hypertrophic Cardiomyopathy-From "Benign" Left Ventricular Hypertrophy to Stroke, Atrial Fibrillation, and Molecular Genetic Diagnostics: A Case Report and Review of Literature. Int J Mol Sci 2024; 25:9385. [PMID: 39273332 PMCID: PMC11395475 DOI: 10.3390/ijms25179385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
This case report concerns a 48-year-old man with a history of ischemic stroke at the age of 41 who reported cardiac hypertrophy, registered in his twenties when explained by increased physical activity. Family history was positive for a mother with permanent atrial fibrillation from her mid-thirties. At the age of 44, he had a first episode of persistent atrial fibrillation, accompanied by left atrial thrombosis while on a direct oral anticoagulant. He presented at our clinic at the age of 45 with another episode of persistent atrial fibrillation and decompensated heart failure. Echocardiography revealed a dilated left atrium, reduced left ventricular ejection fraction, and an asymmetric left ventricular hypertrophy. Cardiac magnetic resonance was positive for a cardiomyopathy with diffuse fibrosis, while slow-flow phenomenon was present on coronary angiography. Genetic testing by whole-exome sequencing revealed three variants in the patient, c.309C > A, p.His103Gln in the ACTC1 gene, c.116T > G, p.Leu39Ter in the PLN gene, and c.5827C > T, p.His1943Tyr in the SCN5A gene, the first two associated with hypertrophic cardiomyopathy and the latter possibly with familial atrial fibrillation. This case illustrates the need for advanced diagnostics in unexplained left ventricular hypertrophy, as hypertrophic cardiomyopathy is often overlooked, leading to potentially debilitating health consequences.
Collapse
Affiliation(s)
- Dolina Gencheva
- First Department of Internal Diseases, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Cardiology, University Multi-Profile Hospital for Active Treatment "Sveti Georgi", 4002 Plovdiv, Bulgaria
| | - Petya Angelova
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Kameliya Genova
- Radiology Department, University Multi-Profile Hospital for Active Treatment and Emergency Medicine "N. I. Pirogov", 1606 Sofia, Bulgaria
| | - Slavena Atemin
- Genetic Medico-Diagnostic Laboratory "Genica", 1612 Sofia, Bulgaria
| | - Mila Sleptsova
- Genetic Medico-Diagnostic Laboratory "Genica", 1612 Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory "Genica", 1612 Sofia, Bulgaria
| | - Fedya Nikolov
- First Department of Internal Diseases, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Cardiology, University Multi-Profile Hospital for Active Treatment "Sveti Georgi", 4002 Plovdiv, Bulgaria
| | - Donka Ruseva
- Clinic of Cardiology, Hospital of Ministry of Transport, 4004 Plovdiv, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
3
|
Keyt LK, Duran JM, Bui QM, Chen C, Miyamoto MI, Silva Enciso J, Tardiff JC, Adler ED. Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med 2022; 9:972301. [PMID: 36158814 PMCID: PMC9489950 DOI: 10.3389/fcvm.2022.972301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
All muscle contraction occurs due to the cyclical interaction between sarcomeric thin and thick filament proteins within the myocyte. The thin filament consists of the proteins actin, tropomyosin, Troponin C, Troponin I, and Troponin T. Mutations in these proteins can result in various forms of cardiomyopathy, including hypertrophic, restrictive, and dilated phenotypes and account for as many as 30% of all cases of inherited cardiomyopathy. There is significant evidence that thin filament mutations contribute to dysregulation of Ca2+ within the sarcomere and may have a distinct pathomechanism of disease from cardiomyopathy associated with thick filament mutations. A number of distinct clinical findings appear to be correlated with thin-filament mutations: greater degrees of restrictive cardiomyopathy and relatively less left ventricular (LV) hypertrophy and LV outflow tract obstruction than that seen with thick filament mutations, increased morbidity associated with heart failure, increased arrhythmia burden and potentially higher mortality. Most therapies that improve outcomes in heart failure blunt the neurohormonal pathways involved in cardiac remodeling, while most therapies for hypertrophic cardiomyopathy involve use of negative inotropes to reduce LV hypertrophy or septal reduction therapies to reduce LV outflow tract obstruction. None of these therapies directly address the underlying sarcomeric dysfunction associated with thin-filament mutations. With mounting evidence that thin filament cardiomyopathies occur through a distinct mechanism, there is need for therapies targeting the unique, underlying mechanisms tailored for each patient depending on a given mutation.
