1
|
Meirovitz A, Sheva K. Radiation-Induced Cardiac Disease: Modern Techniques to Reduce Cardiac Toxicity. Pract Radiat Oncol 2025:S1879-8500(24)00364-3. [PMID: 39778655 DOI: 10.1016/j.prro.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Continuous advancements in cancer management have resulted in increased long-term survival rates among cancer survivors, and in turn have exposed the full extent of radiation therapy-associated morbidities. Radiation-induced coronary heart disease (RICHD) is one of the leading causes of morbidity and mortality in cancer survivors, particularly in those having undergone mediastinal radiation. Although mediastinal radiation has been shown to substantially reduce both recurrence and mortality rates in multiple thoracic malignancies, the risk for the development of RICHD is of significant concern. Not only is the pathophysiology of RICHD yet to be fully elucidated, but therapeutic options are lacking. METHODS AND MATERIALS Literature was reviewed with a focus on RICHD in Hodgkin's lymphoma, breast and patients with lung cancer, and the current modern radiotherapeutic techniques used to minimize radiation exposure of the heart. RESULTS Multiple approaches have been taken to minimize exposure of the heart to ionizing radiation in cancers that require mediastinal radiation, most notably Hodgkin's lymphoma, and breast and lung cancer. RICHD Protection strategies include optimized delineation protocols, utilization of the moderate deep inspiration breath hold (mDIBH), specialized mDIBH monitoring, continuous positive airway pressure and various other cardiac-sparing techniques. A combination of medical prevention and therapy with physical protective approaches may be vital in achieving significant cardio-protection. CONCLUSION Despite continuous advances and improvements in protective strategies, mainly by physically distancing the heart from radiation targets to minimize exposure and by sophisticated radiation dose planning, RICHD remains a significant challenge in cancer treatment rehabilitation and survivorship.
Collapse
Affiliation(s)
- Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| | - Kim Sheva
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel
| |
Collapse
|
2
|
Balaji P, Liulu X, Sivakumar S, Chong JJH, Kizana E, Vandenberg JI, Hill AP, Hau E, Qian PC. Mechanistic Insights and Knowledge Gaps in the Effects of Radiation Therapy on Cardiac Arrhythmias. Int J Radiat Oncol Biol Phys 2025; 121:75-89. [PMID: 39222823 DOI: 10.1016/j.ijrobp.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Stereotactic body radiation therapy (SBRT) is an innovative modality for the treatment of refractory ventricular arrhythmias (VAs). Phase 1/2 clinical trials have demonstrated the remarkable efficacy of SBRT at reducing VA burden (by >85%) in patients with good short-term safety. SBRT as an option for VA treatment delivered in an ambulatory nonsedated patient in a single fraction during an outpatient session of 15 to 30 minutes, without added risks of anesthetic or surgery, is clinically relevant. However, the underlying mechanism remains unclear. Currently, the clinical dosing of SBRT has been derived from preclinical studies aimed at inducing transmural fibrosis in the atria. The propitious clinical effects of SBRT appear earlier than the time course for fibrosis. This review addresses the plausible mechanisms by which radiation alters the electrophysiological properties of myocytes and myocardial conduction to impart an antiarrhythmic effect, elucidate clinical observations, and point the direction for further research in this promising area.
Collapse
Affiliation(s)
- Poornima Balaji
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Xingzhou Liulu
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sonaali Sivakumar
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - James J H Chong
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Centre for Heart Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Eddy Kizana
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Centre for Heart Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Eric Hau
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia; Blacktown Hematology and Cancer Centre, Blacktown Hospital, Blacktown, New South Wales, Australia
| | - Pierre C Qian
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Xu Z, Wang Y, Yang W, Han W, Ma B, Zhao Y, Bao T, Zhang Q, Lin X. Total extracts from Abelmoschus manihot (L.) alleviate radiation-induced cardiomyocyte ferroptosis via regulating redox imbalances mediated by the NOX4/xCT/GPX4 axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118582. [PMID: 39009325 DOI: 10.1016/j.jep.2024.118582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radiation-induced heart disease (RIHD) is one of the most serious complications in patients receiving chest radiotherapy, partially offsetting its benefits. At present, there is a lack of effective treatments for RIHD. Ferroptosis is a newly discovered type of cell death that results from iron-dependent lipid peroxide accumulation. It was recently shown that irradiation generates severe ferroptosis, providing new insights for the treatment of RIHD. Abelmoschus manihot (L.) possesses excellent pharmacological properties and is widely used in treating various ischemic heart and brain diseases; however, its efficacy and mechanism in treating RIHD are unknown. AIM This study aimed to investigate the efficacy and mechanism of total extracts from A. manihot (L.) (TEA) in treating RIHD. MATERIALS AND METHODS C57BL/6 mice and H9C2 cells were exposed to irradiation to induce RIHD in vivo and in vitro, respectively. In vivo, we evaluated the protective effects of TEA (150 and 300 mg/kg) on RIHD. Body and heart weight changes of mice were calculated in each group, and malondialdehyde (MDA) level, glutathione/oxidized glutathione (GSH/GSSH) and nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) ratios, western blot, heart histology, and immunohistochemistry were used to evaluate TEA effectiveness. We identified the potential mechanism of radiation-induced cardiomyocyte injury in H9C2 cells treated with small interfering RNA. We determined the effective dose of TEA (0.6 mg/mL) using a Cell Counting Kit-8 assay. Intracellular Fe2+ and lipid peroxidation levels were detected by Phen Green™ SK diacetate probe, BODIPY 581/591 C11 staining, and MDA, GSH, and NADPH kits, and the level of target protein was evaluated by immunofluorescence and western blot. RESULTS Radiation inhibited system Xc-cystine (xCT)/glutathione peroxidase 4 (GPX4) expression and activity in cardiomyocytes in a time and dose-dependent manner. After silencing xCT/GPX4, MDA significantly increased and GSH/GSSH and NADPH/NADP+ ratios were reduced. xCT/GPX4 inhibition drove ferroptosis in radiation-induced H9C2 injury. Oxidative stress in H9C2 was significantly enhanced by irradiation, which also significantly increased NADPH oxidase 4 (NOX4) expression and inhibited nuclear factor E2-related factor 2 (Nrf2) expression in vivo and in vitro. Inhibition of xCT/GPX4 drove ferroptosis in radiation-induced H9C2 injury, which was aggravated by inactivation of Nrf2 and alleviated by inhibition of NOX4. Compared with the ionizing radiation-only group, TEA improved body weight loss, MDA levels, and histological changes induced by irradiation in mice hearts, and increased the ratio of GSH/GSSH and NADPH/NADP+in vivo; it also reduced lipid peroxidation and intracellular Fe2+ accumulation, restored MDA levels, and elevated the ratios of GSH/GSSH and NADPH/NADP+ in irradiation-injured H9C2 cells. TEA up-regulated Nrf2, xCT, and GPX4 expression and inhibited NOX4 expression in vivo and in vitro. CONCLUSIONS Ferroptosis induced by redox imbalance mediated through the NOX4/xCT/GPX4 axis is a potential mechanism behind radiation-induced cardiomyocyte injury, and can be prevented by TEA.
Collapse
Affiliation(s)
- Zhongchi Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yupeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Wenli Yang
- Divison of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Weiyu Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Beiting Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yunhe Zhao
- Divison of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Tong Bao
- Divison of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, People's Republic of China.
| | - Xin Lin
- Divison of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China.
| |
Collapse
|
4
|
Kozbenko T, Adam N, Grybas VS, Smith BJ, Alomar D, Hocking R, Abdelaziz J, Pace A, Boerma M, Azimzadeh O, Blattnig S, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to abnormal vascular remodeling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:4-30. [PMID: 39440813 DOI: 10.1002/em.22636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are complex, encompassing many types of heart pathophysiologies and associated etiologies. Radiotherapy studies have shown that fractionated radiation exposure at high doses (3-17 Gy) to the heart increases the incidence of CVD. However, the effects of low doses of radiation on the cardiovascular system or the effects from space travel, where radiation and microgravity are important contributors to damage, are not clearly understood. Herein, the adverse outcome pathway (AOP) framework was applied to develop an AOP to abnormal vascular remodeling from the deposition of energy. Following the creation of a preliminary pathway with the guidance of field experts and authoritative reviews, a scoping review was conducted that informed final key event (KE) selection and evaluation of the Bradford Hill criteria for the KE relationships (KERs). The AOP begins with a molecular initiating event of deposition of energy; ionization events increase oxidative stress, which when persistent concurrently causes the release of pro-inflammatory mediators, suppresses anti-inflammatory mechanisms and alters stress response signaling pathways. These KEs alter nitric oxide levels leading to endothelial dysfunction, and subsequent abnormal vascular remodeling (the adverse outcome). The work identifies evidence needed to strengthen understanding of the causal associations for the KERs, emphasizing where there are knowledge gaps and uncertainties in both qualitative and quantitative understanding. The AOP is anticipated to direct future research to better understand the effects of space on the human body and potentially develop countermeasures to better protect future space travelers.
