1
|
Kwon CH, Safaie ES, Torres JA, Jang YD. Effects of Pigs' Weaning Weight on Growth Performance and Blood Immunological, Antioxidant, and Gut Permeability Parameters in Early Nursery Period. Animals (Basel) 2025; 15:1119. [PMID: 40281954 PMCID: PMC12024217 DOI: 10.3390/ani15081119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
This study was conducted to investigate the effect of pigs' weaning weight (WW) on their growth performance and blood immunological, antioxidant, and gut permeability parameters in the early nursery period. At weaning, a total of 48 pigs, weaned at 20.7 ± 0.74 d of age, were allotted to two WW categories-HWW, with a WW over 5.5 kg (average 6.79 ± 0.53 kg), and LWW, with a WW of less than 5.5 kg (average 4.43 ± 0.56 kg)-for a 14 d postweaning period. The WW did not affect the average daily gain (ADG) in d 0-7 postweaning or the plasma malondialdehyde levels over the entire period. HWW pigs had a higher body weight and ADG than LWW pigs (p < 0.05) in the overall period, with greater plasma immunoglobulin G (p < 0.05) and A (p = 0.06, tendency) levels at d 7 postweaning and superoxide dismutase activity at d 14 postweaning (p = 0.05, tendency), with positive correlations with the WW (p < 0.05). HWW pigs had lower plasma diamine oxidase (p < 0.05) and d-lactate (p = 0.06, tendency) levels at d 14 postweaning, with a negative correlation with the WW (p < 0.05). In conclusion, although there was no effect of the WW on growth rate in the first week postweaning and oxidative stress in the early nursery period, HWW pigs exhibited greater growth performance, immunoglobulin levels, and antioxidant capacity but lower gut permeability than LWW pigs in the early nursery period.
Collapse
Affiliation(s)
| | | | | | - Young Dal Jang
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Lee J, González-Vega JC, Htoo JK, Nyachoti CM. Effects of dietary crude protein content and resistant starch supplementation on growth performance, intestinal histomorphology and microbial metabolites in weaned pigs. Arch Anim Nutr 2024; 78:192-207. [PMID: 39047153 DOI: 10.1080/1745039x.2024.2376093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
A 4-week study was conducted to evaluate the effects of dietary crude protein (CP) content and resistant starch (RS) supplementation on growth performance, intestinal histomorphology and microbial metabolites of weaned pigs. A total of 96 pigs (7.06 ± 0.45 kg body weight) were assigned to 1 of 4 diets in a randomised complete block design involving a 2 (CP levels) × 2 (without or with RS) factorial arrangement to give 8 replicate pens and 3 pigs per pen. Body weight and feed disappearance were recorded weekly, and the faecal consistency score was determined every morning. Blood was sampled on days 1, 14 and 28 from one pig per pen, and the same pig was euthanised on day 28 to collect ileal tissue and ileal and colon digesta. Data were analysed using the MIXED procedure of SAS. The average daily gain and gain:feed ratio were lower (p < 0.05) in pigs fed low crude protein (LCP) diets compared to those fed high CP (HCP) diets during week 3 and overall period. The analysed Lys, Met+Cys and Thr in feed were lower than calculated values, particularly in LCP diets, which may have affected performance. Pigs fed the LCP diets had longer (p < 0.05) ileal villi and higher villus height to crypt depth ratios than those fed the HCP diets, and RS supplementation increased (p < 0.05) ileal villus height. Interactions (p < 0.05) between dietary CP content and RS inclusion were observed for short-chain fatty acid concentration in the ileum and colon in phase 2. There was no difference in propionic acid (ileum) or butyric acid (colon) concentrations among pigs fed HCP diets, however, the butyric acid concentration increased in pigs fed the LCP diet when supplemented with RS. Reducing dietary CP lowered (p < 0.05) faecal score, plasma urea nitrogen and digesta ammonia content. Overall, feeding LCP diets reduced growth performance but improved gut morphology in weaned pigs. Feeding the LCP diet with RS supplementation modulated concentrations of ileal propionic acid and colonic butyric acid in weaned pigs.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | | - John Kyaw Htoo
- Nutrition & Care, Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | | |
Collapse
|
3
|
Gomaa W, Saleem A, McGeough E, Ominski K, Chen L, Yang W. Effect of red osier dogwood extract on in vitro gas production, dry matter digestibility, and fermentation characteristics of forage-based diet or grain-based diet. Heliyon 2024; 10:e27991. [PMID: 38524609 PMCID: PMC10957426 DOI: 10.1016/j.heliyon.2024.e27991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2023] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
