1
|
Bobkova MR. Cellular proteins as potential targets for antiretroviral therapy. Vopr Virusol 2023; 68:488-504. [PMID: 38156565 DOI: 10.36233/0507-4088-207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 12/30/2023]
Abstract
The review article conducts an in-depth analysis of information gleaned from a comprehensive literature search across Scopus, Web of Science, and MedLine databases. The focal point of this search revolves around the identification and exploration of the mechanisms orchestrated by host cell factors in the replication cycle of the human immunodeficiency virus (HIV-1, Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus-1). The article delves into two primary categories of proteins, namely HIV dependence factors (such as CypA, LEDGF, TSG101) and restriction factors (including SERINС5, TRIM5α, APOBEC3G), providing illustrative examples. The current understanding of the functioning mechanisms of these proteins is elucidated, and an evaluation is presented on the potential development of drugs for treating HIV infection. These drugs aim to either inhibit or stimulate the activity of host factors, offering insights into promising avenues for future research and therapeutic advancements.
Collapse
Affiliation(s)
- M R Bobkova
- I. Mechnikov Research Institute for Vaccines and Sera
| |
Collapse
|
2
|
Complex Relationships between HIV-1 Integrase and Its Cellular Partners. Int J Mol Sci 2022; 23:ijms232012341. [PMID: 36293197 PMCID: PMC9603942 DOI: 10.3390/ijms232012341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
RNA viruses, in pursuit of genome miniaturization, tend to employ cellular proteins to facilitate their replication. HIV-1, one of the most well-studied retroviruses, is not an exception. There is numerous evidence that the exploitation of cellular machinery relies on nucleic acid-protein and protein-protein interactions. Apart from Vpr, Vif, and Nef proteins that are known to regulate cellular functioning via interaction with cell components, another viral protein, integrase, appears to be crucial for proper virus-cell dialog at different stages of the viral life cycle. The goal of this review is to summarize and systematize existing data on known cellular partners of HIV-1 integrase and their role in the HIV-1 life cycle.
Collapse
|
3
|
Song Y, Zhang H, Wang Y, Guo J, Tang S, Wang L, Peng K, Dong CS. Importin KPNA2 confers HIV-1 pre-integration complex nuclear import by interacting with the capsid protein. Antiviral Res 2022; 200:105289. [PMID: 35301060 DOI: 10.1016/j.antiviral.2022.105289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
For human immunodeficiency virus 1 (HIV-1) to infect non-dividing cells, pre-integration complex (PIC) must be transported into the nucleus within the replication cycle. We previously reported that the karyopherin β1 (KPNB1)-nucleoporin Pom121 pathway, related to the downstream process of PIC nuclear import, mediates efficient HIV-1 PIC nuclear import. Further, our earlier RNA transcriptome sequencing revealed that karyopherin α2 (KPNA2) was among the differentially expressed importin family members during monocyte to macrophage differentiation. Although PIC transport into the nucleus in HIV-1 has been widely studied, much remains to be understood about it. In this study, we confirmed our previous RNA sequencing results and found that HIV-1 replication was significantly lower in 293T cells with siRNA-mediated KPNA2 knockdown and higher in KPNA2-upregulated cells. Quantitative PCR indicated that viral replication was impaired during cDNA nuclear import. The N-terminal of the capsid protein p24 interacted with KPNA2, and KPNB1 participated in KPNA2-mediated PIC nuclear import. Disruption of the capsid-KPNA2 binding by overexpression of full-length p24 or p24 N-terminal impaired the PIC nuclear import. These results indicate that KPNA2 is an important upstream adaptor of the KPNB1-Pom121 axis, thereby mediating HIV-1 PIC nuclear transportation. KPNA2 is thus a potential target for HIV-1 antiviral treatment.
Collapse
Affiliation(s)
- Yanhui Song
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, China.
| | - Hongguang Zhang
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yinmiao Wang
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, China
| | - Jin Guo
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Shengjie Tang
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Lu Wang
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | - Chun-Sheng Dong
- The Institutes of Biology and Medical Sciences, Soochow University, China.
| |
Collapse
|
4
|
De Jesús-González LA, Palacios-Rápalo S, Reyes-Ruiz JM, Osuna-Ramos JF, Cordero-Rivera CD, Farfan-Morales CN, Gutiérrez-Escolano AL, del Ángel RM. The Nuclear Pore Complex Is a Key Target of Viral Proteases to Promote Viral Replication. Viruses 2021; 13:v13040706. [PMID: 33921849 PMCID: PMC8073804 DOI: 10.3390/v13040706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Various viruses alter nuclear pore complex (NPC) integrity to access the nuclear content favoring their replication. Alteration of the nuclear pore complex has been observed not only in viruses that replicate in the nucleus but also in viruses with a cytoplasmic replicative cycle. In this last case, the alteration of the NPC can reduce the transport of transcription factors involved in the immune response or mRNA maturation, or inhibit the transport of mRNA from the nucleus to the cytoplasm, favoring the translation of viral mRNAs or allowing access to nuclear factors necessary for viral replication. In most cases, the alteration of the NPC is mediated by viral proteins, being the viral proteases, one of the most critical groups of viral proteins that regulate these nucleus–cytoplasmic transport changes. This review focuses on the description and discussion of the role of viral proteases in the modification of nucleus–cytoplasmic transport in viruses with cytoplasmic replicative cycles and its repercussions in viral replication.
