1
|
Naushad S, Gao R, Duceppe MO, Dupras AA, Reiling SJ, Merks H, Dixon B, Ogunremi D. Metagenomic detection of protozoan parasites on leafy greens aided by a rapid and efficient DNA extraction protocol. Front Microbiol 2025; 16:1566579. [PMID: 40160274 PMCID: PMC11949954 DOI: 10.3389/fmicb.2025.1566579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Infections with protozoan parasites associated with the consumption of fresh produce is an on-going issue in developed countries but mitigating the risk is hampered by the lack of adequate methods for their detection and identification. Materials and methods We developed a metagenomic next-generation sequencing (mNGS) assay using a MinION sequencer for the identification of parasites in intentionally contaminated lettuce to achieve a more accurate and rapid method than the traditional molecular and microscopy methods commonly used for regulatory purposes. Lettuce (25 g) was spiked with varying numbers of Cryptosporidium parvum oocysts, and microbes washed from the surface of the lettuce were lysed using the OmniLyse device. DNA was then extracted by acetate precipitation, followed by whole genome amplification. The amplified DNA was sequenced by nanopore technology and validated with the Ion Gene Studio S5, and the generated fastq files raw reads were uploaded to the CosmosID webserver for the bioinformatic identification of microbes in the metagenome. To demonstrate the ability of the procedure to distinguish other common food and waterborne protozoan parasites, lettuce was also spiked with C. hominis, C. muris, Giardia duodenalis and Toxoplasma gondii individually or together. Results The efficient lysis of oocysts and cysts was a prerequisite for the sensitive detection of parasite DNA and was rapidly achieved within 3 min. Amplification of extracted DNA led to the generation of 0.16-8.25 μg of DNA (median = 4.10 μg), sufficient to perform mNGS. Nanopore sequencing followed by bioinformatic analysis led to the consistent identification of as few as 100 oocysts of C. parvum in 25 g of fresh lettuce. Similar results were obtained using the Ion S5 sequencing platform. The assay proved useful for the simultaneous detection of C. parvum, C. hominis, C. muris, G. duodenalis and T. gondii. Discussion Our metagenomic procedure led to the identification of C. parvum present on lettuce at low numbers and successfully identified and differentiated other protozoa either of the same genus or of different genera. This novel mNGS assay has the potential for application as a single universal test for the detection of foodborne parasites, and the subtyping of parasites for foodborne outbreak investigations and surveillance studies.
Collapse
Affiliation(s)
- Sohail Naushad
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Ruimin Gao
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Marc-Olivier Duceppe
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Andree Ann Dupras
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Sarah J. Reiling
- Bureau of Microbial Hazards, Food and Nutrition Directorate, Health Canada, Ottawa, ON, Canada
| | - Harriet Merks
- Bureau of Microbial Hazards, Food and Nutrition Directorate, Health Canada, Ottawa, ON, Canada
| | - Brent Dixon
- Bureau of Microbial Hazards, Food and Nutrition Directorate, Health Canada, Ottawa, ON, Canada
| | - Dele Ogunremi
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
2
|
Singh R, Ryu J, Hyoung Lee W, Kang JH, Park S, Kim K. Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment. Crit Rev Biotechnol 2025; 45:413-433. [PMID: 38973015 DOI: 10.1080/07388551.2024.2354709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/03/2024] [Accepted: 04/28/2024] [Indexed: 07/09/2024]
Abstract
Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central FL, Orlando, FL, USA
| | - Joo-Hyon Kang
- Department of Civil and Environmental Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Sanghwa Park
- Bacteria Research Team, Freshwater Bacteria Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, South Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| |
Collapse
|
3
|
Le Dortz LL, Rouxel C, Leroy Q, Ducongé F, Boulouis HJ, Haddad N, Deshuillers PL, Lagrée AC. Aptamer selection against cell extracts containing the zoonotic obligate intracellular bacterium, Anaplasma phagocytophilum. Sci Rep 2024; 14:2465. [PMID: 38291133 PMCID: PMC10828505 DOI: 10.1038/s41598-024-52808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
A. phagocytophilum is a zoonotic and tick-borne bacterium, threatening human and animal health. Many questions persist concerning the variability of strains and the mechanisms governing the interactions with its different hosts. These gaps can be explained by the difficulty to cultivate and study A. phagocytophilum because of its strict intracellular location and the lack of specific tools, in particular monoclonal antibodies, currently unavailable. The objective of our study was to develop DNA aptamers against A. phagocytophilum, or molecules expressed during the infection, as new study and/or capture tools. Selecting aptamers was a major challenge due to the strict intracellular location of the bacterium. To meet this challenge, we set up a customized selection protocol against an enriched suspension of A. phagocytophilum NY18 strain, cultivated in HL-60 cells. The implementation of SELEX allowed the selection of three aptamers, characterized by a high affinity for HL-60 cells infected with A. phagocytophilum NY18 strain. Interestingly, the targets of these three aptamers are most likely proteins expressed at different times of infection. The selected aptamers could contribute to increase our understanding of the interactions between A. phagocytophilum and its hosts, as well as permit the development of new diagnostic, therapeutic or drug delivery appliances.
