1
|
Wong HH, Seet SH, Bascom CC, Isfort RJ, Bard F. Red-COLA1: a human fibroblast reporter cell line for type I collagen transcription. Sci Rep 2020; 10:19723. [PMID: 33184327 PMCID: PMC7665053 DOI: 10.1038/s41598-020-75683-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
Type I collagen is a key protein of most connective tissue and its up-regulation is required for wound healing but is also involved in fibrosis. Control of expression of this collagen remains poorly understood apart from Transforming Growth Factor beta (TGF-β1)-mediated induction. To generate a sensitive, practical, robust, image-based high-throughput-compatible reporter system, we genetically inserted a short-lived fluorescence reporter downstream of the endogenous type I collagen (COL1A1) promoter in skin fibroblasts. Using a variety of controls, we demonstrate that the cell line faithfully reports changes in type I collagen expression with at least threefold enhanced sensitivity compared to endogenous collagen monitoring. We use this assay to test the potency of anti-fibrotic compounds and screen siRNAs for regulators of TGF-β1-induced type I collagen expression. We propose our reporter cell line, Red-COLA1, as a new efficient tool to study type I collagen transcriptional regulation.
Collapse
Affiliation(s)
- Hui Hui Wong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Sze Hwee Seet
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Charles C Bascom
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Cincinnati, OH, 45040, USA
| | - Robert J Isfort
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Cincinnati, OH, 45040, USA
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.
- Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| |
Collapse
|
2
|
Wong MY, Doan ND, DiChiara AS, Papa LJ, Cheah JH, Soule CK, Watson N, Hulleman JD, Shoulders MD. A High-Throughput Assay for Collagen Secretion Suggests an Unanticipated Role for Hsp90 in Collagen Production. Biochemistry 2018; 57:2814-2827. [PMID: 29676157 PMCID: PMC6231715 DOI: 10.1021/acs.biochem.8b00378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Collagen overproduction is a feature of fibrosis and cancer, while insufficient deposition of functional collagen molecules and/or the secretion of malformed collagen is common in genetic disorders like osteogenesis imperfecta. Collagen secretion is an appealing therapeutic target in these and other diseases, as secretion directly connects intracellular biosynthesis to collagen deposition and biological function in the extracellular matrix. However, small molecule and biological methods to tune collagen secretion are severely lacking. Their discovery could prove useful not only in the treatment of disease, but also in providing tools for better elucidating mechanisms of collagen biosynthesis. We developed a cell-based, high-throughput luminescent assay of collagen type I secretion and used it to screen for small molecules that selectively enhance or inhibit that process. Among several validated hits, the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) robustly decreases the secretion of collagen-I by our model cell line and by human primary cells. In these systems, 17-AAG and other pan-isoform Hsp90 inhibitors reduce collagen-I secretion post-translationally and are not global inhibitors of protein secretion. Surprisingly, the consequences of Hsp90 inhibitors cannot be attributed to inhibition of the endoplasmic reticulum's Hsp90 isoform, Grp94. Instead, collagen-I secretion likely depends on the activity of cytosolic Hsp90 chaperones, even though such chaperones cannot directly engage nascent collagen molecules. Our results highlight the value of a cell-based high-throughput screen for selective modulators of collagen secretion and suggest an unanticipated role for cytosolic Hsp90 in collagen secretion.
Collapse
Affiliation(s)
- Madeline Y. Wong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Ngoc Duc Doan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Andrew S. DiChiara
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Louis J. Papa
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jaime H. Cheah
- High-Throughput Sciences Facility, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Christian K. Soule
- High-Throughput Sciences Facility, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Nicki Watson
- W.M. Keck Microscopy Facility, The Whitehead Institute, Cambridge, Massachusetts, United States of America
| | - John D. Hulleman
- Departments of Ophthalmology and Pharmacology, University of Texas–Southwestern Medical Center, Dallas, Texas 75390
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
3
|
Bernt A, Rangrez AY, Eden M, Jungmann A, Katz S, Rohr C, Müller OJ, Katus HA, Sossalla ST, Williams T, Ritter O, Frank D, Frey N. Sumoylation-independent activation of Calcineurin-NFAT-signaling via SUMO2 mediates cardiomyocyte hypertrophy. Sci Rep 2016; 6:35758. [PMID: 27767176 PMCID: PMC5073337 DOI: 10.1038/srep35758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to identify unknown modulators of Calcineurin (Cn)-NFAT signaling. Measurement of NFAT reporter driven luciferase activity was therefore utilized to screen a human cardiac cDNA-library (~107 primary clones) in C2C12 cells through serial dilutions until single clones could be identified. This extensive screening strategy culminated in the identification of SUMO2 as a most efficient Cn-NFAT activator. SUMO2-mediated activation of Cn-NFAT signaling in cardiomyocytes translated into a hypertrophic phenotype. Prohypertrophic effects were also observed in mice expressing SUMO2 in the heart using AAV9 (Adeno-associated virus), complementing the in vitro findings. In addition, increased SUMO2-mediated sumoylation in human cardiomyopathy patients and in mouse models of cardiomyopathy were observed. To decipher the underlying mechanism, we generated a sumoylation-deficient SUMO2 mutant (ΔGG). Surprisingly, ΔGG replicated Cn-NFAT-activation and the prohypertrophic effects of native SUMO2, both in vitro and in vivo, suggesting a sumoylation-independent mechanism. Finally, we discerned a direct interaction between SUMO2 and CnA, which promotes CnA nuclear localization. In conclusion, we identified SUMO2 as a novel activator of Cn-NFAT signaling in cardiomyocytes. In broader terms, these findings reveal an unexpected role for SUMO2 in cardiac hypertrophy and cardiomyopathy, which may open the possibility for therapeutic manipulation of this pathway.