Collapse
|
5
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
6
|
Imaging Viral Infection by Fluorescence Microscopy: Focus on HIV-1 Early Stage. Viruses 2021; 13:v13020213. [PMID: 33573241 PMCID: PMC7911428 DOI: 10.3390/v13020213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
During the last two decades, progresses in bioimaging and the development of various strategies to fluorescently label the viral components opened a wide range of possibilities to visualize the early phase of Human Immunodeficiency Virus 1 (HIV-1) life cycle directly in infected cells. After fusion of the viral envelope with the cell membrane, the viral core is released into the cytoplasm and the viral RNA (vRNA) is retro-transcribed into DNA by the reverse transcriptase. During this process, the RNA-based viral complex transforms into a pre-integration complex (PIC), composed of the viral genomic DNA (vDNA) coated with viral and host cellular proteins. The protective capsid shell disassembles during a process called uncoating. The viral genome is transported into the cell nucleus and integrates into the host cell chromatin. Unlike biochemical approaches that provide global data about the whole population of viral particles, imaging techniques enable following individual viruses on a single particle level. In this context, quantitative microscopy has brought original data shedding light on the dynamics of the viral entry into the host cell, the cytoplasmic transport, the nuclear import, and the selection of the integration site. In parallel, multi-color imaging studies have elucidated the mechanism of action of host cell factors implicated in HIV-1 viral cycle progression. In this review, we describe the labeling strategies used for HIV-1 fluorescence imaging and report on the main advancements that imaging studies have brought in the understanding of the infection mechanisms from the viral entry into the host cell until the provirus integration step.
Collapse
|
7
|
Xie L, Chen L, Zhong C, Yu T, Ju Z, Wang M, Xiong H, Zeng Y, Wang J, Hu H, Hou W, Feng Y. MxB impedes the NUP358-mediated HIV-1 pre-integration complex nuclear import and viral replication cooperatively with CPSF6. Retrovirology 2020; 17:16. [PMID: 32600399 PMCID: PMC7322711 DOI: 10.1186/s12977-020-00524-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The human myxovirus resistance 2 (Mx2/MxB) protein was originally found to regulate cytoplasmic-nuclear transport but was recently reported to restrict HIV-1 replication by binding to HIV-1 capsid (CA), preventing uncoating, the nuclear import of pre-integration complex (PIC) and viral DNA integration. This work explores the mechanisms of MxB-mediated HIV-1 inhibition. RESULTS We demonstrated that MxB represses NUP358-mediated PIC nuclear import and HIV-1 replication. Moreover, MxB's effects on PIC nuclear import and HIV-1 replication depend critically on cofactor cleavage and polyadenylation specificity factor subunit 6 (CPSF6). MxB binds nucleoporin NUP358, blocks NUP358-CA interaction, thereby impeding the nuclear import of HIV-1 PIC with CPSF6 binding to PIC. More intriguingly, CPSF6's role in nuclear import depends on MxB, being a facilitator of HIV-1 nuclear import on its own, but becoming an inhibitor when MxB is present. CONCLUSIONS Our work establishes that MxB impedes the NUP358-mediated HIV-1 nuclear import and viral replication cooperatively with CPSF6.
Collapse
Affiliation(s)
- Linlin Xie
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lang Chen
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Chaojie Zhong
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ting Yu
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhao Ju
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Meirong Wang
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Hairong Xiong
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yan Zeng
- Department of Zoology, College of Life Sciences, Nanjing Agriculture University, Nanjing, Jiangsu, People's Republic of China
| | - Jianhua Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Haitao Hu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Wei Hou
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China.
| | - Yong Feng
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Shukla E, Chauhan R. Host-HIV-1 Interactome: A Quest for Novel Therapeutic Intervention. Cells 2019; 8:cells8101155. [PMID: 31569640 PMCID: PMC6830350 DOI: 10.3390/cells8101155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
The complex nature and structure of the human immunodeficiency virus has rendered the cure for HIV infections elusive. The advances in antiretroviral treatment regimes and the development of highly advanced anti-retroviral therapy, which primarily targets the HIV enzymes, have dramatically changed the face of the HIV epidemic worldwide. Despite this remarkable progress, patients treated with these drugs often witness inadequate efficacy, compound toxicity and non-HIV complications. Considering the limited inventory of druggable HIV proteins and their susceptibility to develop drug resistance, recent attempts are focussed on targeting HIV-host interactomes that are essential for viral reproduction. Noticeably, unlike other viruses, HIV subverts the host nuclear pore complex to enter into and exit through the nucleus. Emerging evidence suggests a crucial role of interactions between HIV-1 proteins and host nucleoporins that underlie the import of the pre-integration complex into the nucleus and export of viral RNAs into the cytoplasm during viral replication. Nevertheless, the interaction of HIV-1 with nucleoporins has been poorly described and the role of nucleoporins during nucleocytoplasmic transport of HIV-1 still remains unclear. In this review, we highlight the advances and challenges in developing a more effective antiviral arsenal by exploring critical host-HIV interactions with a special focus on nuclear pore complex (NPC) and nucleoporins.