Collapse
Affiliation(s)
- Lisa Lucie Le Dortz
- Anses, INRAe, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratory of Animal Health, 94700, Maisons-Alfort, France.
| | - Clotilde Rouxel
- Anses, INRAe, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratory of Animal Health, 94700, Maisons-Alfort, France
| | - Quentin Leroy
- Anses, INRAe, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratory of Animal Health, 94700, Maisons-Alfort, France
| | - Frédéric Ducongé
- CEA, Fundamental Research Division (DRF), Institute of Biology François Jacob, Molecular Imaging Research Center, CNRS UMR9199, Paris-Saclay University, 92265, Fontenay-Aux-Roses, France
| | - Henri-Jean Boulouis
- Anses, INRAe, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratory of Animal Health, 94700, Maisons-Alfort, France
| | - Nadia Haddad
- Anses, INRAe, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratory of Animal Health, 94700, Maisons-Alfort, France.
| | - Pierre Lucien Deshuillers
- Anses, INRAe, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratory of Animal Health, 94700, Maisons-Alfort, France
| | - Anne-Claire Lagrée
- Anses, INRAe, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratory of Animal Health, 94700, Maisons-Alfort, France
| |
Collapse
|
4
|
Sirousi Z, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. A robust tag-free aptasensor for fluorescent detection of kanamycin assisted by signal intensification potency of rolling circle amplification. Talanta 2024; 266:125014. [PMID: 37541003 DOI: 10.1016/j.talanta.2023.125014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Rolling circle amplification (RCA) process as an excellent DNA amplifier strategy possesses the merits of high performance and easy operation. In this research, a sensitive RCA-based fluorescent aptasensor was fabricated for the detection of kanamycin residues in food. The aptasensing approach consisted of two main steps; immobilization of biotinylated kanamycin aptamer on streptavidin magnetic beads (SMB) and separation of free complementary strands (CS) from the SMB-aptamer/kanamycin at the first step. For the second step, RCA procedure was applied as signal magnifier and SYBR Green was added as fluorescent indicator dye. The linear relation between the aptasensor response and kanamycin concentration was obtained from 5 nM to 100 nM with the detection limit of 1.93 nM (S/N = 3). The aptasensor displayed satisfactory selectivity among other antibiotics. The developed aptasensor is reliable for monitoring kanamycin in milk as a common foodstuff.
Collapse
Affiliation(s)
- Zahra Sirousi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Rahimizadeh K, Zahra QUA, Chen S, Le BT, Ullah I, Veedu RN. Nanoparticles-assisted aptamer biosensing for the detection of environmental pathogens. ENVIRONMENTAL RESEARCH 2023; 238:117123. [PMID: 37717803 DOI: 10.1016/j.envres.2023.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Given the importance of public health, it is crucial to develop quick, targeted, highly sensitive, and accurate technologies to monitor pathogenic microbes in response to the growing concerns of food and environmental safety. Although conventional approaches for microbiological detection are available, they are laborious, and often skill demanding. Therefore, such approaches are incompetent in the on-site or high-throughput assessment of pathogenic microbes. Numerous efforts have been made to develop biosensors that use nucleic acid aptamer as the biorecognition element, which would avoid the abovementioned limitations. Incorporating nanomaterials (NMs) into aptamer-based biosensors (aptasensors) improves their sensitivity and specificity, opening exciting possibilities for various applications, such as bioanalysis of food and environmental samples. Over the last decade, nanomaterial-conjugated aptasensors have seen a steadily rising demand. To this end, the main goal of this study is to demonstrate the novelty in the design of nanomaterial-conjugated aptasensors and how they can be used to detect different pathogenic microbes in water and food. The intent of this paper is to evaluate the cutting-edge techniques that have appeared in nano-aptasensors throughout the past few years, such as manufacturing procedures, analytical credibility, and sensing mechanisms. Additionally, the fundamental performance parameters of aptasensing techniques (such as detection limits, and sensing ranges response) were also used to evaluate their practical applicability. Finally, it is anticipated that this study will inspire innovative ideas and techniques for the construction and use of aptasensors for monitoring pathogenic microorganisms in food, drinks, recreational water, and wastewater.