Collapse
Affiliation(s)
- Tatiana Kozbenko
- Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | - Amanda Pace
- Carleton University, Ottawa, Ontario, Canada
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
5
|
Zhang D, Li Y, Pan J, Zheng Y, Xu X. Copper homeostasis and cuproptosis in radiation-induced injury. Biomed Pharmacother 2024; 178:117150. [PMID: 39047417 DOI: 10.1016/j.biopha.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Radiation therapy for cancer treatment brings about a series of radiation injuries to normal tissues. In recent years, the discovery of copper-regulated cell death, cuproptosis, a novel form of programmed cell death, has attracted widespread attention and exploration in various biological functions and pathological mechanisms of copper metabolism and cuproptosis. Understanding its role in the process of radiation injury may open up new avenues and directions for exploration in radiation biology and radiation oncology, thereby improving tumor response and mitigating adverse reactions to radiotherapy. This review provides an overview of copper metabolism, the characteristics of cuproptosis, and their potential regulatory mechanisms in radiation injury.
Collapse
Affiliation(s)
- Daoming Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinghui Pan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yongfa Zheng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
6
|
Zhang R, Xie K, Lian Y, Hong S, Zhu Y. Dexmedetomidine ameliorates x-ray-induced myocardial injury via alleviating cardiomyocyte apoptosis and autophagy. BMC Cardiovasc Disord 2024; 24:323. [PMID: 38918713 PMCID: PMC11201331 DOI: 10.1186/s12872-024-03988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Radiotherapy is a primary local treatment for tumors, yet it may lead to complications such as radiation-induced heart disease (RIHD). Currently, there is no standardized approach for preventing RIHD. Dexmedetomidine (Dex) is reported to have cardio-protection effects, while its role in radiation-induced myocardial injury is unknown. In the current study, we aimed to evaluate the radioprotective effect of dexmedetomidine in X-ray radiation-treated mice. METHODS 18 male mice were randomized into 3 groups: control, 16 Gy, and 16 Gy + Dex. The 16 Gy group received a single dose of 16 Gy X-ray radiation. The 16 Gy + Dex group was pretreated with dexmedetomidine (30 µg/kg, intraperitoneal injection) 30 min before X-ray radiation. The control group was treated with saline and did not receive X-ray radiation. Myocardial tissues were collected 16 weeks after X-ray radiation. Hematoxylin-eosin staining was performed for histopathological examination. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was performed to assess the state of apoptotic cells. Immunohistochemistry staining was performed to examine the expression of CD34 molecule and von Willebrand factor. Besides, western blot assay was employed for the detection of apoptosis-related proteins (BCL2 apoptosis regulator and BCL2-associated X) as well as autophagy-related proteins (microtubule-associated protein 1 light chain 3, beclin 1, and sequestosome 1). RESULTS The findings demonstrated that 16 Gy X-ray radiation resulted in significant changes in myocardial tissues, increased myocardial apoptosis, and activated autophagy. Pretreatment with dexmedetomidine significantly protects mice against 16 Gy X-ray radiation-induced myocardial injury by inhibiting apoptosis and autophagy. CONCLUSION In summary, our study confirmed the radioprotective effect of dexmedetomidine in mitigating cardiomyocyte apoptosis and autophagy induced by 16 Gy X-ray radiation.
Collapse
MESH Headings
- Animals
- Autophagy/drug effects
- Autophagy/radiation effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/radiation effects
- Myocytes, Cardiac/metabolism
- Apoptosis/drug effects
- Male
- Dexmedetomidine/pharmacology
- Radiation Injuries, Experimental/prevention & control
- Radiation Injuries, Experimental/pathology
- Radiation Injuries, Experimental/metabolism
- Radiation Injuries, Experimental/drug therapy
- Radiation-Protective Agents/pharmacology
- Disease Models, Animal
- Signal Transduction/drug effects
- Mice
- Autophagy-Related Proteins/metabolism
- Mice, Inbred C57BL
- Apoptosis Regulatory Proteins/metabolism
Collapse
Affiliation(s)
- Runze Zhang
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Kangjie Xie
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Yanhong Lian
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Shufang Hong
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Yuntian Zhu
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
7
|
Wang H, Zhang N, Wang X, Tian J, Yi J, Yao L, Huang G. Emerging role of mesenchymal stem cell-derived exosome microRNA in radiation injury. Int J Radiat Biol 2024; 100:996-1008. [PMID: 38776447 DOI: 10.1080/09553002.2024.2347348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Radiation injury (RI) is a common occurrence in malignant tumors patients receiving radiation therapy. While killing tumor cells, normal tissue surrounding the target area is inevitably irradiated at a certain dose, which can cause varying results of radiation injury. Currently, there are limited clinical treatments available for radiation injuries. In recent years, the negative effects of stem cell therapy have been reported more clearly and non-cellular therapies such as exosomes have become a focus of attention for researchers. As a type of vesicle-like substances secreted by mesenchymal stem cells (MSC), MSC derived exosomes (MSC-exo) carry DNA, mRNA, microRNA (miRNAs), specific proteins, lipids, and other active substances involved in intercellular information exchange. miRNAs released by MSC-exo are capable of alleviating and repairing damaged tissues through anti-apoptosis, modulating immune response, regulating inflammatory response and promoting angiogenesis, which indicates that MSC-exo miRNAs have great potential for application in the prevention and treatment of radiation injury. Therefore, it is necessary to explore the underlying therapeutic mechanisms of MSC-exo miRNAs in this process, which may shed new lights on the treatment of radiation injury. CONCLUSIONS Increasing evidence confirms that MSC-exo has shown encouraging applications in tissue repair due to the anti-apoptotic, immunoreactive, and pro-angiogenesis effects of the miRNAs it carries as intercellular communication carriers. However, miRNA-based therapeutics are still in their infancy and many practical issues remain to be addressed for clinical applications.
Collapse
Affiliation(s)
- Huike Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Nini Zhang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Xue Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jia Tian
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jie Yi
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | | | - Guilin Huang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
8
|
Zhao LY, Wang XY, Wen ML, Pan NN, Yin XQ, An MW, Wang L, Liu Y, Song JB. Advances in injectable hydrogels for radiation-induced heart disease. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1031-1063. [PMID: 38340315 DOI: 10.1080/09205063.2024.2314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Radiological heart damage (RIHD) is damage caused by unavoidable irradiation of the heart during chest radiotherapy, with a long latency period and a progressively increasing proportion of delayed cardiac damage due to conventional doses of chest radiotherapy. There is a risk of inducing diseases such as acute/chronic pericarditis, myocarditis, delayed myocardial fibrosis and damage to the cardiac conduction system in humans, which can lead to myocardial infarction or even death in severe cases. This paper details the pathogenesis of RIHD and gives potential targets for treatment at the molecular and cellular level, avoiding the drawbacks of high invasiveness and immune rejection due to drug therapy, medical device implantation and heart transplantation. Injectable hydrogel therapy has emerged as a minimally invasive tissue engineering therapy to provide necessary mechanical support to the infarcted myocardium and to act as a carrier for various bioactive factors and cells to improve the cellular microenvironment in the infarcted area and induce myocardial tissue regeneration. Therefore, this paper combines bioactive factors and cellular therapeutic mechanisms with injectable hydrogels, presents recent advances in the treatment of cardiac injury after RIHD with different injectable gels, and summarizes the therapeutic potential of various types of injectable hydrogels as a potential solution.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xin-Yue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Ling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Ning-Ning Pan
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xing-Qi Yin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Wen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Bo Song
- Shanghai NewMed Medical Corporation, Shanghai, China
| |
Collapse
|
9
|
Li Z, Wang H, Bao X, Liu X, Yang J. Gene network analyses of Sepia esculenta larvae exposed to copper and cadmium: A comprehensive investigation of oxidative stress, immune response, and toxicological mechanisms. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109230. [PMID: 37977542 DOI: 10.1016/j.fsi.2023.109230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Copper (Cu) and Cadmium (Cd), prevalent heavy metals in marine environments, have known implications in oxidative stress, immune response, and toxicity in marine organisms. Sepia esculenta, a cephalopod of significant economic value along China's eastern coastline, experiences alterations in growth, mobility, and reproduction when subjected to these heavy metals. However, the specific mechanisms resulting from heavy metal exposure in S. esculenta remain largely uncharted. In this study, we utilized transcriptome and four oxidative, immunity, and toxicity indicators to assess the toxicological mechanism in S. esculenta larvae exposed to Cu and Cd. The measurements of Superoxide Dismutase (SOD), Malondialdehyde (MDA), Glutathione S-Transferase (GST), and Metallothioneins (MTs) revealed that Cu and Cd trigger substantial oxidative stress, immune response, and metal toxicity. Further, we performed an analysis on the transcriptome data through Weighted Gene Co-expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI) network analysis. Our findings indicate that exposure methods and duration influence the type and the extent of toxicity and oxidative stress within the S. esculenta larvae. We took an innovative approach in this research by integrating WGCNA and PPI network analysis with four significant physiological indicators to closely examine the toxicity and oxidative stress profiles of S. esculenta upon exposure to Cu and Cd. This investigation is vital in decoding the toxicological, immunological, and oxidative stress mechanisms within S. esculenta when subjected to heavy metals. It provides foundational insights capable of advancing invertebrate environmental toxicology and informs S. esculenta artificial breeding practices.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Haoyu Wang
- St. John's School, Vancouver, V6K 2J1, Canada
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
10
|
Wang KX, Ye C, Yang X, Ma P, Yan C, Luo L. New Insights into the Understanding of Mechanisms of Radiation-Induced Heart Disease. Curr Treat Options Oncol 2023; 24:12-29. [PMID: 36598620 DOI: 10.1007/s11864-022-01041-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
OPINION STATEMENT Cancer patients who receive high-dose thoracic radiotherapy may develop radiation-induced heart disease (RIHD). The clinical presentation of RIHD comprises coronary artery atherosclerosis, valvular disease, pericarditis, cardiomyopathy, and conduction defects. These complications have significantly reduced due to the improved radiotherapy techniques. However, such methods still could not avoid heart radiation exposure. Furthermore, people who received relatively low-dose radiation exposures have exhibited significantly elevated RIHD risks in cohort studies of atomic bomb survivors and occupational exposures. The increased potential in exposure to natural and artificial ionizing radiation sources has emphasized the necessity to understand the development of RIHD. The pathological processes of RIHD include endothelial dysfunction, inflammation, fibrosis, and hypertrophy. The underlying mechanisms may involve the changes in oxidative stress, DNA damage response, telomere erosion, mitochondrial dysfunction, epigenetic regulation, circulation factors, protein post-translational modification, and metabolites. This review will discuss the recent advances in the mechanisms of RIHD at cellular and molecular levels.