Collapse
Affiliation(s)
- Ekta Shukla
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| | - Radha Chauhan
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| |
Collapse
|
9
|
Barckmann B, El-Barouk M, Pélisson A, Mugat B, Li B, Franckhauser C, Fiston Lavier AS, Mirouze M, Fablet M, Chambeyron S. The somatic piRNA pathway controls germline transposition over generations. Nucleic Acids Res 2019; 46:9524-9536. [PMID: 30312469 PMCID: PMC6182186 DOI: 10.1093/nar/gky761] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/22/2018] [Indexed: 11/14/2022] Open
Abstract
Transposable elements (TEs) are parasitic DNA sequences that threaten genome integrity by replicative transposition in host gonads. The Piwi-interacting RNAs (piRNAs) pathway is assumed to maintain Drosophila genome homeostasis by downregulating transcriptional and post-transcriptional TE expression in the ovary. However, the bursts of transposition that are expected to follow transposome derepression after piRNA pathway impairment have not yet been reported. Here, we show, at a genome-wide level, that piRNA loss in the ovarian somatic cells boosts several families of the endogenous retroviral subclass of TEs, at various steps of their replication cycle, from somatic transcription to germinal genome invasion. For some of these TEs, the derepression caused by the loss of piRNAs is backed up by another small RNA pathway (siRNAs) operating in somatic tissues at the post transcriptional level. Derepressed transposition during 70 successive generations of piRNA loss exponentially increases the genomic copy number by up to 10-fold.
Collapse
Affiliation(s)
| | - Marianne El-Barouk
- IGH, CNRS, Univ. Montpellier, Montpellier, France.,Institut Cochin, Paris, France
| | | | - Bruno Mugat
- IGH, CNRS, Univ. Montpellier, Montpellier, France
| | - Blaise Li
- IGH, CNRS, Univ. Montpellier, Montpellier, France.,Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756, IP CNRS, Paris France
| | | | | | - Marie Mirouze
- LGPD, CNRS, Univ Perpignan Via Domitia, Perpignan, France
| | - Marie Fablet
- Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Laboratoire de Biométrie et Biologie Evolutive. 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize the recent studies regarding the relationship between anti-DFS70 antibodies and HIV-1 infection. Examining the interaction between HIV-1 integrate (HIV-IN) and DFS70 and its role in the integration into the host's chromatin. Then, summarizing the importance of anti-DFS70 autoantibodies binding the DFS70 in the same region as the HIV-IN. RECENT FINDINGS The interaction between HIV-IN and DFS70 protein could be a proficient target in the treatment against HIV-1 infection. The blockade of DFS70 is more effective than the blockade of HIV-IN as anti-HIV-1 drug. The anti-DFS70 autoantibodies could be an interesting therapeutic target for anti-HIV-1 treatment. Currently, there are no studies that measured the levels of anti-DFS70 autoantibodies in HIV-1-infected individuals. SUMMARY The anti-DFS70 antibodies bind to the DFS70 autoantigen in the same region as the HIV-IN. This fact makes the autoantibodies a potential treatment for HIV-1-infected individuals. Blood levels of anti-DFS70 antibodies have not been measured in HIV-1-infected individuals. This issue opens new lines of research about the protective role of antibodies against HIV-1 infection.
Collapse
|
11
|
Vihola A, Palmio J, Danielsson O, Penttilä S, Louiselle D, Pittman S, Weihl C, Udd B. Novel mutation in TNPO3 causes congenital limb-girdle myopathy with slow progression. NEUROLOGY-GENETICS 2019; 5:e337. [PMID: 31192305 PMCID: PMC6515942 DOI: 10.1212/nxg.0000000000000337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/27/2019] [Indexed: 12/03/2022]
Abstract
Objective We report a second family with autosomal dominant transportinopathy presenting with congenital or early-onset myopathy and slow progression, causing proximal and less pronounced distal muscle weakness. Methods Patients had clinical examinations, muscle MRI, EMG, and muscle biopsy studies. The MYOcap gene panel was used to identify the gene defect in the family. Muscle biopsies were used for histopathologic and protein expression studies, and TNPO3 constructs were used to study the effect of the mutations in transfected cells. Results We identified a novel heterozygous mutation, c.2757delC, in the last part of the transportin-3 (TNPO3) gene in the affected family members. The mutation causes an almost identical frameshift affecting the stop codon and elongating the C-term protein product of the TNPO3 transcript, as was previously reported in the first large Spanish-Italian LGMD1F kindred. TNPO3 protein was increased in the patient muscle and accumulated in the subsarcolemmal and perinuclear areas. At least one of the cargo proteins, the splicing factor SRRM2 was normally located in the nucleus. Transiently transfected mutant TNPO3 constructs failed to localize to cytoplasmic annulate lamellae pore complexes in cells. Conclusions We report the clinical, molecular genetic, and histopathologic features of the second transportinopathy family. The variability of the clinical phenotype together with histopathologic findings suggests that several molecular pathways may be involved in the disease pathomechanism, such as nucleocytoplasmic shuttling, protein aggregation, and defective protein turnover.