Collapse
Affiliation(s)
- Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Qurat Ul Ain Zahra
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Bao T Le
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Ismat Ullah
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430074, PR China.
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| |
Collapse
|
6
|
Siwak AM, Baker PG, Dube A. Biosensors as early warning detection systems for waterborne Cryptosporidium. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:615-630. [PMID: 37578878 PMCID: wst_2023_229 DOI: 10.2166/wst.2023.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Waterborne disease is a global health threat contributing to a high burden of diarrhoeal disease, and growing evidence indicates a prospective increase in incidence coinciding with the profound effects of climate change. A major causative agent of gastrointestinal disease is Cryptosporidium, a protozoan waterborne parasite identified in over 70 countries. Cryptosporidium is a cause of high disease morbidity in children and the immunocompromised with limited treatment options for patients at risk of severe illness. The hardy nature of the organism leads to its persistence in various water sources, with certain water treatment procedures proving inefficient for its complete removal. While diagnostic methods for Cryptosporidium are well-defined in the clinical sphere, detection of Cryptosporidium in water sources remains suboptimal due to low dispersion of organisms in large sample volumes, lengthy processing times and high costs of equipment and reagents. A need for improvement exists to identify the organism as an emerging threat in domestic water systems, and the technological advantages that biosensors offer over current analytical methods may provide a preventative approach to outbreaks of Cryptosporidium. Biosensors are innovative, versatile and adaptable analytical tools that could provide highly sensitive, rapid, on-site analysis needed for Cryptosporidium detection in low-resource settings.
Collapse
Affiliation(s)
- Andrea M Siwak
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa E-mail:
| | - Priscilla G Baker
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa
| |
Collapse
|
7
|
Siavash Moakhar R, Mahimkar R, Khorrami Jahromi A, Mahshid SS, Del Real Mata C, Lu Y, Vasquez Camargo F, Dixon B, Gilleard J, J Da Silva A, Ndao M, Mahshid S. Aptamer-Based Electrochemical Microfluidic Biosensor for the Detection of Cryptosporidium parvum. ACS Sens 2023; 8:2149-2158. [PMID: 37207303 DOI: 10.1021/acssensors.2c01349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cryptosporidium parvum is a high-risk and opportunistic waterborne parasitic pathogen with highly infectious oocysts that can survive harsh environmental conditions for long periods. Current state-of-the-art methods are limited to lengthy imaging and antibody-based detection techniques that are slow, labor-intensive, and demand trained personnel. Therefore, the development of new sensing platforms for rapid and accurate identification at the point-of-care (POC) is essential to improve public health. Herein, we propose a novel electrochemical microfluidic aptasensor based on hierarchical 3D gold nano-/microislands (NMIs), functionalized with aptamers specific to C. parvum. We used aptamers as robust synthetic biorecognition elements with a remarkable ability to bind and discriminate among molecules to develop a highly selective biosensor. Also, the 3D gold NMIs feature a large active surface area that provides high sensitivity and a low limit of detection (LOD), especially when they are combined with aptamers,. The performance of the NMI aptasensor was assessed by testing the biosensor's ability to detect different concentrations of C. parvum oocysts spiked in different sample matrices, i.e., buffer, tap water, and stool, within 40 min detection time. The electrochemical measurements showed an acceptable LOD of 5 oocysts mL-1 in buffer medium, as well as 10 oocysts mL-1 in stool and tap water media, over a wide linear range of 10-100,000 oocysts mL-1. Moreover, the NMI aptasensor recognized C. parvum oocysts with high selectivity while exhibiting no significant cross-reactivity to other related coccidian parasites. The specific feasibility of the aptasensor was further demonstrated by the detection of the target C. parvum in patient stool samples. Our assay showed coherent results with microscopy and real-time quantitative polymerase chain reaction, achieving high sensitivity and specificity with a significant signal difference (p < 0.001). Therefore, the proposed microfluidic electrochemical biosensor platform could be a stepping stone for the development of rapid and accurate detection of parasites at the POC.