Collapse
Affiliation(s)
- Lucas K. Keyt
- Department of Internal Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jason M. Duran
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Quan M. Bui
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Chao Chen
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | | | - Jorge Silva Enciso
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Jil C. Tardiff
- Department of Medicine and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Eric D. Adler
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
4
|
Viswanathan MC, Schmidt W, Franz P, Rynkiewicz MJ, Newhard CS, Madan A, Lehman W, Swank DM, Preller M, Cammarato A. A role for actin flexibility in thin filament-mediated contractile regulation and myopathy. Nat Commun 2020; 11:2417. [PMID: 32415060 PMCID: PMC7229152 DOI: 10.1038/s41467-020-15922-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Striated muscle contraction is regulated by the translocation of troponin-tropomyosin strands over the thin filament surface. Relaxation relies partly on highly-favorable, conformation-dependent electrostatic contacts between actin and tropomyosin, which position tropomyosin such that it impedes actomyosin associations. Impaired relaxation and hypercontractile properties are hallmarks of various muscle disorders. The α-cardiac actin M305L hypertrophic cardiomyopathy-causing mutation lies near residues that help confine tropomyosin to an inhibitory position along thin filaments. Here, we investigate M305L actin in vivo, in vitro, and in silico to resolve emergent pathological properties and disease mechanisms. Our data suggest the mutation reduces actin flexibility and distorts the actin-tropomyosin electrostatic energy landscape that, in muscle, result in aberrant contractile inhibition and excessive force. Thus, actin flexibility may be required to establish and maintain interfacial contacts with tropomyosin as well as facilitate its movement over distinct actin surface features and is, therefore, likely necessary for proper regulation of contraction. The α-cardiac actin M305L hypertrophic cardiomyopathy-causing mutation is located near residues that help confine tropomyosin to an inhibitory position along thin filaments. Here the authors assessed M305L actin in vivo, in vitro, and in silico to characterize emergent pathological properties and define the mechanistic basis of disease.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - William Schmidt
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street St, Boston, MA, 02118, USA
| | - Christopher S Newhard
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
| | - Aditi Madan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street St, Boston, MA, 02118, USA
| | - Douglas M Swank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA. .,Department of Physiology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Parker F, Baboolal TG, Peckham M. Actin Mutations and Their Role in Disease. Int J Mol Sci 2020; 21:ijms21093371. [PMID: 32397632 PMCID: PMC7247010 DOI: 10.3390/ijms21093371] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Actin is a widely expressed protein found in almost all eukaryotic cells. In humans, there are six different genes, which encode specific actin isoforms. Disease-causing mutations have been described for each of these, most of which are missense. Analysis of the position of the resulting mutated residues in the protein reveals mutational hotspots. Many of these occur in regions important for actin polymerization. We briefly discuss the challenges in characterizing the effects of these actin mutations, with a focus on cardiac actin mutations.
Collapse
|
6
|
Viswanathan MC, Schmidt W, Rynkiewicz MJ, Agarwal K, Gao J, Katz J, Lehman W, Cammarato A. Distortion of the Actin A-Triad Results in Contractile Disinhibition and Cardiomyopathy. Cell Rep 2018; 20:2612-2625. [PMID: 28903042 PMCID: PMC5902318 DOI: 10.1016/j.celrep.2017.08.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
Striated muscle contraction is regulated by the movement of tropomyosin over the thin filament surface, which blocks or exposes myosin binding sites on actin. Findings suggest that electrostatic contacts, particularly those between K326, K328, and R147 on actin and tropomyosin, establish an energetically favorable F-actin-tropomyosin configuration, with tropomyosin positioned in a location that impedes actomyosin associations and promotes relaxation. Here, we provide data that directly support a vital role for these actin residues, termed the A-triad, in tropomyosin positioning in intact functioning muscle. By examining the effects of an A295S α-cardiac actin hypertrophic cardiomyopathy-causing mutation, over a range of increasingly complex in silico, in vitro, and in vivo Drosophila muscle models, we propose that subtle A-triad-tropomyosin perturbation can destabilize thin filament regulation, which leads to hypercontractility and triggers disease. Our efforts increase understanding of basic thin filament biology and help unravel the mechanistic basis of a complex cardiac disorder.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Karuna Agarwal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jian Gao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Despond EA, Dawson JF. Classifying Cardiac Actin Mutations Associated With Hypertrophic Cardiomyopathy. Front Physiol 2018; 9:405. [PMID: 29719515 PMCID: PMC5913282 DOI: 10.3389/fphys.2018.00405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/04/2018] [Indexed: 11/13/2022] Open
Abstract
Mutations in the cardiac actin gene (ACTC1) are associated with the development of hypertrophic cardiomyopathy (HCM). To date, 12 different ACTC1 mutations have been discovered in patients with HCM. Given the high degree of sequence conservation of actin proteins and the range of protein–protein interactions actin participates in, mutations in cardiac actin leading to HCM are particularly interesting. Here, we suggest the classification of ACTC1 mutations based on the location of the resulting amino acid change in actin into three main groups: (1) those affecting only the binding site of the myosin molecular motor, termed M-class mutations, (2) those affecting only the binding site of the tropomyosin (Tm) regulatory protein, designated T-class mutations, and (3) those affecting both the myosin- and Tm-binding sites, called MT-class mutations. To understand the precise pathogenesis of cardiac actin mutations and develop treatments specific to the molecular cause of disease, we need to integrate rapidly growing structural information with studies of regulated actomyosin systems.