Collapse
Affiliation(s)
- Anna Vihola
- Folkhälsan Institute of Genetics and Department of Medical Genetics (A.V.), Medicum, University of Helsinki; Neuromuscular Research Center (J.P.), Tampere University and University Hospital of Tampere, Finland; Neuromuscular Unit (O.D.), Division of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden; Neuromuscular Research Center (S. Penttilä), Tampere University and University Hospital of Tampere, Finland; Department of Neurology (D.L.), Department of Neurology (S. Pittman), Department of Neurology (C.W.), Washington University School of Medicine, Saint Louis, MO; Folkhälsan Institute of Genetics and Department of Medical Genetics (B.U.), Medicum, University of Helsinki; Neuromuscular Research Center (B.U.), Tampere University and University Hospital of Tampere; and Department of Neurology (B.U.), Vaasa Central Hospital, Vaasa, Finland
| | - Johanna Palmio
- Folkhälsan Institute of Genetics and Department of Medical Genetics (A.V.), Medicum, University of Helsinki; Neuromuscular Research Center (J.P.), Tampere University and University Hospital of Tampere, Finland; Neuromuscular Unit (O.D.), Division of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden; Neuromuscular Research Center (S. Penttilä), Tampere University and University Hospital of Tampere, Finland; Department of Neurology (D.L.), Department of Neurology (S. Pittman), Department of Neurology (C.W.), Washington University School of Medicine, Saint Louis, MO; Folkhälsan Institute of Genetics and Department of Medical Genetics (B.U.), Medicum, University of Helsinki; Neuromuscular Research Center (B.U.), Tampere University and University Hospital of Tampere; and Department of Neurology (B.U.), Vaasa Central Hospital, Vaasa, Finland
| | - Olof Danielsson
- Folkhälsan Institute of Genetics and Department of Medical Genetics (A.V.), Medicum, University of Helsinki; Neuromuscular Research Center (J.P.), Tampere University and University Hospital of Tampere, Finland; Neuromuscular Unit (O.D.), Division of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden; Neuromuscular Research Center (S. Penttilä), Tampere University and University Hospital of Tampere, Finland; Department of Neurology (D.L.), Department of Neurology (S. Pittman), Department of Neurology (C.W.), Washington University School of Medicine, Saint Louis, MO; Folkhälsan Institute of Genetics and Department of Medical Genetics (B.U.), Medicum, University of Helsinki; Neuromuscular Research Center (B.U.), Tampere University and University Hospital of Tampere; and Department of Neurology (B.U.), Vaasa Central Hospital, Vaasa, Finland
| | - Sini Penttilä
- Folkhälsan Institute of Genetics and Department of Medical Genetics (A.V.), Medicum, University of Helsinki; Neuromuscular Research Center (J.P.), Tampere University and University Hospital of Tampere, Finland; Neuromuscular Unit (O.D.), Division of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden; Neuromuscular Research Center (S. Penttilä), Tampere University and University Hospital of Tampere, Finland; Department of Neurology (D.L.), Department of Neurology (S. Pittman), Department of Neurology (C.W.), Washington University School of Medicine, Saint Louis, MO; Folkhälsan Institute of Genetics and Department of Medical Genetics (B.U.), Medicum, University of Helsinki; Neuromuscular Research Center (B.U.), Tampere University and University Hospital of Tampere; and Department of Neurology (B.U.), Vaasa Central Hospital, Vaasa, Finland
| | - Daniel Louiselle
- Folkhälsan Institute of Genetics and Department of Medical Genetics (A.V.), Medicum, University of Helsinki; Neuromuscular Research Center (J.P.), Tampere University and University Hospital of Tampere, Finland; Neuromuscular Unit (O.D.), Division of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden; Neuromuscular Research Center (S. Penttilä), Tampere University and University Hospital of Tampere, Finland; Department of Neurology (D.L.), Department of Neurology (S. Pittman), Department of Neurology (C.W.), Washington University School of Medicine, Saint Louis, MO; Folkhälsan Institute of Genetics and Department of Medical Genetics (B.U.), Medicum, University of Helsinki; Neuromuscular Research Center (B.U.), Tampere University and University Hospital of Tampere; and Department of Neurology (B.U.), Vaasa Central Hospital, Vaasa, Finland
| | - Sara Pittman
- Folkhälsan Institute of Genetics and Department of Medical Genetics (A.V.), Medicum, University of Helsinki; Neuromuscular Research Center (J.P.), Tampere University and University Hospital of Tampere, Finland; Neuromuscular Unit (O.D.), Division of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden; Neuromuscular Research Center (S. Penttilä), Tampere University and University Hospital of Tampere, Finland; Department of Neurology (D.L.), Department of Neurology (S. Pittman), Department of Neurology (C.W.), Washington University School of Medicine, Saint Louis, MO; Folkhälsan Institute of Genetics and Department of Medical Genetics (B.U.), Medicum, University of Helsinki; Neuromuscular Research Center (B.U.), Tampere University and University Hospital of Tampere; and Department of Neurology (B.U.), Vaasa Central Hospital, Vaasa, Finland
| | - Conrad Weihl
- Folkhälsan Institute of Genetics and Department of Medical Genetics (A.V.), Medicum, University of Helsinki; Neuromuscular Research Center (J.P.), Tampere University and University Hospital of Tampere, Finland; Neuromuscular Unit (O.D.), Division of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden; Neuromuscular Research Center (S. Penttilä), Tampere University and University Hospital of Tampere, Finland; Department of Neurology (D.L.), Department of Neurology (S. Pittman), Department of Neurology (C.W.), Washington University School of Medicine, Saint Louis, MO; Folkhälsan Institute of Genetics and Department of Medical Genetics (B.U.), Medicum, University of Helsinki; Neuromuscular Research Center (B.U.), Tampere University and University Hospital of Tampere; and Department of Neurology (B.U.), Vaasa Central Hospital, Vaasa, Finland
| | - Bjarne Udd
- Folkhälsan Institute of Genetics and Department of Medical Genetics (A.V.), Medicum, University of Helsinki; Neuromuscular Research Center (J.P.), Tampere University and University Hospital of Tampere, Finland; Neuromuscular Unit (O.D.), Division of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden; Neuromuscular Research Center (S. Penttilä), Tampere University and University Hospital of Tampere, Finland; Department of Neurology (D.L.), Department of Neurology (S. Pittman), Department of Neurology (C.W.), Washington University School of Medicine, Saint Louis, MO; Folkhälsan Institute of Genetics and Department of Medical Genetics (B.U.), Medicum, University of Helsinki; Neuromuscular Research Center (B.U.), Tampere University and University Hospital of Tampere; and Department of Neurology (B.U.), Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