Collapse
Affiliation(s)
| | - Rohan Mahimkar
- Infectious Diseases and Immunity in Global Health (IDIGH), Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | | | - Sahar Sadat Mahshid
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | | | - Yao Lu
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Fabio Vasquez Camargo
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Brent Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - John Gilleard
- Faculty of Veterinary Medicine, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1 N4, Canada
| | - Alexandre J Da Silva
- US FDA-Center for Food Safety and Applied Nutrition, College Park, Maryland 20740, United States
| | - Momar Ndao
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
- Department of Experimental Medicine, McGill University, Montréal, Quebec H3G 2M1, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
- Department of Experimental Medicine, McGill University, Montréal, Quebec H3G 2M1, Canada
| |
Collapse
|
8
|
Futane A, Narayanamurthy V, Jadhav P, Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. MICROFLUIDICS AND NANOFLUIDICS 2023; 27:15. [PMID: 36688097 PMCID: PMC9847464 DOI: 10.1007/s10404-022-02622-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/31/2022] [Indexed: 05/31/2023]
Abstract
Aptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods. Aptamer-based biosensors have unprecedented advantages over biosensors that use natural receptors such as antibodies and enzymes. In the current epidemic, point-of-care testing (POCT) is advantageous because it is easy to use, more accessible, faster to detect, and has high accuracy and sensitivity, reducing the burden of testing on healthcare systems. POCT is beneficial for daily epidemic control as well as early detection and treatment. This review provides detailed information on the various design strategies and virus detection methods using aptamer-based sensors. In addition, we discussed the importance of different aptamers and their detection principles. Aptasensors with higher sensitivity, specificity, and flexibility are critically discussed to establish simple, cost-effective, and rapid detection methods. POC-based aptasensors' diagnostic applications are classified and summarised based on infectious and infectious diseases. Finally, the design factors to be considered are outlined to meet the future of rapid POC-based sensors.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research and Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP) Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- InnoFuTech, No 42/12, 7Th Street, Vallalar Nagar, Chennai, Tamil Nadu 600072 India
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, 26300 Kunatan, Pahang Malaysia
| |
Collapse
|
9
|
Brosseau NE, Vallée I, Mayer-Scholl A, Ndao M, Karadjian G. Aptamer-Based Technologies for Parasite Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020562. [PMID: 36679358 PMCID: PMC9867382 DOI: 10.3390/s23020562] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/30/2023]
Abstract
Centuries of scientific breakthroughs have brought us closer to understanding and managing the spread of parasitic diseases. Despite ongoing technological advancements in the detection, treatment, and control of parasitic illnesses, their effects on animal and human health remain a major concern worldwide. Aptamers are single-stranded oligonucleotides whose unique three-dimensional structures enable them to interact with high specificity and affinity to a wide range of targets. In recent decades, aptamers have emerged as attractive alternatives to antibodies as therapeutic and diagnostic agents. Due to their superior stability, reusability, and modifiability, aptamers have proven to be effective bioreceptors for the detection of toxins, contaminants, biomarkers, whole cells, pathogens, and others. As such, they have been integrated into a variety of electrochemical, fluorescence, and optical biosensors to effectively detect whole parasites and their proteins. This review offers a summary of the various types of parasite-specific aptamer-based biosensors, their general mechanisms and their performance.
Collapse
Affiliation(s)
- Noah Emerson Brosseau
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Isabelle Vallée
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Momar Ndao
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Grégory Karadjian
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
10
|
Optical and Electrochemical Techniques for Point-of-Care Water Quality Monitoring: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Le Dortz LL, Rouxel C, Leroy Q, Brosseau N, Boulouis HJ, Haddad N, Lagrée AC, Deshuillers PL. Optimized Lambda Exonuclease Digestion or Purification Using Streptavidin-Coated Beads: Which One Is Best for Successful DNA Aptamer Selection? Methods Protoc 2022; 5:mps5060089. [PMID: 36412811 PMCID: PMC9680285 DOI: 10.3390/mps5060089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
The high failure rate of the in vitro aptamer selection process by SELEX (Systematic Evolution of Ligands by EXponential enrichment) limits the production of these innovative oligonucleotides and, consequently, limits their potential applications. The generation of single-stranded DNA (ssDNA) is a critical step of SELEX, directly affecting the enrichment and the selection of potential binding sequences. The main goal of this study was to confirm the best method for generating ssDNA by comparing the purification of ssDNA, using streptavidin-coated beads, and lambda exonuclease digestion, and by improving ssDNA recovery through protocol improvements. In addition, three techniques for quantifying the ssDNA generated (Qubit vs. NanodropTM vs. gel quantification) were compared, and these demonstrated the accuracy of the gel-based quantification method. Lambda exonuclease digestion was found to be more efficient for ssDNA recovery than purification using streptavidin-coated beads, both quantitatively and qualitatively. In conclusion, this work provides a detailed and rigorous protocol for generating ssDNA, improving the chances of a successful aptamer selection process.