Collapse
Affiliation(s)
- Kai-Xuan Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Cong Ye
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Xu Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Ping Ma
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Chen Yan
- Department of Rheumatology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, 330006, People's Republic of China.
| | - Lan Luo
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China.
| |
Collapse
|
11
|
Andelova N, Waczulikova I, Kunstek L, Talian I, Ravingerova T, Jasova M, Suty S, Ferko M. Dichloroacetate as a metabolic modulator of heart mitochondrial proteome under conditions of reduced oxygen utilization. Sci Rep 2022; 12:16348. [PMID: 36175475 PMCID: PMC9522880 DOI: 10.1038/s41598-022-20696-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
Myocardial compensatory mechanisms stimulated by reduced oxygen utilization caused by streptozotocin-induced diabetes mellitus (DM) and treated with dichloroacetate (DCA) are presumably associated with the regulation of mitochondria. We aimed to promote the understanding of key signaling pathways and identify effectors involved in signal transduction. Proteomic analysis and fluorescence spectroscopy measurements revealed significantly decreased membrane potential and upregulated protein amine oxidase [flavin-containing] A (AOFA) in DM mitochondria, indicative of oxidative damage. DCA in diabetic animals (DM + DCA) downregulated AOFA, increased membrane potential, and stimulated thioredoxin-dependent peroxide reductase, a protein with antioxidant function. Furthermore, the DM condition was associated with mitochondrial resistance to calcium overload through mitochondrial permeability transition pores (mPTPs) regulation, despite an increased protein level of voltage-dependent anion-selective protein (VDAC1). In contrast, DM + DCA influenced ROS levels and downregulated VDAC1 and VDAC3 when compared to DM alone. The diabetic myocardium showed an identical pattern of mPTP protein interactions as in the control group, but the interactions were attenuated. Characterization of the combined effect of DM + DCA is a novel finding showing that DCA acted as an effector of VDAC protein interactions, calcium uptake regulation, and ROS production. Overall, DM and DCA did not exhibit an additive effect, but an individual cardioprotective pathway.
Collapse
Affiliation(s)
- Natalia Andelova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Iveta Waczulikova
- Division of Biomedical Physics, Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia
| | - Lukas Kunstek
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, P. J. Safarik University, 04011, Kosice, Slovakia
| | - Tanya Ravingerova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Magdalena Jasova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Simon Suty
- Division of Biomedical Physics, Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia
| | - Miroslav Ferko
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104, Bratislava, Slovakia.
| |
Collapse
|
12
|
Tanshinone IIA Accomplished Protection against Radiation-Induced Cardiomyocyte Injury by Regulating the p38/p53 Pathway. Mediators Inflamm 2022; 2022:1478181. [PMID: 36046762 PMCID: PMC9424041 DOI: 10.1155/2022/1478181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Radiotherapy is one of the major strategies for treating tumors, and it inevitably causes damage to relevant tissues and organs during treatment. Radiation-induced heart disease (RIHD) refers to radiation-induced cardiovascular adverse effects caused by thoracic radiotherapy. Currently, there is no uniform standard in the treatment of RIHD. Methods In our group study, by administering a dose of 4 Gy radiation, we established a radiation injured cardiomyocyte model and explored the regulatory relationship between tanshinone IIA and p38 MAPK in cardiomyocyte injury. We assessed cell damage and proliferation using clonogenic assay and lactate dehydrogenase (LDH) release assay. The measures of antioxidant activity and oxidative stress were conducted using superoxide dismutase (SOD) and reactive oxygen species (ROS). The apoptosis rate and the relative expression of apoptotic proteins were conducted using flow cytometry and western blot. To assess p38 and p53 expressions and phosphorylation levels, western blot was performed. Results Experimental results suggested that tanshinone IIA restored cell proliferation in radiation-induced cardiomyocyte injury (∗∗P < 0.01), and the level of LDH release decreased (∗P < 0.05). Meanwhile, tanshinone IIA could decrease the ROS generation induced by radiation (∗∗P < 0.01) and upregulate the SOD level (∗∗P < 0.01). Again, tanshinone IIA reduced radiation-induced cardiomyocyte apoptosis (∗∗P < 0.01). Finally, tanshinone IIA downregulated radiation-induced p38/p53 overexpression (∗∗∗P < 0.001). Conclusions The treatment effects of tanshinone IIA against radiation-induced myocardial injury may be through the regulation of the p38/p53 pathway.
Collapse
|
13
|
Abstract
Cardiac remodelling is characterized by abnormal changes in the function and morphological properties such as diameter, mass, normal diameter of cavities, heart shape, fibrosis, thickening of vessels and heart layers, cardiomyopathy, infiltration of inflammatory cells, and some others. These damages are associated with damage to systolic and diastolic abnormalities, damage to ventricular function, and vascular remodelling, which may lead to heart failure and death. Exposure of the heart to radiation or anti-cancer drugs including chemotherapy drugs such as doxorubicin, receptor tyrosine kinase inhibitors (RTKIs) such as imatinib, and immune checkpoint inhibitors (ICIs) can induce several abnormal changes in the heart structure and function through the induction of inflammation and fibrosis, vascular remodelling, hypertrophy, and some others. This review aims to explain the basic mechanisms behind cardiac remodelling following cancer therapy by different anti-cancer modalities.
Collapse
|
14
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
15
|
Ellahham S, Khalouf A, Elkhazendar M, Dababo N, Manla Y. An overview of radiation-induced heart disease. Radiat Oncol J 2022; 40:89-102. [PMID: 35796112 PMCID: PMC9262704 DOI: 10.3857/roj.2021.00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
Radiation therapy (RT) has dramatically improved cancer survival, leading to several inevitable complications. Unintentional irradiation of the heart can lead to radiation-induced heart disease (RIHD), including cardiomyopathy, pericarditis, coronary artery disease, valvular heart disease, and conduction system abnormalities. Furthermore, the development of RIHD is aggravated with the addition of chemotherapy. The screening, diagnosis, and follow-up for RIHD in patients who have undergone RT are described by the consensus guidelines from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). There is compelling evidence that chest RT can increase the risk of heart disease. Although the prevalence and severity of RIHD are likely to be reduced with modern RT techniques, the incidence of RIHD is expected to rise in cancer survivors who have been treated with old RT regimens. However, there remains a gap between guidelines and clinical practice. Currently, therapeutic modalities followed in the treatment of RIHD are similar to the non-irradiated population. Preventive measures mainly reduce the radiation dose and radiation volume of the heart. There is no concrete evidence to endorse the preventive role of statins, angiotensin-converting enzyme inhibitors, and antioxidants. This review summarizes the current evidence of RIHD subtypes and risk factors and suggests screening regimens, diagnosis, treatment, and preventive approaches.