12
|
Zhang X, Ye L, Kang Z, Zou J, Zhang X, Li X. Mycorrhization of Quercus acutissima with Chinese black truffle significantly altered the host physiology and root-associated microbiomes. PeerJ 2019; 7:e6421. [PMID: 30805248 PMCID: PMC6383558 DOI: 10.7717/peerj.6421] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/07/2019] [Indexed: 01/16/2023] Open
Abstract
Background Our aim was to explore how the ectomycorrhizae of an indigenous tree,Quercus acutissima, with a commercial truffle, Chinese black truffle (Tuber indicum), affects the host plant physiology and shapes the associated microbial communities in the surrounding environment during the early stage of symbiosis. Methods To achieve this, changes in root morphology and microscopic characteristics, plant physiology indices, and the rhizosphere soil properties were investigated when six-month-old ectomycorrhizae were synthesized. Meanwhile, next-generation sequencing technology was used to analyze the bacterial and fungal communities in the root endosphere and rhizosphere soil inoculated with T. indicum or not. Results The results showed that colonization by T. indicum significantly improved the activity of superoxide dismutase in roots but significantly decreased the root activity. The biomass, leaf chlorophyll content and root peroxidase activity did not obviously differ. Ectomycorrhization of Q. acutissima with T. indicum affected the characteristics of the rhizosphere soil, improving the content of organic matter, total nitrogen, total phosphorus and available nitrogen. The bacterial and fungal community composition in the root endosphere and rhizosphere soil was altered by T. indicum colonization, as was the community richness and diversity. The dominant bacteria in all the samples were Proteobacteria and Actinobacteria, and the dominant fungi were Eukaryota_norank, Ascomycota, and Mucoromycota. Some bacterial communities, such as Streptomyces, SM1A02, and Rhizomicrobium were more abundant in the ectomycorrhizae or ectomycorrhizosphere soil. Tuber was the second-most abundant fungal genus, and Fusarium was present at lower amounts in the inoculated samples. Discussion Overall, the symbiotic relationship between Q. acutissima and T. indicum had an obvious effect on host plant physiology, soil properties, and microbial community composition in the root endosphere and rhizosphere soil, which could improve our understanding of the symbiotic relationship between Q. acutissima and T. indicum, and may contribute to the cultivation of truffle.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zongjing Kang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zou
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
13
|
Bejarano DA, Peng K, Laketa V, Börner K, Jost KL, Lucic B, Glass B, Lusic M, Müller B, Kräusslich HG. HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex. eLife 2019; 8:41800. [PMID: 30672737 PMCID: PMC6400501 DOI: 10.7554/elife.41800] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
Nuclear entry of HIV-1 replication complexes through intact nuclear pore complexes is critical for successful infection. The host protein cleavage-and-polyadenylation-specificity-factor-6 (CPSF6) has been implicated in different stages of early HIV-1 replication. Applying quantitative microscopy of HIV-1 reverse-transcription and pre-integration-complexes (RTC/PIC), we show that CPSF6 is strongly recruited to nuclear replication complexes but absent from cytoplasmic RTC/PIC in primary human macrophages. Depletion of CPSF6 or lack of CPSF6 binding led to accumulation of HIV-1 subviral complexes at the nuclear envelope of macrophages and reduced infectivity. Two-color stimulated-emission-depletion microscopy indicated that under these circumstances HIV-1 complexes are retained inside the nuclear pore and undergo CA-multimer dependent CPSF6 clustering adjacent to the nuclear basket. We propose that nuclear entry of HIV-1 subviral complexes in macrophages is mediated by consecutive binding of Nup153 and CPSF6 to the hexameric CA lattice. Viruses are miniscule parasites that hijack the resources of a cell to make more of themselves. For many, this involves getting inside the nucleus, the fortress that protects the cell’s genetic information. To do so, viruses need to first find a way through a double-layered membrane called the nuclear envelope, which only opens up when a cell divides. Yet, the human immunodeficiency virus type 1 (HIV-1) can infect cells that no longer divide, and in which the nucleus’ walls never come down. The virus cores then head for the nuclear pores, heavily guarded holes in the nuclear envelope that allow the cell's own molecules to go in and out of the nucleus. But HIV-1 is too big to fit through, as its genetic information is encased in a capsid, a coat made of a complex assembly of proteins. However, research shows that these capsid proteins can bind to host proteins at the pore or even inside the nucleus. For example, the capsid protein can recognize the pore protein Nup153, or the nuclear protein CPSF6. These interactions could help the virus make its way in, but how these events unfold is still unclear. To explore this, Bejarano, Peng et al. attached fluorescent labels to HIV-1 and watched as it infected non-dividing cells. Rather than completely get rid of their capsid before they crossed the pores, the virus particles hung on to a large part of their lattice. This remaining coat then attached to CPSF6; when this protein was missing or could not bind to capsid proteins, the viral complexes got stuck in the nuclear pores. This suggests that the capsid lattice could first interact with Nup153 inside the pores: then, CPSF6 would take over, knocking Nup153 away and pulling HIV-1 into the nucleus. Armed with this knowledge, virologists and drug developers could try to block HIV-1 from entering the cell’s nucleus; they could also start to dissect how drugs that target the HIV-1 capsid work. Ultimately, HIV-1 may serve as a model to unravel how large objects can pass the nuclear pore, which may help us understand how molecules are constantly trafficked in and out of the nucleus.