Collapse
Affiliation(s)
- Alexander Bernt
- Dept of Internal Medicine III (Cardiology and Angiology) UKSH, Campus Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg-Kiel-Lübeck, Kiel, Germany
| | - Ashraf Y Rangrez
- Dept of Internal Medicine III (Cardiology and Angiology) UKSH, Campus Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg-Kiel-Lübeck, Kiel, Germany
| | - Matthias Eden
- Dept of Internal Medicine III (Cardiology and Angiology) UKSH, Campus Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg-Kiel-Lübeck, Kiel, Germany
| | - Andreas Jungmann
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg-Kiel-Lübeck, Kiel, Germany.,Dept of Internal Medicine III, University of Heidelberg, Germany
| | - Sylvia Katz
- Dept of Internal Medicine III, University of Heidelberg, Germany
| | - Claudia Rohr
- Dept of Internal Medicine III, University of Heidelberg, Germany
| | - Oliver J Müller
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg-Kiel-Lübeck, Kiel, Germany.,Dept of Internal Medicine III, University of Heidelberg, Germany
| | - Hugo A Katus
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg-Kiel-Lübeck, Kiel, Germany.,Dept of Internal Medicine III, University of Heidelberg, Germany
| | - Samuel T Sossalla
- Dept of Internal Medicine III (Cardiology and Angiology) UKSH, Campus Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg-Kiel-Lübeck, Kiel, Germany
| | - Tatjana Williams
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg-Kiel-Lübeck, Kiel, Germany.,Dept of Internal Medicine I (Cardiology), University Hospital of Würzburg, Germany
| | - Oliver Ritter
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg-Kiel-Lübeck, Kiel, Germany.,Dept of Internal Medicine I (Cardiology), University Hospital of Würzburg, Germany
| | - Derk Frank
- Dept of Internal Medicine III (Cardiology and Angiology) UKSH, Campus Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg-Kiel-Lübeck, Kiel, Germany
| | - Norbert Frey
- Dept of Internal Medicine III (Cardiology and Angiology) UKSH, Campus Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg-Kiel-Lübeck, Kiel, Germany
| |
Collapse
|
4
|
Bagchi RA, Lin J, Wang R, Czubryt MP. Regulation of fibronectin gene expression in cardiac fibroblasts by scleraxis. Cell Tissue Res 2016; 366:381-391. [PMID: 27324126 DOI: 10.1007/s00441-016-2439-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
The glycoprotein fibronectin is a key component of the extracellular matrix. By interacting with numerous matrix and cell surface proteins, fibronectin plays important roles in cell adhesion, migration and intracellular signaling. Up-regulation of fibronectin occurs in tissue fibrosis, and previous studies have identified the pro-fibrotic factor TGFβ as an inducer of fibronectin expression, although the mechanism responsible remains unknown. We have previously shown that a key downstream effector of TGFβ signaling in cardiac fibroblasts is the transcription factor scleraxis, which in turn regulates the expression of a wide variety of extracellular matrix genes. We noted that fibronectin expression tracked closely with scleraxis expression, but it was unclear whether scleraxis directly regulated the fibronectin gene. Here, we report that scleraxis acts via two E-box binding sites in the proximal human fibronectin promoter to govern fibronectin expression, with the second E-box being both sufficient and necessary for scleraxis-mediated fibronectin expression to occur. A combination of electrophoretic mobility shift and chromatin immunoprecipitation assays indicated that scleraxis interacted to a greater degree with the second E-box. Over-expression or knockdown of scleraxis resulted in increased or decreased fibronectin expression, respectively, and scleraxis null mice presented with dramatically decreased immunolabeling for fibronectin in cardiac tissue sections compared to wild-type controls. Furthermore, scleraxis was required for TGFβ-induced fibronectin expression: TGFβ lost its ability to induce fibronectin expression following scleraxis knockdown. Together, these results demonstrate a novel and required role for scleraxis in the regulation of cardiac fibroblast fibronectin gene expression basally or in response to TGFβ.
Collapse
Affiliation(s)
- Rushita A Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Division of Cardiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, RC2- Room 8450, Aurora, CO, 80045, USA
| | - Justin Lin
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Ryan Wang
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|