Collapse
Affiliation(s)
- Samer Ellahham
- Cleveland Clinic, Lyndhurst, OH, USA
- Heart & Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Amani Khalouf
- Emergency Medicine Institute, Cleveland Clinic Abu Dhabi, UAE
| | - Mohammed Elkhazendar
- Heart & Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
- Pathology & Laboratory Medicine Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Nour Dababo
- Pathology & Laboratory Medicine Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Yosef Manla
- Heart & Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
16
|
Korany DA, Said RS, Ayoub IM, Labib RM, El-Ahmady SH, Singab ANB. Protective effects of Brownea grandiceps (Jacq.) against ϒ-radiation-induced enteritis in rats in relation to its secondary metabolome fingerprint. Biomed Pharmacother 2022; 146:112603. [PMID: 35062069 DOI: 10.1016/j.biopha.2021.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 11/30/2022] Open
Abstract
Radiation enteritis is the most common complication of radiotherapy in patients with pelvic malignancies. Thus, the radioprotective activity of the total hydro-alcoholic extract (BGE) and the ethyl acetate soluble fraction (EAF) of Brownea grandiceps leaves was evaluated against ϒ-radiation-induced enteritis in rats. (BGE) and (EAF) were characterized using HPLC-PDA-ESI-MS/MS analysis. The total phenolic and flavonoid contents were also quantified. In vivo administration of (BGE) (400 mg/kg) and (EAF) (200 & 400 mg/kg) prevented intestinal injury and maintained the mucosal integrity of irradiated rats through increasing villi length and promoting crypt regeneration. Also, (EAF) showed more potent antioxidant activity than (BGE) through reduction of MDA level and enhancement of GSH content and catalase enzyme activity. (BGE) and (EAF) down-regulated intestinal NF-κB expression leading to diminished expression of downstream inflammatory cytokine TNF-α. Moreover, (EAF) markedly reduced the expression of profibrotic marker TGF-β1. Seventy-nine compounds were tentatively identified, including flavonoids, proanthocyanidins, polar lipids and phenolic acids. (EAF) showed significantly higher total phenolic and flavonoid contents, as compared to (BGE). Results revealed remarkable radioprotective activity of (BGE) and (EAF), with significantly higher activity for (EAF). The chemical constituents of (BGE) and (EAF) strongly supported their radioprotective activity. To the best of our knowledge, the present study describes for the first time the radioprotective activity of B. grandiceps leaves in relation to its secondary metabolome fingerprint; emphasizing the great promise of B. grandiceps leaves, especially (EAF), to be used as natural radio-protective agent.
Collapse
Affiliation(s)
- Doaa A Korany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt.
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
17
|
Xu P, Yi Y, Luo Y, Liu Z, Xu Y, Cai J, Zeng Z, Liu A. Radiation‑induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues. Mol Med Rep 2021; 24:842. [PMID: 34633055 PMCID: PMC8524410 DOI: 10.3892/mmr.2021.12482] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Thoracic radiotherapy increases the risk of radiation‑induced heart damage (RIHD); however, the molecular mechanisms underlying these changes are not fully understood. The aim of the present study was to investigate the effects of radiation on the mouse heart using high‑throughput proteomics. Male C57BL/6J mice were used to establish a model of RIHD by exposing the entire heart to 16 Gy high‑energy X‑rays, and cardiac injuries were verified using a cardiac echocardiogram, as well as by measuring serum brain natriuretic peptide levels and conducting H&E and Masson staining 5 months after irradiation. Proteomics experiments were performed using the heart apex of 5‑month irradiated mice and control mice that underwent sham‑irradiation. The most significantly differentially expressed proteins were enriched in 'cardiac fibrosis' and 'energy metabolism'. Next, the cardiac fibrosis and changes to energy metabolism were confirmed using immunohistochemistry staining and western blotting. Extracellular matrix proteins, such as collagen type 1 α 1 chain, collagen type III α 1 chain, vimentin and CCCTC‑binding factor, along with metabolism‑related proteins, such as fatty acid synthase and solute carrier family 25 member 1, exhibited upregulated expression following exposure to ionizing radiation. Additionally, the myocardial mitochondria inner membranes were injured, along with a decrease in ATP levels and the accumulation of lactic acid in the irradiated heart tissues. These results suggest that the high doses of ionizing radiation used lead to structural remodeling, functional injury and fibrotic alterations in the mouse heart. Radiation‑induced mitochondrial damage and metabolic alterations of the cardiac tissue may thus be a pathogenic mechanism of RIHD.
Collapse
Affiliation(s)
- Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yali Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yijing Luo
- Department of Clinical Medicine, The First Clinical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Zhicheng Liu
- Department of Clinical Medicine, The First Clinical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yilin Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimin Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Aryankalayil MJ, Martello S, Bylicky MA, Chopra S, May JM, Shankardass A, MacMillan L, Sun L, Sanjak J, Vanpouille-Box C, Eke I, Coleman CN. Analysis of lncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. J Transl Med 2021; 19:336. [PMID: 34364390 PMCID: PMC8349067 DOI: 10.1186/s12967-021-02998-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background Radiation therapy is integral to effective thoracic cancer treatments, but its application is limited by sensitivity of critical organs such as the heart. The impacts of acute radiation-induced damage and its chronic effects on normal heart cells are highly relevant in radiotherapy with increasing lifespans of patients. Biomarkers for normal tissue damage after radiation exposure, whether accidental or therapeutic, are being studied as indicators of both acute and delayed effects. Recent research has highlighted the potential importance of RNAs, including messenger RNAs (mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as biomarkers to assess radiation damage. Understanding changes in mRNA and non-coding RNA expression will elucidate biological pathway changes after radiation. Methods To identify significant expression changes in mRNAs, lncRNAs, and miRNAs, we performed whole transcriptome microarray analysis of mouse heart tissue at 48 h after whole-body irradiation with 1, 2, 4, 8, and 12 Gray (Gy). We also validated changes in specific lncRNAs through RT-qPCR. Ingenuity Pathway Analysis (IPA) was used to identify pathways associated with gene expression changes. Results We observed sustained increases in lncRNAs and mRNAs, across all doses of radiation. Alas2, Aplnr, and Cxc3r1 were the most significantly downregulated mRNAs across all doses. Among the significantly upregulated mRNAs were cell-cycle arrest biomarkers Gdf15, Cdkn1a, and Ckap2. Additionally, IPA identified significant changes in gene expression relevant to senescence, apoptosis, hemoglobin synthesis, inflammation, and metabolism. LncRNAs Abhd11os, Pvt1, Trp53cor1, and Dino showed increased expression with increasing doses of radiation. We did not observe any miRNAs with sustained up- or downregulation across all doses, but miR-149-3p, miR-6538, miR-8101, miR-7118-5p, miR-211-3p, and miR-3960 were significantly upregulated after 12 Gy. Conclusions Radiation-induced RNA expression changes may be predictive of normal tissue toxicities and may indicate targetable pathways for radiation countermeasure development and improved radiotherapy treatment plans. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02998-w.
Collapse
Affiliation(s)
- Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.
| | - Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Aman Shankardass
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | | | - Landy Sun
- Gryphon Scientific, Takoma Park, MD, 20912, USA
| | | | | | - Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.,Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.,Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| |
Collapse
|
19
|
Slezak J, Kura B, LeBaron TW, Singal PK, Buday J, Barancik M. Oxidative Stress and Pathways of Molecular Hydrogen Effects in Medicine. Curr Pharm Des 2021; 27:610-625. [PMID: 32954996 DOI: 10.2174/1381612826666200821114016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022]
Abstract
There are many situations of excessive production of reactive oxygen species (ROS) such as radiation, ischemia/reperfusion (I/R), and inflammation. ROS contribute to and arises from numerous cellular pathologies, diseases, and aging. ROS can cause direct deleterious effects by damaging proteins, lipids, and nucleic acids as well as exert detrimental effects on several cell signaling pathways. However, ROS are important in many cellular functions. The injurious effect of excessive ROS can hypothetically be mitigated by exogenous antioxidants, but clinically this intervention is often not favorable. In contrast, molecular hydrogen provides a variety of advantages for mitigating oxidative stress due to its unique physical and chemical properties. H2 may be superior to conventional antioxidants, since it can selectively reduce ●OH radicals while preserving important ROS that are otherwise used for normal cellular signaling. Additionally, H2 exerts many biological effects, including antioxidation, anti-inflammation, anti-apoptosis, and anti-shock. H2 accomplishes these effects by indirectly regulating signal transduction and gene expression, each of which involves multiple signaling pathways and crosstalk. The Keap1-Nrf2-ARE signaling pathway, which can be activated by H2, plays a critical role in regulating cellular redox balance, metabolism, and inducing adaptive responses against cellular stress. H2 also influences the crosstalk among the regulatory mechanisms of autophagy and apoptosis, which involve MAPKs, p53, Nrf2, NF-κB, p38 MAPK, mTOR, etc. The pleiotropic effects of molecular hydrogen on various proteins, molecules and signaling pathways can at least partly explain its almost universal pluripotent therapeutic potential.
Collapse
Affiliation(s)
- Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Jozef Buday
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 121 08 Prague 2, Czech Republic
| | - Miroslav Barancik
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| |
Collapse
|
20
|
Pathomechanisms and therapeutic opportunities in radiation-induced heart disease: from bench to bedside. Clin Res Cardiol 2021; 110:507-531. [PMID: 33591377 PMCID: PMC8055626 DOI: 10.1007/s00392-021-01809-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/16/2021] [Indexed: 12/14/2022]
Abstract
Cancer management has undergone significant improvements, which led to increased long-term survival rates among cancer patients. Radiotherapy (RT) has an important role in the treatment of thoracic tumors, including breast, lung, and esophageal cancer, or Hodgkin's lymphoma. RT aims to kill tumor cells; however, it may have deleterious side effects on the surrounding normal tissues. The syndrome of unwanted cardiovascular adverse effects of thoracic RT is termed radiation-induced heart disease (RIHD), and the risk of developing RIHD is a critical concern in current oncology practice. Premature ischemic heart disease, cardiomyopathy, heart failure, valve abnormalities, and electrical conduct defects are common forms of RIHD. The underlying mechanisms of RIHD are still not entirely clear, and specific therapeutic interventions are missing. In this review, we focus on the molecular pathomechanisms of acute and chronic RIHD and propose preventive measures and possible pharmacological strategies to minimize the burden of RIHD.