Collapse
Affiliation(s)
| | - Ke Peng
- Department of Infectious Diseases Virology, University of Heidelberg, Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases Virology, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| | - Kathleen Börner
- Department of Infectious Diseases Virology, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| | - K Laurence Jost
- Department of Infectious Diseases Virology, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| | - Bojana Lucic
- German Center for Infection Research, Heidelberg, Germany.,Department of Infectious Diseases, Integrative Virology, University of Heidelberg, Heidelberg, Germany
| | - Bärbel Glass
- Department of Infectious Diseases Virology, University of Heidelberg, Heidelberg, Germany
| | - Marina Lusic
- German Center for Infection Research, Heidelberg, Germany.,Department of Infectious Diseases, Integrative Virology, University of Heidelberg, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases Virology, University of Heidelberg, Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases Virology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Lee GE, Kim J, Shin CG. Single residue mutation in integrase catalytic core domain affects feline foamy viral DNA integration. Biosci Biotechnol Biochem 2018; 83:270-280. [PMID: 30319037 DOI: 10.1080/09168451.2018.1530969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
DD(35)E motif in catalytic core domain (CCD) of integrase (IN) is extremely involved in retroviral integration step. Here, nine single residue mutants of feline foamy virus (FFV) IN were generated to study their effects on IN activities and on viral replication. As expected, mutations in the highly conserved D107, D164, and E200 residues abolished all IN catalytic activities (3'-end processing, strand transfer, and disintegration) as well as viral infectivity by blocking viral DNA integration into cellular DNA. However, Q165, Y191, and S195 mutants, which are located closely to DDE motif were observed to have diverse levels of enzymatic activities, compared to those of the wild type IN. Their mutant viruses produced by one-cycle transfection showed different infectivity on their natural host cells. Therefore, it is likely that effects of single residue mutation at DDE motif is critical on viral replication depending on the position of the residues.
Collapse
Affiliation(s)
- Ga-Eun Lee
- a Department of Systems Biotechnology , Chung-Ang University , Anseong , Republic of Korea
| | - Jinsun Kim
- a Department of Systems Biotechnology , Chung-Ang University , Anseong , Republic of Korea
| | - Cha-Gyun Shin
- a Department of Systems Biotechnology , Chung-Ang University , Anseong , Republic of Korea
| |
Collapse
|
15
|
Weydert C, van Heertum B, Dirix L, De Houwer S, De Wit F, Mast J, Husson SJ, Busschots K, König R, Gijsbers R, De Rijck J, Debyser Z. Y-box-binding protein 1 supports the early and late steps of HIV replication. PLoS One 2018; 13:e0200080. [PMID: 29995936 PMCID: PMC6040738 DOI: 10.1371/journal.pone.0200080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
The human immunodeficiency virus (HIV) depends on cellular proteins, so-called cofactors, to complete its replication cycle. In search for new therapeutic targets we identified the DNA and RNA binding protein Y-box-binding Protein 1 (YB-1) as a cofactor supporting early and late steps of HIV replication. YB-1 depletion resulted in a 10-fold decrease in HIV-1 replication in different cell lines. Dissection of the replication defects revealed that knockdown of YB-1 is associated with a 2- to 5-fold decrease in virion production due to interference with the viral RNA metabolism. Using single-round virus infection experiments we demonstrated that early HIV-1 replication also depends on the cellular YB-1 levels. More precisely, using quantitative PCR and an in vivo nuclear import assay with fluorescently labeled viral particles, we showed that YB-1 knockdown leads to a block between reverse transcription and nuclear import of HIV-1. Interaction studies revealed that YB-1 associates with integrase, although a direct interaction with HIV integrase could not be unambiguously proven. In conclusion, our results indicate that YB-1 affects multiple stages of HIV replication. Future research on the interaction between YB-1 and the virus will reveal whether this protein qualifies as a new antiviral target.
Collapse
Affiliation(s)
- Caroline Weydert
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Bart van Heertum
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Lieve Dirix
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Belgium
| | - Stéphanie De Houwer
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Flore De Wit
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan Mast
- Veterinary and Agrochemical Research Centre, VAR-CODA-CERVA, Brussels, Belgium
| | - Steven J. Husson
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Systemic Physiological & Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, 2000 Antwerp, Belgium
| | - Katrien Busschots
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Renate König
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Rik Gijsbers
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan De Rijck
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
16
|
Guo J, Liu X, Wu C, Hu J, Peng K, Wu L, Xiong S, Dong C. The transmembrane nucleoporin Pom121 ensures efficient HIV-1 pre-integration complex nuclear import. Virology 2018; 521:169-174. [PMID: 29957337 DOI: 10.1016/j.virol.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022]
Abstract
HIV-1 hijacks host classical cargo nuclear transportation, or nonclassical pathways by directly interacting with importin-β family proteins or nucleoporins for efficient pre-integration complex (PIC) nuclear import. Recently, an N-terminal truncated form of nucleoporin Pom121c (601-987 aa) was reported to inhibit HIV-1 replication. In contrast, we found that HIV-1 replication was significantly decreased in 293T and TZM-b1 cells with siRNA-mediated Pom121 knockdown. Quantitative PCR indicated that viral replication was impaired at the step of cDNA nuclear import. Furthermore, we found that karyopherin-β1 (KPNB1), which belongs to the importin-β family, interacts with Pom121 and is involved in Pom121-mediated PIC nuclear import. Rescue experiment indicated that the FG-repeats and the following α-helix in Pom121 are required for its role in HIV-1 PIC nuclear import. Taken together, our results showed that full-length Pom121 enables efficient PIC nuclear import, and suggested that this process may rely on KPNB1 dependent classical cargo nuclear transportation way.