This in vitro batch culture study investigated the effects of red osier dogwood (ROD) extract supplementation on gas production (GP), dry matter disappearance (DMD), and fermentation characteristics in high forage (HF) and high grain (HG) diets with varying media pH level. The experiment was a factorial arrangement of treatments in a completely randomized design with 2 media pH (5.8 and 6.5) × 4 dose rates of ROD extract (0, 1, 3, and 5% of DM substrate). An additional treatment of monensin was added as a positive control for each pH level. The HF substrate consisted of 400 and 600 g/kg DM barley-based concentrate and barley silage, respectively, while the HG substrate contained 100 and 900 g/kg DM barley silage and barley-based concentrate, respectively. Treatments were incubated for 24 h with GP, DMD and fermentation parameters determined. No interaction was detected between the media pH level and ROD extract dose rate on GP, DMD and most of the fermentation parameters. The GP, DMD, and total volatile fatty acid (VFA) concentration were greater (P = 0.01) with media pH of 6.5 in both HF and HG diets. The GP were not affected by increasing ROD dose rate, except that GP linearly decreased in the HF (P = 0.04) and HG (P = 0.01) diets at 24 h; the DMD tended to linearly decrease at pH 6.5 (P = 0.06) for both HF and HG diets and at pH 5.8 (P = 0.02) for the HG diet. Adding ROD extract to the HF and HG diets linearly (P = 0.01) increased the acetate molar proportion at high or low media pH and consequently, the acetate to propionate (A:P) ratio linearly (P ≤ 0.04) increased. Supplementation of ROD extract to the HF diet linearly (P = 0.04) decreased the molar proportion of propionate at pH 6.5 (interaction between pH and ROD extract; P = 0.05), but had no effect on propionate proportion when added to the HG diet. Moreover, the proportion of branched-chain fatty acids linearly (P = 0.03) decreased with ROD extract supplementation at low pH (interaction, P < 0.05) for HF diet and linearly decreased (P = 0.05) at pH 6.5 for HG diet (interaction, P < 0.05). The NH3-N concentration was not affected by ROD supplementation in the HF diet but it linearly (P = 0.01) decreased with increasing dose rate in the HG diet. Methane concentration tended to linearly (P = 0.06) increase with ROD extract supplementation at high pH for HF diet and linearly increased at pH 5.8 (P = 0.06) and pH 6.5 (P = 0.02) for HG diet. These results indicate that the decreased DMD and increased A:P ratio observed with addition of ROD extract may be beneficial to HG-fed cattle to reduce the risk of rumen acidosis without negatively impacting fiber digestion.
Collapse
Affiliation(s)
- W.M.S. Gomaa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
- Department of Animal Nutrition and Clinical Nutrition, Assiut University, Assiut, Egypt
| | - A.M. Saleem
- Department of Animal and Poultry Production, South Valley University, Qena, 83523, Egypt
| | - E.J. McGeough
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - K. Ominski
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - L.Y. Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - W.Z. Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
4
|
Lerch F, Yosi F, Vötterl JC, Koger S, Ehmig J, Sharma S, Verhovsek D, Metzler-Zebeli BU. An insight into the temporal dynamics in the gut microbiome, metabolite signaling, immune response, and barrier function in suckling and weaned piglets under production conditions. Front Vet Sci 2023; 10:1184277. [PMID: 37720467 PMCID: PMC10500839 DOI: 10.3389/fvets.2023.1184277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
Little information is available on age- and creep-feeding-related microbial and immune development in neonatal piglets. Therefore, we explored age- and gut-site-specific alterations in the microbiome, metabolites, histo-morphology, and expression of genes for microbial signaling, as well as immune and barrier function in suckling and newly weaned piglets that were receiving sow milk only or were additionally offered creep feed from day of life (DoL) 10. The experiment was conducted in two replicate batches. Creep feed intake was estimated at the litter level. Piglets were weaned on day 28 of life. Gastric and cecal digesta and jejunal and cecal tissue were collected on DoL 7, 14, 21, 28, 31, and 35 for microbial and metabolite composition, histomorphology, and gene expression. In total, results for 10 piglets (n = 5/sex) per dietary group (sow milk only versus additional creep feed) were obtained for each DoL. The creep feed intake was low at the beginning and only increased in the fourth week of life. Piglets that were fed creep feed had less lactate and acetate in gastric digesta on DoL 28 compared to piglets fed sow milk only (p < 0.05). Age mainly influenced the gastric and cecal bacteriome and cecal mycobiome composition during