Collapse
|
21
|
Kura B, Kalocayova B, Szeiffova Bacova B, Fulop M, Sagatova A, Sykora M, Andelova K, Abuawad Z, Slezak J. The effect of selected drugs on the mitigation of myocardial injury caused by gamma radiation. Can J Physiol Pharmacol 2021; 99:80-88. [PMID: 33438486 DOI: 10.1139/cjpp-2020-0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Radiation damage of healthy tissues represents one of the complications of radiotherapy effectiveness. This study is focused on the screening of potentially effective drugs routinely used in medical practice and involved in the mechanism of radiation injury, namely for radiation-induced production of free radicals in the body. Experiments in rats revealed significant reduction of oxidative stress (malondialdehyde) and inflammatory marker (tumor necrosis factor α) in 10 Gy irradiated groups after administration of atorvastatin and a slight decrease after tadalafil administration, which indicates that one of the possible mechanisms for mitigation of radiation-induced cardiac damage could be the modulation of nitric oxide (NO) in endothelium and phosphodiesterase 5. In addition, miRNAs were analyzed as potential markers and therapeutically effective molecules. Expression of miRNA-21 and miRNA-15b showed the most significant changes after irradiation. Atorvastatin and tadalafil normalized changes of miRNA (miRNA-1, miRNA-15b, miRNA-21) expression levels in irradiated hearts. This screening study concludes that administration of specific drugs could mitigate the negative impact of radiation on the heart, but more detailed experiments oriented to other aspects of drug effectiveness and their exact mechanisms are still needed.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Marko Fulop
- Slovak Medical University, 831 01, Bratislava, Slovak Republic
| | - Andrea Sagatova
- Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava, 812 19 Bratislava, Slovak Republic
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Ziad Abuawad
- Faculty of Public Health, Al-Quds University, Jerusalem, Palestine
| | - Jan Slezak
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
22
|
Li L, Nie X, Zhang P, Huang Y, Ma L, Li F, Yi M, Qin W, Yuan X. Dexrazoxane ameliorates radiation-induced heart disease in a rat model. Aging (Albany NY) 2021; 13:3699-3711. [PMID: 33406500 PMCID: PMC7906151 DOI: 10.18632/aging.202332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Treatment of thoracic tumors with radiotherapy can lead to severe cardiac injury. We investigated the effects of dexrazoxane, a USFDA-approved cardioprotective drug administered with chemotherapy, on radiation-induced heart disease (RIHD) in a rat model. Male Sprague-Dawley rats were irradiated with a single dose of 20 Gy to the heart and treated with dexrazoxane at the time of irradiation and for 12 subsequent weeks. Dexrazoxane suppressed radiation-induced myocardial apoptosis and significantly reversed changes in serum cardiac troponin I levels and histopathological characteristics six months post-radiation. Treatment with dexrazoxane did not alter the radiosensitivity of thoracic tumors in a tumor formation experiment using male nude Balb/C mice with tumors generated by H292 cells. Dexrazoxane reduced the accumulation of reactive oxygen species in rat cardiac tissues, but not in tumors in nude mice. Transcriptome sequencing showed that IKBKE, MAP3K8, NFKBIA, and TLR5, which are involved in Toll-like receptor signaling, may be associated with the anti-RIHD effects of dexrazoxane. Immunohistochemistry revealed that dexrazoxane significantly decreased NF-κB p65 expression in cardiomyocytes. These findings suggest dexrazoxane may protect against RIHD by suppressing apoptosis and oxidative stress in cardiomyocytes.
Collapse
Affiliation(s)
- Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqi Nie
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fang Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Minxiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
23
|
IL-18 binding protein (IL-18BP) as a novel radiation countermeasure after radiation exposure in mice. Sci Rep 2020; 10:18674. [PMID: 33122671 PMCID: PMC7596073 DOI: 10.1038/s41598-020-75675-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Recent studies suggested that radiation exposure causes local and systemic inflammatory responses and induces cell and tissue damage. We have reported that IL-18 plays an important role in radiation-induced injury. Here, we demonstrate that IL-18 binding protein (IL-18BP), a natural antagonist of IL-18, was significantly increased (1.7-63 fold) in mouse serum on day 1 after 0.5-10 Gy TBI. However, this high level of IL-18BP was not sufficient to neutralize the active IL-18 in irradiated mice, resulting in a radiation dose-dependent free IL-18 increase in these mice's serum which led to pathological alterations to the irradiated cells and tissues and finally caused animal death. Administration of recombinant human (rh) IL-18BP (1.5 mg/kg) with single (24, 48 or 72 h post-TBI) or double doses (48 h and 5 days post-TBI) subcutaneous (SC) injection increased 30-day survival of CD2F1 mice after 9 Gy TBI 12.5-25% compared with the vehicle control treated group, respectively. Furthermore, the mitigative effects of rhIL-18BP included balancing the ratio of IL-18/IL-18BP and decreasing the free IL-18 levels in irradiated mouse serum and significantly increasing blood cell counts, BM hematopoietic cellularity and stem and progenitor cell clonogenicity in mouse BM. Furthermore, IL-18BP treatment inhibited the IL-18 downstream target interferon (IFN)-γ expression in mouse BM, decreased reactive oxygen species (ROS) level in the irradiated mouse heart tissues, attenuated the stress responsive factor GDF-15 (growth differentiation factor-15) and increased the intestine protector citrulline level in total body irradiated mouse serum, implicating that IL-18BP may protect multiple organs from radiation-induced inflammation and oxidative stress. Our data suggest that IL-18 plays a key role in radiation-induced cell and tissue damage and dysfunction; and for the first time demonstrated that IL-18BP counters IL-18 activation and therefore may mitigate/treat radiation-induced multiple organ injuries and increase animal survival with a wider therapeutic window from 24 h and beyond after lethal doses of radiation exposure.
Collapse
|
24
|
Qian L, Cen J. Hematopoietic Stem Cells and Mesenchymal Stromal Cells in Acute Radiation Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8340756. [PMID: 32855768 PMCID: PMC7443042 DOI: 10.1155/2020/8340756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
With the extensive utilization of radioactive materials for medical, industrial, agricultural, military, and research purposes, medical researchers are trying to identify new methods to treat acute radiation syndrome (ARS). Radiation may cause injury to different tissues and organs, but no single drug has been proven to be effective in all circumstances. Radioprotective agents are always effective if given before irradiation, but many nuclear accidents are unpredictable. Medical countermeasures that can be beneficial to different organ and tissue injuries caused by radiation are urgently needed. Cellular therapy, especially stem cell therapy, has been a promising approach in ARS. Hematopoietic stem cells (HSCs) and mesenchymal stromal cells (MSCs) are the two main kinds of stem cells which show good efficacy in ARS and have attracted great attention from researchers. There are also some limitations that need to be investigated in future studies. In recent years, there are also some novel methods of stem cells that could possibly be applied on ARS, like "drug" stem cell banks obtained from clinical grade human induced pluripotent stem cells (hiPSCs), MSC-derived products, and infusion of HSCs without preconditioning treatment, which make us confident in the future treatment of ARS. This review focuses on major scientific and clinical advances of hematopoietic stem cells and mesenchymal stromal cells on ARS.
Collapse
Affiliation(s)
- Liren Qian
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Fucheng Road #6, Beijing 100048, China
| | - Jian Cen
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Fucheng Road #6, Beijing 100048, China
| |
Collapse
|
25
|
Rosen E, Kryndushkin D, Aryal B, Gonzalez Y, Chehab L, Dickey J, Rao VA. Acute total body ionizing gamma radiation induces long-term adverse effects and immediate changes in cardiac protein oxidative carbonylation in the rat. PLoS One 2020; 15:e0233967. [PMID: 32497067 PMCID: PMC7272027 DOI: 10.1371/journal.pone.0233967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation-induced heart disease presents a significant challenge in the event of an accidental radiation exposure as well as to cancer patients who receive acute doses of irradiation as part of radiation therapy. We utilized the spontaneously hypertensive Wistar-Kyoto rat model, previously shown to demonstrate drug-induced cardiomyopathy, to evaluate the acute and long-term effects of sub-lethal total body gamma irradiation at two, four, and fifty-two weeks. We further examined irreversible oxidative protein carbonylation in the heart immediately following irradiation in the normotensive Wistar-Kyoto rat. Both males and females sustained weight loss and anemic conditions compared to untreated controls over a one-year period as reflected by reduced body weight and low red blood cell count. Increased inflammation was detected by elevated IL-6 serum levels selectively in males at four weeks. Serum cardiac troponin T and I analyses revealed signs of cardiomyopathy at earlier timepoints, but high variability was observed, especially at one year. Echocardiography at two weeks following 5.0Gy treatment revealed a significant decrease in cardiac output in females and a significant decrease in both diastolic and systolic volumes in males. Following 10.0Gy irradiation in the normotensive Wistar-Kyoto rat, the heart tissue showed an increase in total protein oxidative carbonylation accompanied by DNA damage indicated by an increase in γ-H2AX. Using proteomic analyses, we identified several novel proteins which showed a marked difference in carbonylation including those of mitochondrial origin and most notably, cardiac troponin T, one of the key proteins involved in cardiomyocyte contractility. Overall, we present findings of acute oxidative protein damage, DNA damage, cardiac troponin T carbonylation, and long-term cardiomyopathy in the irradiated animals.