Collapse
Affiliation(s)
- Evan A Despond
- Department of Molecular and Cellular Biology, Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - John F Dawson
- Department of Molecular and Cellular Biology, Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Wang L, Bai F, Zhang Q, Song W, Messer A, Kawai M. Development of apical hypertrophic cardiomyopathy with age in a transgenic mouse model carrying the cardiac actin E99K mutation. J Muscle Res Cell Motil 2018; 38:421-435. [PMID: 29582353 DOI: 10.1007/s10974-018-9492-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
In both humans and mice, the Glu-99-Lys (E99K) mutation in the cardiac actin gene (ACTC) results in little understood apical hypertrophic cardiomyopathy (AHCM). To determine how cross-bridge kinetics change with AHCM development, we applied sinusoidal length perturbations to skinned papillary muscle fibres from 2- and 5-month old E99K transgenic (Tg) and non-transgenic (NTg) mice, and studied tension and its transients. These age groups were chosen because our preliminary studies indicated that AHCM develops with age. Fibres from 5-month old E99K mice showed significant decreases in tension, stiffness, the rate of the medium-speed exponential process and its magnitude compared to non-transgenic control. The nucleotide association constants increased with age, and they were significantly larger in E99K compared to NTg. However, there were no large differences in the rates of the cross-bridge detachment step, the rates of the force generation step, or the phosphate association constant. Our result on force/cross-bridge demonstrates that the decreased active tension of E99K fibres was caused by a decreased amount of force generated per each cross-bridge. The effects were generally less or insignificant at 2 months. A pCa-tension study showed increased Ca2+-sensitivity (pCa50) with age in both the E99K and NTg sample groups, and pCa50 was significantly larger (but only for 0.05-0.06 pCa units) in E99K than in NTg groups. A significant decrease in cooperativity (nH) was observed only in 5-month old E99K mice. We conclude that the AHCM-causing ACTC E99K mutation is associated with progressive alterations in biomechanical parameters, with changes smaller at 2 months but larger at 5 months, correlating with the development of AHCM.
Collapse
Affiliation(s)
- Li Wang
- School of Nursing, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Fan Bai
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Qing Zhang
- School of Nursing, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Weihua Song
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
9
|
Liu H, Henein M, Anillo M, Dawson JF. Cardiac actin changes in the actomyosin interface have different effects on myosin duty ratio. Biochem Cell Biol 2017; 96:26-31. [PMID: 28972856 DOI: 10.1139/bcb-2017-0136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disease (CD) that commonly causes an increased size of cardiomyocytes in the left ventricle. The proteins myosin and actin interact in the myocardium to produce contraction through the actomyosin ATPase cycle. The duty ratio (r) of myosin is the proportion of the actomyosin ATPase cycle that myosin is bound to actin and does work. A common hypothesis is that HCM mutations increase contraction in cardiac sarcomeres; however, the available data are not clear on this connection. Based on previous work with human α-cardiac actin (ACTC), we hypothesize that HCM-linked ACTC variants with alterations near the myosin binding site have an increased r, producing more force. Myosin duty ratios using human ACTC variant proteins were calculated with myosin ATPase activity and in-vitro motility data. We found no consistent changes in the duty ratio of the ACTC variants, suggesting that other factors are involved in the development of HCM when ACTC variants are present.
Collapse
Affiliation(s)
- Haidun Liu
- Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mary Henein
- Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Maria Anillo
- Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John F Dawson
- Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|