the suckling phase, whereas the effect of creep feeding was small. Weaning largely altered the microbial communities. For instance, it reduced gastric Lactobacillaceae and cecal Bacteroidaceae abundances and lowered lactate and short-chain fatty acid concentrations on DoL 31 (p < 0.05). Jejunal and cecal expression of genes related to microbial and metabolite signaling, and innate immunity showed age-related patterns that were highest on DoL 7 and declined until DoL 35 (p < 0.05). Weaning impaired barrier function and enhanced antimicrobial secretion by lowering the expression of tight junction proteins and stimulating goblet cell recruitment in the jejunum and cecum (p < 0.05). Results indicated that age-dependent alterations, programmed genetically and by the continuously changing gut microbiome, had a strong impact on the expression of genes for gut barrier function, integrity, innate immunity, and SCFA signaling, whereas creep feeding had little influence on the microbial and host response dynamics at the investigated gut sites.
Collapse
Affiliation(s)
- Frederike Lerch
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Fitra Yosi
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, Palembang, South Sumatra, Indonesia
| | - Julia C. Vötterl
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simone Koger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Juliane Ehmig
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Doris Verhovsek
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara U. Metzler-Zebeli
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
5
|
Erinle TJ, Boulianne M, Adewole DI. Red osier dogwood extract versus Trimethoprim-sulfadiazine (Part 1). Effects on the growth performance, blood parameters, gut histomorphometry, and Salmonella excretion of broiler chickens orally challenged with Salmonella Enteritidis. Poult Sci 2023; 102:102723. [PMID: 37406598 PMCID: PMC10404697 DOI: 10.1016/j.psj.2023.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 07/07/2023] Open
Abstract
The poultry industry has not been spared from the prevalent incidence of diseases caused by invasive pathogens, especially Salmonella. Due to the pressing need to identify a suitable antibiotic alternative for use in poultry production, this study investigated the efficacy of red osier dogwood (ROD) extract on the growth, blood parameters, gut morphology, and Salmonella excretion in broiler chickens orally challenged with Salmonella Enteritidis (SE). A 4 × 2 factorial experiment was conducted based on 2 main factors, namely dietary treatments, and SE challenge. A total of 404, one-day-old male Ross broiler chicks were randomly assigned to 4 dietary treatments; 1) Negative control (NC), 2) NC + 0.075 ppm of Trimethoprim-sulfadiazine (TMP/SDZ)/kg of diet, 3) NC + 0.3% ROD extract, and 4) NC + 0.5% ROD extract. The absence of SE in the fecal samples obtained from chick delivery boxes was confirmed on d 0. On d 1, half of the birds were orally gavaged with 0.5 mL of phosphate-buffered saline each (noninfected group) and the remaining with 0.5 mL of 3.1 × 105 CFU/mL SE (infected group) in all treatment groups. Dietary treatments were randomly assigned to 8 replicate cages at 6 birds/cage. On 1-, 5-, 12-, and 18-day postinfection (DPI), cloacal fecal samples were collected on the 6 birds/cage to assess SE excretion. Average weight gain (AWG), average feed intake (AFI), feed conversion ratio (FCR), and mortality were determined weekly. On d 21, 10 chickens/treatment were euthanized to perform hematology, gut histomorphometry, serum immunoglobulins G and M (IgG and IgM), and superoxide dismutase measurements. Both ROD extract levels did not affect (P > 0.05) growth performance; however, the SE-infected birds showed increased (P < 0.05) AFI and FCR throughout the experimental period. Regardless of the SE-infection, both ROD extract levels improved (P < 0.05) duodenal villus height: crypt depth compared to other treatments. 0.5% ROD extract improved (P < 0.05) ileal villus width (VW) of noninfected birds and ileal crypt depth of infected birds, but it decreased (P < 0.05) the ileal VW of infected birds, compared to other treatments. The SE-infected birds showed lower (P < 0.05) lymphocytes (L) but increased (P < 0.05) heterophils (H), H:L, and monocytes (MON). Both ROD extract levels did not affect (P > 0.05) white blood cell differential, while dietary 0.3% ROD extract increased (P < 0.05) MON of the birds, regardless of infection model. Regardless of infection model, both TMP/SDZ and 0.5% ROD extract reduced the concentration of IgM in the serum, compared to the control and 0.3% ROD (P = 0.006). Conclusively, both ROD extract levels improved duodenal histomorphology and body defense against SE infection in broiler chickens; however, the 0.3% ROD extract was better.