Collapse
Affiliation(s)
- Elliot Rosen
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Dmitry Kryndushkin
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Baikuntha Aryal
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Yanira Gonzalez
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Leena Chehab
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jennifer Dickey
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - V. Ashutosh Rao
- Center for Drug Evaluation and Research, Office of Biotechnology Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
26
|
Ping Z, Peng Y, Lang H, Xinyong C, Zhiyi Z, Xiaocheng W, Hong Z, Liang S. Oxidative Stress in Radiation-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3579143. [PMID: 32190171 PMCID: PMC7071808 DOI: 10.1155/2020/3579143] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
There is a distinct increase in the risk of heart disease in people exposed to ionizing radiation (IR). Radiation-induced heart disease (RIHD) is one of the adverse side effects when people are exposed to ionizing radiation. IR may come from various forms, such as diagnostic imaging, radiotherapy for cancer treatment, nuclear disasters, and accidents. However, RIHD was mainly observed after radiotherapy for chest malignant tumors, especially left breast cancer. Radiation therapy (RT) has become one of the main ways to treat all kinds of cancer, which is used to reduce the recurrence of cancer and improve the survival rate of patients. The potential cause of radiation-induced cardiotoxicity is unclear, but it may be relevant to oxidative stress. Oxidative stress, an accumulation of reactive oxygen species (ROS), disrupts intracellular homeostasis through chemical modification and damages proteins, lipids, and DNA; therefore, it results in a series of related pathophysiological changes. The purpose of this review was to summarise the studies of oxidative stress in radiotherapy-induced cardiotoxicity and provide prevention and treatment methods to reduce cardiac damage.
Collapse
Affiliation(s)
- Zhang Ping
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Yang Peng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Hong Lang
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Cai Xinyong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Zeng Zhiyi
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Wu Xiaocheng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Zeng Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Shao Liang
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006 Jiangxi, China
| |
Collapse
|
27
|
Canada JM, Thomas GK, Trankle CR, Carbone S, Billingsley H, Van Tassell BW, Evans RK, Garten R, Weiss E, Abbate A. Increased C-reactive protein is associated with the severity of thoracic radiotherapy-induced cardiomyopathy. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2020; 6:2. [PMID: 32154028 PMCID: PMC7048115 DOI: 10.1186/s40959-020-0058-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Irradiation of the heart during cancer radiotherapy is associated with a dose-dependent risk of heart failure. Animal studies have demonstrated that irradiation leads to an inflammatory response within the heart as well as a reduction in cardiac reserve. In the current study we aimed to evaluate whether inflammatory biomarkers correlated with changes in cardiac function and reserve after radiotherapy for breast or lung cancer. METHODS AND RESULTS We studied 25 subjects with a history of breast or lung cancer without a prior diagnosis of cardiovascular disease or heart failure, 1.8 years [0.4-3.6] post-radiotherapy involving at least 5 Gray (Gy) to at least 10% of the heart. High-sensitivity C-reactive protein (CRP) was abnormal (≥2 mg/L) in 16 (64%) subjects. Cardiac function and reserve was measured with Doppler echocardiography before and after exercise and defined as left-ventricular ejection fraction (LVEF), early diastolic mitral annulus velocity (e'), and increase in LV outflow tract velocity time integral cardiac output (cardiac reserve) with exercise. Subjects with abnormal CRP had significantly lower LVEF (51 [44-59] % vs 61 [52-64] %, P = 0.039), lower e' (7.4 [6.6-7.9] cm/sec vs 9.9 [8.3-12.0] cm/sec, P = 0.010), and smaller cardiac reserve (+ 1.5 [1.2-1.7] L/min vs + 1.9 [1.7-2.2] L/min, P = 0.024). CONCLUSION Elevated systemic inflammation is associated with impaired left-ventricular systolic and diastolic function both at rest and during exercise in subjects who have received radiotherapy with significant incidental heart dose for the treatment of cancer.
Collapse
Affiliation(s)
- Justin M. Canada
- VCU Pauley Heart Center, Virginia Commonwealth University, P.O. Box 980335, 1200 E. Broad Street, Richmond, Virginia, 23298 USA
| | - Georgia K. Thomas
- VCU Pauley Heart Center, Virginia Commonwealth University, P.O. Box 980335, 1200 E. Broad Street, Richmond, Virginia, 23298 USA
| | - Cory R. Trankle
- VCU Pauley Heart Center, Virginia Commonwealth University, P.O. Box 980335, 1200 E. Broad Street, Richmond, Virginia, 23298 USA
| | - Salvatore Carbone
- VCU Pauley Heart Center, Virginia Commonwealth University, P.O. Box 980335, 1200 E. Broad Street, Richmond, Virginia, 23298 USA
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hayley Billingsley
- VCU Pauley Heart Center, Virginia Commonwealth University, P.O. Box 980335, 1200 E. Broad Street, Richmond, Virginia, 23298 USA
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Benjamin W. Van Tassell
- VCU Pauley Heart Center, Virginia Commonwealth University, P.O. Box 980335, 1200 E. Broad Street, Richmond, Virginia, 23298 USA
- Department of Pharmacotherapy and Outcome Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ronald K. Evans
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ryan Garten
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, P.O. Box 980335, 1200 E. Broad Street, Richmond, Virginia, 23298 USA
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
28
|
Lee MS, Liu DW, Hung SK, Yu CC, Chi CL, Chiou WY, Chen LC, Lin RI, Huang LW, Chew CH, Hsu FC, Chan MWY, Lin HY. Emerging Challenges of Radiation-Associated Cardiovascular Dysfunction (RACVD) in Modern Radiation Oncology: Clinical Practice, Bench Investigation, and Multidisciplinary Care. Front Cardiovasc Med 2020; 7:16. [PMID: 32154267 PMCID: PMC7047711 DOI: 10.3389/fcvm.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a crucial treatment modality in managing cancer patients. However, irradiation dose sprinkling to tumor-adjacent normal tissues is unavoidable, generating treatment toxicities, such as radiation-associated cardiovascular dysfunction (RACVD), particularly for those patients with combined therapies or pre-existing adverse features/comorbidities. Radiation oncologists implement several efforts to decrease heart dose for reducing the risk of RACVD. Even applying the deep-inspiration breath-hold (DIBH) technique, the risk of RACVD is though reduced but still substantial. Besides, available clinical methods are limited for early detecting and managing RACVD. The present study reviewed emerging challenges of RACVD in modern radiation oncology, in terms of clinical practice, bench investigation, and multidisciplinary care. Several molecules are potential for serving as biomarkers and therapeutic targets. Of these, miRNAs, endogenous small non-coding RNAs that function in regulating gene expression, are of particular interest because low-dose irradiation, i.e., 200 mGy (one-tenth of conventional RT daily dose) induces early changes of pro-RACVD miRNA expression. Moreover, several miRNAs, e.g., miR-15b and miR21, involve in the development of RACVD, further demonstrating the potential bio-application in RACVD. Remarkably, many RACVDs are late RT sequelae, characterizing highly irreversible and progressively worse. Thus, multidisciplinary care from oncologists and cardiologists is crucial. Combined managements with commodities control (such as hypertension, hypercholesterolemia, and diabetes), smoking cessation, and close monitoring are recommended. Some agents show abilities for preventing and managing RACVD, such as statins and angiotensin-converting enzyme inhibitors (ACEIs); however, their real roles should be confirmed by further prospective trials.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Chen-Lin Chi
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Li-Wen Huang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| |
Collapse
|
29
|
Gramatyka M, Sokół M. Radiation metabolomics in the quest of cardiotoxicity biomarkers: the review. Int J Radiat Biol 2020; 96:349-359. [PMID: 31976800 DOI: 10.1080/09553002.2020.1704299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: Ionizing radiation is a risk factor to the whole organism, including the heart. Cardiac damage is considered to be a late effect of radiation exposure. While the acute cardiotoxicity of high doses is well characterized, the knowledge about nature and magnitude of the cardiac risk following lower doses exposure is incomplete. It has been shown that the cardiotoxic effects of radiation are source-, dose- and time-dependent. This paper provides an overview on these dependencies with regard to the molecular responses at the cellular and tissue levels. Main focus is put on the Nuclear Magnetic Resonance (NMR)-based and Mass Spectrometry (MS)-based metabolomic approaches in search of toxicity markers of relatively small doses of radiation.Conclusions: Available literature indicates that radiation exposure affects metabolites associated with: energy production, degradation of proteins and cell membranes, expression of proteins and stress response. Such effects are common for both animal and human studies. However, the specific metabolic response depends on several factors, including the examined organ. Radiation metabolomics can be used to explain the mechanisms of development of radiation-induced heart disease and to find an organ-specific biomarker of radiation exposure. The main aim of this review was to collect the information on the human cardiotoxicity biomarkers. In addition it also summarizes results of the studies on the metabolic responses to ionizing radiation for other organs, as well as the comparative data concerning animal studies.