Collapse
Affiliation(s)
- Jing Guo
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xianxian Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chuanjian Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jingping Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
17
|
Francesconi V, Giovannini L, Santucci M, Cichero E, Costi MP, Naesens L, Giordanetto F, Tonelli M. Synthesis, biological evaluation and molecular modeling of novel azaspiro dihydrotriazines as influenza virus inhibitors targeting the host factor dihydrofolate reductase (DHFR). Eur J Med Chem 2018; 155:229-243. [PMID: 29886325 PMCID: PMC7115377 DOI: 10.1016/j.ejmech.2018.05.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/27/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023]
Abstract
Recently we identified cycloguanil-like dihydrotriazine derivatives, which provided host-factor directed antiviral activity against influenza viruses and respiratory syncytial virus (RSV), by targeting the human dihydrofolate reductase (hDHFR) enzyme. In this context we deemed interesting to further investigate the structure activity relationship (SAR) of our first series of cycloguanil-like dihydrotriazines, designing two novel azaspiro dihydrotriazine scaffolds. The present study allowed the exploration of the potential chemical space, around these new scaffolds, that are well tolerated for maintaining the antiviral effect by means of interaction with the hDHFR enzyme. The new derivatives confirmed their inhibitory profile against influenza viruses, especially type B. In particular, the two best compounds shared potent antiviral activity (4: EC50 = 0.29 μM; 6: EC50 = 0.19 μM), which was comparable to that of zanamivir (EC50 = 0.14 μM), and better than that of ribavirin (EC50 = 3.2 μM). In addition, these two compounds proved to be also effective against RSV (4: EC50 = 0.40 μM, SI ≥ 250; 6: EC50 = 1.8 μM, SI ≥ 56), surpassing the potency and selectivity index (SI) of ribavirin (EC50 = 5.8 μM, SI > 43). By a perspective of these results, the above adequately substituted azaspiro dihydrotriazines may represent valuable hit compounds worthy of further structural optimization to develop improved host DHFR-directed antiviral agents.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Luca Giovannini
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Elena Cichero
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Fabrizio Giordanetto
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227, Dortmund, Germany
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy.
| |
Collapse
|
18
|
Abstract
Viral vectors provide an efficient means for modification of eukaryotic cells, and their use is now commonplace in academic laboratories and industry for both research and clinical gene therapy applications. Lentiviral vectors, derived from the human immunodeficiency virus, have been extensively investigated and optimized over the past two decades. Third-generation, self-inactivating lentiviral vectors have recently been used in multiple clinical trials to introduce genes into hematopoietic stem cells to correct primary immunodeficiencies and hemoglobinopathies. These vectors have also been used to introduce genes into mature T cells to generate immunity to cancer through the delivery of chimeric antigen receptors (CARs) or cloned T-cell receptors. CAR T-cell therapies engineered using lentiviral vectors have demonstrated noteworthy clinical success in patients with B-cell malignancies leading to regulatory approval of the first genetically engineered cellular therapy using lentiviral vectors. In this review, we discuss several aspects of lentiviral vectors that will be of interest to clinicians, including an overview of lentiviral vector development, the current uses of viral vectors as therapy for primary immunodeficiencies and cancers, large-scale manufacturing of lentiviral vectors, and long-term follow-up of patients treated with gene therapy products.
Collapse
|
19
|
Kim J, Lee GE, Lochelt M, Shin CG. Integrase C-terminal residues determine the efficiency of feline foamy viral DNA integration. Virology 2018; 514:50-56. [PMID: 29128756 DOI: 10.1016/j.virol.2017.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
Integrase (IN) is an essential enzyme in retroviral life cycle. It mediates viral cDNA integration into host cellular DNA. Feline foamy virus (FFV) is a member of the Spumavirus subfamily of Retroviridae. Recently, its life cycle has been proposed to be different from other retroviruses. Despite this important finding, FFV IN is not understood clearly. Here, we constructed point mutations in FFV IN C-terminal domain (CTD) to obtain a clear understanding of its integration mechanism. Mutation of the amino acid residues in FFV IN CTD interacting with target DNA reduced both IN enzymatic activities in vitro and viral productions in infected cells. Especially, the mutants, R307 and K340, made viral DNA integration less efficient and allowed accumulation of more unintegrated viral DNA, thereby suppressing viral replication. Therefore, we suggest that the CTD residues interacting with the target DNA play a significant role in viral DNA integration and replication.
Collapse
Affiliation(s)
- Jinsun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea.
| | - Ga-Eun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea.
| | - Martin Lochelt
- Department of Genome Modifications and Carcinogenesis, German Cancer Research Center, Heidelberg, Germany.