Collapse
Affiliation(s)
- Taiwo J Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Martine Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Deborah I Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
6
|
Erinle TJ, Boulianne M, Miar Y, Scales R, Adewole D. Red osier dogwood and its use in animal nutrition: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:64-77. [PMID: 37009073 PMCID: PMC10060110 DOI: 10.1016/j.aninu.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
As the human population increases globally, the food animal industry has not been spared from the monumental demand for edible animal products, particularly meat. This has necessitated the simultaneous expansion of the productivity of the animal sector to meet the ever-growing human needs. Although antibiotics have been used in food animal production with commendable positive impacts on their growth performance, their sole contributive factor to the increasing incidence of antimicrobial resistance has ushered the strict restrictions placed on their use in the animal sector. This has handed a setback to both animals and farmers; thus, the intense push for a more sustainable antibiotic alternative for use in animal production. The use of plants with concentrated phytogenic compounds has gained much interest due to their beneficial bioactivities, including antioxidant and selective antimicrobial. While the reported beneficial activities of phytogenic additives on animals vary due to their varying total polyphenol concentrations (TPC), red osier dogwood (ROD) plant materials boast of high TPC with excellent antioxidant prowess and growth improvement capacities compared to some plant extracts commonly used in research. However, its adoption in research and commercial scale is still low. Thus, the present review aims to provide concise information on the dietary potential of ROD plant materials in animal feeding.
Collapse
Affiliation(s)
- Taiwo Joseph Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| | - Martine Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe QC, J2S 2M2, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| | - Robert Scales
- Red Dog Enterprises Ltd., Swan River MB, R0L 1Z0, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| |
Collapse
|
7
|
Lerch F, Vötterl JC, Schwartz-Zimmermann HE, Sassu EL, Schwarz L, Renzhammer R, Bünger M, Sharma S, Koger S, Sener-Aydemir A, Quijada NM, Selberherr E, Kummer S, Berthiller F, U. Metzler-Zebeli B. Exposure to plant-oriented microbiome altered jejunal and colonic innate immune response and barrier function more strongly in suckling than in weaned piglets. J Anim Sci 2022; 100:skac310. [PMID: 36165740 PMCID: PMC9677959 DOI: 10.1093/jas/skac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Weaning often leaves the piglet vulnerable to gut dysfunction. Little is known about the acute response of a gut mucosa primed by a milk-oriented microbiome before weaning to a plant-oriented microbiome (POM) after weaning. We evaluated the epithelial structure, secretory response and permeability in the small and large intestines of piglets receiving a milk-based (i.e., preweaning) or plant-based diet (i.e., postweaning) to POM inocula using intestinal loop perfusion assays (ILPA). The POM were prepared from jejunal and colonic digesta of four 7 week-old weaned (day 28 of life) piglets, having gut-site specific microbial and metabolite composition. Two consecutive ILPA were performed in 16 piglets pre- (days 24 to 27) and 16 piglets postweaning (days 38 to 41) in two replicate batches. Two jejunal and colonic loops per piglet were perfused with Krebs-Henseleit buffer (control) or the respective POM. The outflow fluid was analyzed for antimicrobial secretions. Jejunal and colonic loop tissue were collected after each ILPA for histomorphology and electrophysiology using Ussing chambers. ANOVA was performed using the MIXED procedure in SAS. The POM stimulated the secretory response by increasing mucin in the jejunal and colonic outflow by 99.7% and 54.1%, respectively, and jejunal IgA by 19.2%, whereas colonic lysozyme decreased 25.6% compared to the control (P < 0.05). Fittingly, the POM raised the number of goblet cells by 96.7% in jejunal and 56.9% in colonic loops compared to control loops (P < 0.05). The POM further flattened jejunal villi by 18.3% and reduced crypt depth in jejunal and colonic loops by 53.8% and 9.0% compared to the control (P < 0.05); observations typically made postweaning and indicative for mucosal recognition of 'foreign' compounds. The POM altered the jejunal and colonic net ion flux as indicated by 22.7% and 59.2% greater short-circuit current compared to control loops, respectively; the effect being stronger postweaning (P < 0.05). Colonic barrier function improved with age (P < 0.05), whereas POM perfusion compromised the mucosal barrier as suggested by 17.7% and 54.1% greater GT and mucosal-to-serosal flux of fluorescein-isothiocyanate dextran, respectively, compared to the control (P < 0.05). In conclusion, results demonstrated that the preweaning gut epithelium acutely responds to novel compounds in postweaning digesta by upregulating the first line of defense (i.e., mucin and lysozyme secretion) and impairment of the structural integrity.