Collapse
Affiliation(s)
- Michalina Gramatyka
- Department of Medical Physics, Maria Sklodowska-Curie Memorial Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Sklodowska-Curie Memorial Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
30
|
Kura B, Kalocayova B, Devaux Y, Bartekova M. Potential Clinical Implications of miR-1 and miR-21 in Heart Disease and Cardioprotection. Int J Mol Sci 2020; 21:ijms21030700. [PMID: 31973111 PMCID: PMC7037063 DOI: 10.3390/ijms21030700] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
The interest in non-coding RNAs, which started more than a decade ago, has still not weakened. A wealth of experimental and clinical studies has suggested the potential of non-coding RNAs, especially the short-sized microRNAs (miRs), to be used as the new generation of therapeutic targets and biomarkers of cardiovascular disease, an ever-growing public health issue in the modern world. Among the hundreds of miRs characterized so far, microRNA-1 (miR-1) and microRNA-21 (miR-21) have received some attention and have been associated with cardiac injury and cardioprotection. In this review article, we summarize the current knowledge of the function of these two miRs in the heart, their association with cardiac injury, and their potential cardioprotective roles and biomarker value. While this field has already been extensively studied, much remains to be done before research findings can be translated into clinical application for patient’s benefit.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg;
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-3229-5427
| |
Collapse
|
31
|
Zeng ZM, Du HY, Xiong L, Zeng XL, Zhang P, Cai J, Huang L, Liu AW. BRCA1 protects cardiac microvascular endothelial cells against irradiation by regulating p21-mediated cell cycle arrest. Life Sci 2020; 244:117342. [PMID: 31978450 DOI: 10.1016/j.lfs.2020.117342] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
AIMS Microvascular endothelial cell dysfunction is a leading cause of radiation-induced heart disease (RIHD). BRCA1 plays an important role in DNA damage repair. The study aims to explore the effect of BRCA1 in endothelial cells involved in RIHD. MATERIALS AND METHODS BRCA1 and p21 expression were detected in human umbilical vein endothelial cells (HUVECs) and in mouse heart tissue after irradiation exposure. The effects of BRCA1 on cell proliferation, cell cycle and radiosensitivity were determined in HUVECs with overexpression and knockdown of BRCA1. A mouse model of RIHD was established. Heart damage was detected in C57BL/6J mice and endothelial cell specific knockout BRCA1 mice (EC-BRCA1-/-). KEY FINDINGS BRCA1 and p21 expression was significantly increased both in vitro and vivo response to irradiation. BRCA1 overexpression in endothelial cells enhanced cell growth and G1/S phase arrest, and the opposite results were observed in BRCA1 knockdown endothelial cells. BRCA1 downregulated endothelial cell cycle-related genes cyclin A, cyclin D1, cyclin E and p-Rb through increasing p21 expression, and HUVECs with BRCA1 gene knockdown were more sensitive to radiation. In vivo, a decrease in cardiac microvascular density, as well as cardiomyocyte hypoxia and apoptosis were observed in a time-dependent manner. EC-BRCA1-/- mice were more prone to severe RIHD than EC-BRCA1+/- mice after 16Gy radiation exposure due to endothelial dysfunction caused by loss of BRCA1, and p21 was declined in EC-BRCA1-/- mice heart. SIGNIFICANCE These findings indicate that BRCA1 plays a protective role in RIHD by regulating endothelial cell cycle arrest mediated by p21 signal.
Collapse
Affiliation(s)
- Zhi-Min Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi Province, PR China
| | - Hai-Yang Du
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi Province, PR China
| | - Le Xiong
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi Province, PR China
| | - Xiao-Li Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Peng Zhang
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Long Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi Province, PR China.
| | - An-Wen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi Province, PR China.
| |
Collapse
|
32
|
Zou B, Schuster JP, Niu K, Huang Q, Rühle A, Huber PE. Radiotherapy-induced heart disease: a review of the literature. PRECISION CLINICAL MEDICINE 2019; 2:270-282. [PMID: 35693876 PMCID: PMC8985808 DOI: 10.1093/pcmedi/pbz025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/20/2022] Open
Abstract
Radiotherapy as one of the four pillars of cancer therapy plays a critical role in the multimodal treatment of thoracic cancers. Due to significant improvements in overall cancer survival, radiotherapy-induced heart disease (RIHD) has become an increasingly recognized adverse reaction which contributes to major radiation-associated toxicities including non-malignant death. This is especially relevant for patients suffering from diseases with excellent prognosis such as breast cancer or Hodgkin's lymphoma, since RIHD may occur decades after radiotherapy. Preclinical studies have enriched our knowledge of many potential mechanisms by which thoracic radiotherapy induces heart injury. Epidemiological findings in humans reveal that irradiation might increase the risk of cardiac disease at even lower doses than previously assumed. Recent preclinical studies have identified non-invasive methods for evaluation of RIHD. Furthermore, potential options preventing or at least attenuating RIHD have been developed. Ongoing research may enrich our limited knowledge about biological mechanisms of RIHD, identify non-invasive early detection biomarkers and investigate potential treatment options that might attenuate or prevent these unwanted side effects. Here, we present a comprehensive review about the published literature regarding clinical manifestation and pathological alterations in RIHD. Biological mechanisms and treatment options are outlined, and challenges in RIHD treatment are summarized.
Collapse
Affiliation(s)
- Bingwen Zou
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Julius Philipp Schuster
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Kerun Niu
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Qianyi Huang
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Oncology (NCRO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Peter Ernst Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Oncology (NCRO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| |
Collapse
|
33
|
Gvozdjáková A, Kucharská J, Kura B, Vančová O, Rausová Z, Sumbalová Z, Uličná O, Slezák J. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats. Can J Physiol Pharmacol 2019; 98:29-34. [PMID: 31536712 DOI: 10.1139/cjpp-2019-0281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are the major source of cellular energy metabolism. In the cardiac cells, mitochondria produce by way of the oxidative phosphorylation more than 90% of the energy supply in the form of ATP, which is utilized in many ATP-dependent processes, like cycling of the contractile proteins or maintaining ion gradients. Reactive oxygen species (ROS) are by-products of cellular metabolism and their levels are controlled by intracellular antioxidant systems. Imbalance between ROS and the antioxidant defense leads to oxidative stress and oxidative changes to cellular biomolecules. Molecular hydrogen (H2) has been proved as beneficial in the prevention and therapy of various diseases including cardiovascular disorders. It selectively scavenges hydroxyl radical and peroxynitrite, reduces oxidative stress, and has anti-inflammatory and anti-apoptotic effects. The effect of H2 on the myocardial mitochondrial function and coenzyme Q levels is not well known. In this paper, we demonstrated that consumption of H2-rich water (HRW) resulted in stimulated rat cardiac mitochondrial electron respiratory chain function and increased levels of ATP production by Complex I and Complex II substrates. Similarly, coenzyme Q9 levels in the rat plasma, myocardial tissue, and mitochondria were increased and malondialdehyde level in plasma was reduced after HRW administration. Based on obtained data, we hypothesize a new metabolic pathway of the H2 effect in mitochondria on the Q-cycle and in mitochondrial respiratory chain function. The Q-cycle contains three coenzyme Q forms: coenzyme Q in oxidized form (ubiquinone), radical form (semiquinone), or reduced form (ubiquinol). H2 may be a donor of both electron and proton in the Q-cycle and thus we can suppose stimulation of coenzyme Q production. When ubiquinone is reduced to ubiquinol, lipid peroxidation is reduced. Increased CoQ9 concentration can stimulate electron transport from Complex I and Complex II to Complex III and increase ATP production via mitochondrial oxidative phosphorylation. Our results indicate that H2 may function to prevent/treat disease states with disrupted myocardial mitochondrial function.
Collapse
Affiliation(s)
- Anna Gvozdjáková
- Pharmacobiochemical Laboratory of 3rd Medical Department, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Jarmila Kucharská
- Pharmacobiochemical Laboratory of 3rd Medical Department, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Branislav Kura
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ol'ga Vančová
- Pharmacobiochemical Laboratory of 3rd Medical Department, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Zuzana Rausová
- Pharmacobiochemical Laboratory of 3rd Medical Department, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Zuzana Sumbalová
- Pharmacobiochemical Laboratory of 3rd Medical Department, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Ol'ga Uličná
- Pharmacobiochemical Laboratory of 3rd Medical Department, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Ján Slezák
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
34
|
Wang H, Wei J, Zheng Q, Meng L, Xin Y, Yin X, Jiang X. Radiation-induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci 2019; 15:2128-2138. [PMID: 31592122 PMCID: PMC6775290 DOI: 10.7150/ijbs.35460] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
With the increasing incidence of thoracic tumors, radiation therapy (RT) has become an important component of comprehensive treatment. RT improves survival in many cancers, but it involves some inevitable complications. Radiation-induced heart disease (RIHD) is one of the most serious complications. RIHD comprises a spectrum of heart disease including cardiomyopathy, pericarditis, coronary artery disease, valvular heart disease and conduction system abnormalities. There are numerous clinical manifestations of RIHD, such as chest pain, palpitation, and dyspnea, even without obvious symptoms. Based on previous studies, the pathogenesis of RIHD is related to the production and effects of various cytokines caused by endothelial injury, inflammatory response, and oxidative stress (OS). Therefore, it is of great importance for clinicians to identify the mechanism and propose interventions for the prevention of RIHD.