Collapse
|
12
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
13
|
Saad M, Faucher SP. Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens. Front Microbiol 2021; 12:643797. [PMID: 33679681 PMCID: PMC7933031 DOI: 10.3389/fmicb.2021.643797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aptamers can serve as efficient bioreceptors for the development of biosensing detection platforms. Aptamers are short DNA or RNA oligonucleotides that fold into specific structures, which enable them to selectively bind to target analytes. The method used to identify aptamers is Systematic Evolution of Ligands through Exponential Enrichment (SELEX). Target properties can have an impact on aptamer efficiencies. Therefore, characteristics of water-borne microbial targets must be carefully considered during SELEX for optimal aptamer development. Several aptamers have been described for key water-borne pathogens. Here, we provide an exhaustive overview of these aptamers and discuss important microbial aspects to consider when developing such aptamers.
Collapse
Affiliation(s)
- Mariam Saad
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| | - Sebastien P. Faucher
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
14
|
Vishwakarma A, Lal R, Ramya M. Aptamer-based approaches for the detection of waterborne pathogens. Int Microbiol 2021; 24:125-140. [PMID: 33404933 DOI: 10.1007/s10123-020-00154-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Waterborne ailments pose a serious threat to public health and are a huge economic burden. Lack of hygiene in drinking and recreational water is the chief source of microbial pathogens in developing countries. Poor water quality and sanitation account for more than 3.4 million deaths a year worldwide. This has urged authorities and researchers to explore different avenues of pathogen detection. There is a growing demand for rapid and reliable sensor technologies, in particular those that can detect in situ and perform in harsh conditions. Some of the major waterborne pathogens include Vibrio cholerae, Leptospira interrogans, Campylobacter jejuni, Shigella spp., enterotoxigenic Escherichia coli, Clostridium difficile, Cryptosporidium parvum, Entamoeba histolytica, and Hepatitis A virus. While conventional methods of pathogen detection like serodiagnosis and microbiological methods have been superseded by nucleic acid amplification methods, there is still potential for improvement. This review provides an insight into aptamers and their utility in the form of aptasensors. It discusses how aptamer-based approaches have emerged as a novel strategy and its advantages over more resource-intensive and complex biochemical approaches.
Collapse
Affiliation(s)
- Archana Vishwakarma
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Roshni Lal
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India.
| |
Collapse
|
15
|
Hassan EM, Örmeci B, DeRosa MC, Dixon BR, Sattar SA, Iqbal A. A review of Cryptosporidium spp. and their detection in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1-25. [PMID: 33460403 DOI: 10.2166/wst.2020.515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cryptosporidium spp. are one of the most important waterborne pathogens worldwide and a leading cause of mortality from waterborne gastrointestinal diseases. Detection of Cryptosporidium spp. in water can be very challenging due to their low numbers and the complexity of the water matrix. This review describes the biology of Cryptosporidium spp. and current methods used in their detection with a focus on C. parvum and C. hominis. Among the methods discussed and compared are microscopy, immunology-based methods using monoclonal antibodies, molecular methods including PCR (polymerase chain reaction)-based assays, and emerging aptamer-based methods. These methods have different capabilities and limitations, but one common challenge is the need for better sensitivity and specificity, particularly in the presence of contaminants. The application of DNA aptamers in the detection of Cryptosporidium spp. oocysts shows promise in overcoming these challenges, and there will likely be significant developments in aptamer-based sensors in the near future.