Collapse
Affiliation(s)
- Frederike Lerch
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Julia C Vötterl
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Lukas Schwarz
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Rene Renzhammer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Moritz Bünger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Simone Koger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Narciso M Quijada
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Technopark 1, 3430 Tulln an der Donau, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Stefan Kummer
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Barbara U. Metzler-Zebeli
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
8
|
Erinle TJ, MacIsaac J, Yang C, Adewole DI. Effect of red osier dogwood extract on growth performance, blood biochemical parameters, and gut functionality of broiler chickens challenged or unchallenged intraperitoneally with Salmonella Enteritidis lipopolysaccharide. Poult Sci 2022; 101:101861. [PMID: 35544959 PMCID: PMC9118149 DOI: 10.1016/j.psj.2022.101861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023] Open
Abstract
As we advance in the search for antibiotic-alternatives, harnessing plant materials with high total polyphenol concentration (TPC) would be quintessential. Given the high TPC in red osier dogwood (ROD) extract, the current study aimed to determine its efficacy on the growth performance, intestinal health, blood biochemistry, and antioxidant capacity of broiler chickens. A 21-day 4x2 factorial feeding trial was conducted based on two main factors namely, dietary treatments and Salmonella Enteritidis Lipopolysaccharides SE-LPS) challenge. A total of 384 one-day-old mixed-sex Cobb-500 broiler chicks were randomly allotted to four dietary treatments - Negative control (NC), NC + 0.05% bacitracin methylene disalicylate (BMD), NC + 0.3%ROD, and NC+0.5% ROD. Each treatment was assigned to eight replicates with six birds/replicate. On d 13 and 20, half of the birds were intraperitoneally injected with 1mL phosphate-buffered-saline /kg BW of birds (Unchallenged-group) and the remaining half with 1mg SE-LPS /kg BW of birds (Challenged-group). Average weight gain (AWG), average feed intake (AFI), feed conversion ratio (FCR), and mortality were determined weekly. On d 21, ten chickens/treatment were euthanized for measuring blood biochemical parameters, immune organ weights, caecal SCFA, and caeca microbiota. The SE-LPS decreased (P < 0.05) AWG and FCR on d 14 and 21, respectively. On d 14, 21, and overall basis, both ROD extract levels marginally improved (P < 0.05) the AWG of unchallenged birds compared to other treatments in the unchallenged-group. Challenged and unchallenged birds fed ROD extract had deeper (P < 0.05) crypt depth (CD) and higher villus height:CD, respectively, in the ileum. Globulin (GLB) and albumin:GLB were increased and reduced (P < 0.05), respectively, among birds fed 0.3%ROD compared to other treatments. There was no treatment effect on caeca SCFA, relative weight of immune organs, and serum antioxidants. Birds fed ROD extract had a higher (P < 0.05) relative abundance of caecal Lactobacillus and Streptococcus genera compared to the antibiotic treatment. Conclusively, incorporating 0.3% and 0.5%ROD extract into broiler chickens' nutrition improved growth performance and ileal morphology, and modified caecal microbiota of broiler chickens, regardless of the intraperitoneal SE-LPS challenge.
Collapse
Affiliation(s)
- Taiwo J Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS B2N 5E3, Canada
| | - Janice MacIsaac
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS B2N 5E3, Canada
| | - Chengbo Yang
- Department of Animal Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| | - Deborah I Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS B2N 5E3, Canada.
| |
Collapse
|