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea.
| |
Collapse
|
20
|
SERINC as a Restriction Factor to Inhibit Viral Infectivity and the Interaction with HIV. J Immunol Res 2017; 2017:1548905. [PMID: 29359168 PMCID: PMC5735641 DOI: 10.1155/2017/1548905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/22/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022] Open
Abstract
The serine incorporator 5 (SERINC5) is a recently discovered restriction factor that inhibits viral infectivity by preventing fusion. Retroviruses have developed strategies to counteract the action of SERINC5, such as the expression of proteins like negative regulatory factor (Nef), S2, and glycosylated Gag (glycoGag). These accessory proteins downregulate SERINC5 from the plasma membrane for subsequent degradation in the lysosomes. The observed variability in the action of SERINC5 suggests the participation of other elements like the envelope glycoprotein (Env) that modulates susceptibility of the virus towards SERINC5. The exact mechanism by which SERINC5 inhibits viral fusion has not yet been determined, although it has been proposed that it increases the sensitivity of the Env by exposing regions which are recognized by neutralizing antibodies. More studies are needed to understand the role of SERINC5 and to assess its utility as a therapeutic strategy.
Collapse
|
21
|
Biasco L, Rothe M, Schott JW, Schambach A. Integrating Vectors for Gene Therapy and Clonal Tracking of Engineered Hematopoiesis. Hematol Oncol Clin North Am 2017; 31:737-752. [DOI: 10.1016/j.hoc.2017.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Schönrich G, Abdelaziz MO, Raftery MJ. Herpesviral capture of immunomodulatory host genes. Virus Genes 2017; 53:762-773. [PMID: 28451945 DOI: 10.1007/s11262-017-1460-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022]
Abstract
Herpesviruses have acquired numerous genes from their hosts. Although these homologs are not essential for viral replication, they often have important immunomodulatory functions that ensure viral persistence in the host. Some of these viral molecules are called virokines as they mimic cellular cytokines of their host such as interleukin-10 (cIL-10). In recent years, many viral homologs of IL-10 (vIL-10s) have been discovered in the genome of members of the order Herpesvirales. For some, gene and protein structure as well as biological activity and potential use in the clinical context have been explored. Besides virokines, herpesviruses have also captured genes encoding membrane-bound host immunomodulatory proteins such as major histocompatibility complex (MHC) molecules. These viral MHC mimics also retain many of the functions of the cellular genes, in particular directly or indirectly modulating the activity of natural killer cells. The mechanisms underlying capture of cellular genes by large DNA viruses are still enigmatic. In this review, we provide an update of the advances in the field of herpesviral gene piracy and discuss possible scenarios that could explain how the gene transfer from host to viral genome was achieved.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Mohammed O Abdelaziz
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
23
|
Hamid FB, Kim J, Shin CG. Distribution and fate of HIV-1 unintegrated DNA species: a comprehensive update. AIDS Res Ther 2017; 14:9. [PMID: 28209198 PMCID: PMC5314604 DOI: 10.1186/s12981-016-0127-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022] Open
Abstract
Reverse transcription of viral RNA and the subsequent integration of reverse transcripts are the classical early events of the HIV-1 life-cycle. Simultaneously, abundant unintegrated DNAs (uDNAs), are formed in cells ubiquitously. The uDNAs either undergo recombination or degradation or persist inactively for long periods in the nucleus as future resources. Among them, 2-LTR circles are considered a dead-end for viral spread. Their contribution to the HIV-1 infection is still poorly understood. Nevertheless, the preintegration transcription of the aberrant DNAs and the consequent alterations of cellular factors have already been reported. Since the major fate of the viral genome is to persist as episomal DNA, precise characterization is required for studying the biology of HIV-1. This review compiles the biochemical and genetic updates on uDNA in the HIV-1 life cycle and could provide direction to further study of their roles in HIV-1 replication and application in HIV-1 pathogenesis.
Collapse
|
24
|
Phosphorylation Requirement of Murine Leukemia Virus p12. J Virol 2016; 90:11208-11219. [PMID: 27707931 DOI: 10.1128/jvi.01178-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022] Open
Abstract
The p12 protein of murine leukemia virus (MLV) Gag is associated with the preintegration complex (PIC), and mutants of p12 (PM14) exhibit defects in nuclear entry/retention. Mutants of the phosphorylated serine 61 also have been reported to have defects in the early life cycle. Here we show that a phosphorylated peptide motif derived from human papillomavirus 8 (HPV-8), the E2 hinge region including residues 240 to 255, can functionally replace the main phosphorylated motif of MLV p12 and can rescue the viral titer of a strain with the lethal p12-PM14 mutation. Complementation with the HPV-8 E2 hinge motif generated multiple second-site mutations in live viral passage assays. Additional p12 phosphorylation sites were detected, including the late domain of p12 (PPPY) as well as the late domain/protease cleavage site of matrix (LYPAL), by mass spectrometry and Western blotting. Chromatin binding of p12-green fluorescent protein (GFP) fusion protein and functional complementation of p12-PM14 occurred in a manner independent of the E2 hinge region phosphorylation. Replacement of serine 61 by alanine within the minimal tethering domain (61SPMASRLRGRR71) maintained tethering, but in the context of the full-length p12, mutants with substitutions in S61 remained untethered and lost infectivity, indicating phosphorylation of p12 serine 61 functions to temporally regulate early and late p12 functions. IMPORTANCE The p12 protein, required for both early and late viral functions, is the predominant phosphorylated viral protein of Moloney MLV and is required for virus viability. Our studies indicate that the N terminus of p12 represses the early function of the chromatin binding domain and that deletion of the N terminus activates chromatin binding in the wild-type Moloney MLV p12 protein. Mass spectrometry and mutagenesis studies suggest that phosphorylation of both the repression domain and the chromatin binding domain acts to temporally regulate this process at the appropriate stages during infection.
Collapse
|