Collapse
Affiliation(s)
- Eman M Hassan
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail:
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail:
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Canada, K1S 5B6
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada, K1A 0K9
| | - Syed A Sattar
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail: ; C.R.E.M. Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON, Canada, L4V 1T4
| | - Asma Iqbal
- C.R.E.M. Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON, Canada, L4V 1T4
| |
Collapse
|
16
|
Ospina-Villa JD, Cisneros-Sarabia A, Sánchez-Jiménez MM, Marchat LA. Current Advances in the Development of Diagnostic Tests based on Aptamers in Parasitology: A Systematic Review. Pharmaceutics 2020; 12:pharmaceutics12111046. [PMID: 33142793 PMCID: PMC7693570 DOI: 10.3390/pharmaceutics12111046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA sequences of 20–80 nucleotides that interact with different targets such as: proteins, ions, viruses, or toxins, through non-covalent interactions and their unique three-dimensional conformation. They are obtained in vitro by the systematic evolution of ligands by exponential enrichment (SELEX). Because of their ability of target recognition with high specificity and affinity, aptamers are usually compared to antibodies. However, they present many advantages that make them promising molecules for the development of new methods for the diagnosis and treatment of human diseases. In medical parasitology, aptamers also represent an attractive alternative for the implementation of new parasite detection methods, easy to apply in endemic regions. The aim of this study was to describe the current advances in the development of diagnostic tests based on aptamers in parasitology. For this, articles were selected following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, with specific inclusion and exclusion criteria. The 26 resulting articles deal with the use of aptamers for the detection of six important protozoa that affect human health. This systematic review clearly demonstrates the specificity, sensitivity and selectivity of aptamers and aptasensors, that certainly will soon become standard methods in medical parasitology.
Collapse
Affiliation(s)
- Juan David Ospina-Villa
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta CP 055450, Antioquia, Colombia; (J.D.O.-V.); (M.M.S.-J.)
| | - Alondra Cisneros-Sarabia
- ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Del. Gustavo A. Madero, Mexico City CP 07320, Mexico;
| | - Miryan Margot Sánchez-Jiménez
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta CP 055450, Antioquia, Colombia; (J.D.O.-V.); (M.M.S.-J.)
| | - Laurence A. Marchat
- ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Del. Gustavo A. Madero, Mexico City CP 07320, Mexico;
- Correspondence: ; Tel.: +52-55-5729-6300 (ext. 55543)
| |
Collapse
|
17
|
Hassan EM, Dixon BR, Sattar SA, Stalker A, Örmeci B, DeRosa MC. Highly sensitive magnetic-microparticle-based aptasensor for Cryptosporidium parvum oocyst detection in river water and wastewater: Effect of truncation on aptamer affinity. Talanta 2020; 222:121618. [PMID: 33167272 DOI: 10.1016/j.talanta.2020.121618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022]
Abstract
Many methods have been reported to detect Cryptosporidium parvum (C. parvum) oocysts in the water environment using monoclonal antibodies. Herein, we report the use of DNA aptamers as an alternative ligand. We present the highly sensitive detection of C. parvum oocysts in wastewater samples based on aptamer-conjugated magnetic beads. A previously selected DNA aptamer (R4-6) that binds to C. parvum oocysts with high affinity and selectivity was rationally truncated into two minimer aptamers (Min_Crypto1 and Min_Crypto2), and conjugated to micro-magnetic beads. In flow cytometry tests with phosphate buffer, river water, and wastewater samples, both the minimers showed improved affinity and specificity toward C. parvum oocysts than the parent R4-6. Moreover, Min_Crypto2 showed higher affinity to its target than the parent aptamer when testing in wastewater, indicating superior binding properties in a complex matrix. Using a fluorescence microplate-based assay, and when incubated with different numbers of oocysts, Min_Crypto2 showed a limit of detection as low as 5 C. parvum oocysts in 300 μL of wastewater. Results described here indicate that Min_Crypto2 has superior specificity and sensitivity for the detection of C. parvum oocysts, and has a strong potential to be used successfully in a sensor.
Collapse
Affiliation(s)
- Eman M Hassan
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada; Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, K1A 0K9, Canada
| | - Syed A Sattar
- CREM Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON, L4V 1T4, Canada; Emeritus of Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Andrew Stalker
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, K1A 0K9, Canada
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada.
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada.
| |
Collapse
|
18
|
Lu Y, Yang Q, Wu J. Recent advances in biosensor-integrated enrichment methods for preconcentrating and detecting the low-abundant analytes in agriculture and food samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
|