Collapse
Affiliation(s)
- Heru Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China.,Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Qingshuang Zheng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Internal Medicine, Florida Hospital, Orlando, FL 32804,USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xia Yin
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
35
|
LeBaron TW, Kura B, Kalocayova B, Tribulova N, Slezak J. A New Approach for the Prevention and Treatment of Cardiovascular Disorders. Molecular Hydrogen Significantly Reduces the Effects of Oxidative Stress. Molecules 2019; 24:E2076. [PMID: 31159153 PMCID: PMC6600250 DOI: 10.3390/molecules24112076] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the most common causes of morbidity and mortality worldwide. Redox dysregulation and a dyshomeostasis of inflammation arise from, and result in, cellular aberrations and pathological conditions, which lead to cardiovascular diseases. Despite years of intensive research, there is still no safe and effective method for their prevention and treatment. Recently, molecular hydrogen has been investigated in preclinical and clinical studies on various diseases associated with oxidative and inflammatory stress such as radiation-induced heart disease, ischemia-reperfusion injury, myocardial and brain infarction, storage of the heart, heart transplantation, etc. Hydrogen is primarily administered via inhalation, drinking hydrogen-rich water, or injection of hydrogen-rich saline. It favorably modulates signal transduction and gene expression resulting in suppression of proinflammatory cytokines, excess ROS production, and in the activation of the Nrf2 antioxidant transcription factor. Although H2 appears to be an important biological molecule with anti-oxidant, anti-inflammatory, and anti-apoptotic effects, the exact mechanisms of action remain elusive. There is no reported clinical toxicity; however, some data suggests that H2 has a mild hormetic-like effect, which likely mediate some of its benefits. The mechanistic data, coupled with the pre-clinical and clinical studies, suggest that H2 may be useful for ROS/inflammation-induced cardiotoxicity and other conditions.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
- Molecular Hydrogen Institute, Enoch City, UT, 847 21, USA.
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Narcis Tribulova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| |
Collapse
|
36
|
Li J, Xiang X, Xu Z. Cilostazol protects against myocardial ischemia and reperfusion injury by activating transcription factor EB (TFEB). Biotechnol Appl Biochem 2019; 66:555-563. [PMID: 30994947 DOI: 10.1002/bab.1754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
Abstract
Although cilostazol was proved to have antitumor biological effects, its function in myocardial ischemia and reperfusion (I/R) injury and the underlying mechanisms were not fully illustrated yet. In this study, a rat model of I/R injury was constructed and quantitative real-time PCR, Western blot, and immunofluorescence (IF) assay were performed. Our results showed that cilostazol increased LC3 II/LC3 I ratio, reduced p62 abundance, and promoted the expressions of LAMP1, LAMP2, cathepsin B, and cathepsin D, indicating that cilostazol could activate autophagy and elevated lysosome activation. Following analysis showed that cilostazol enhanced nuclear protein expression of transcription factor EB (TFEB), an important regulator of autophagy-lysosome pathway. Furthermore, CCI-779, an inhibitor of TFEB, could reverse the effects of cilostazol on autophagic activity and lysosome activation. Importantly, cilostazol suppressed I/R injury-induced apoptosis by decreasing the cleavage of caspase 3 and PARP. Enzyme-linked immunosorbent assay showed that cilostazol reduced the serum levels of CTn1 and CK-MB and decreased infract size caused by I/R injuries. Altogether this study suggested that cilostazol protects against I/R injury by regulating autophagy, lysosome, and apoptosis in a rat model of I/R injury. The protective mechanism of cilostazol was partially through increasing the transcriptional activity of TFEB.
Collapse
Affiliation(s)
- Jiangjin Li
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, People's Republic of China
| | - Xiaoli Xiang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, People's Republic of China
| | - Zuo Xu
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, People's Republic of China
| |
Collapse
|
37
|
Kura B, Bagchi AK, Singal PK, Barancik M, LeBaron TW, Valachova K, Šoltés L, Slezák J. Molecular hydrogen: potential in mitigating oxidative-stress-induced radiation injury. Can J Physiol Pharmacol 2019; 97:287-292. [DOI: 10.1139/cjpp-2018-0604] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Uncontrolled production of oxygen and nitrogen radicals results in oxidative and nitrosative stresses that impair cellular functions and have been regarded as causative common denominators of many pathological processes. In this review, we report on the beneficial effects of molecular hydrogen in scavenging radicals in an artificial system of•OH formation. As a proof of principle, we also demonstrate that in rat hearts in vivo, administration of molecular hydrogen led to a significant increase in superoxide dismutase as well as pAKT, a cell survival signaling molecule. Irradiation of the rats caused a significant increase in lipid peroxidation, which was mitigated by pre-treatment of the animals with molecular hydrogen. The nuclear factor erythroid 2-related factor 2 is regarded as an important regulator of oxyradical homeostasis, as well as it supports the functional integrity of cells, particularly under conditions of oxidative stress. We suggest that the beneficial effects of molecular hydrogen may be through the activation of nuclear factor erythroid 2-related factor 2 pathway that promotes innate antioxidants and reduction of apoptosis, as well as inflammation.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| | - Ashim K. Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Miroslav Barancik
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| | - Tyler W. LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
- Molecular Hydrogen Institute, Enoch, Utah 84721, USA
| | - Katarina Valachova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovak Republic
| | - Ladislav Šoltés
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovak Republic
| | - Ján Slezák
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
38
|
Regulation of microRNAs by molecular hydrogen contributes to the prevention of radiation-induced damage in the rat myocardium. Mol Cell Biochem 2019; 457:61-72. [PMID: 30830529 DOI: 10.1007/s11010-019-03512-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
microRNAs (miRNAs) constitute a large class of post-transcriptional regulators of gene expression. It has been estimated that miRNAs regulate up to 30% of the protein-coding genes in humans. They are implicated in many physiological and pathological processes, including those involved in radiation-induced heart damage. Biomedical studies indicate that molecular hydrogen has potential as a radioprotective agent due to its antioxidant, anti-inflammatory, and signal-modulating effects. However, the impact of molecular hydrogen on the expression of miRNAs in the heart after irradiation has not been investigated. This study aimed to explore the involvement of miRNA-1, -15b, and -21 in the protective action of molecular hydrogen on rat myocardium damaged by irradiation. The results showed that the levels of malondialdehyde (MDA) and tumor necrosis factor alpha (TNF-α) increased in the rat myocardium after irradiation. Treatment with molecular hydrogen-rich water (HRW) reduced these values to the level of non-irradiated controls. miRNA-1 is known to be involved in cardiac hypertrophy, and was significantly decreased in the rat myocardium after irradiation. Application of HRW attenuated this decrease in all evaluated time periods. miRNA-15b is considered to be anti-fibrotic, anti-hypertrophic, and anti-oxidative. Irradiation downregulated miRNA-15b, whereas administration of HRW restored these values. miRNA-21 is connected with cardiac fibrosis. We observed significant increase in miRNA-21 expression in the irradiated rat hearts. Molecular hydrogen lowered myocardial miRNA-21 levels after irradiation. This study revealed for the first time that the protective effects of molecular hydrogen on irradiation-induced heart damage may be mediated by regulating miRNA-1, -15b, and -21.
Collapse
|
39
|
Baselet B, Sonveaux P, Baatout S, Aerts A. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci 2019; 76:699-728. [PMID: 30377700 PMCID: PMC6514067 DOI: 10.1007/s00018-018-2956-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
Abstract
The endothelium, a tissue that forms a single layer of cells lining various organs and cavities of the body, especially the heart and blood as well as lymphatic vessels, plays a complex role in vascular biology. It contributes to key aspects of vascular homeostasis and is also involved in pathophysiological processes, such as thrombosis, inflammation, and hypertension. Epidemiological data show that high doses of ionizing radiation lead to cardiovascular disease over time. The aim of this review is to summarize the current knowledge on endothelial cell activation and dysfunction after ionizing radiation exposure as a central feature preceding the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Pierre Sonveaux
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
| |
Collapse
|
40
|
Irradiation-Induced Cardiac Connexin-43 and miR-21 Responses Are Hampered by Treatment with Atorvastatin and Aspirin. Int J Mol Sci 2018; 19:ijms19041128. [PMID: 29642568 PMCID: PMC5979305 DOI: 10.3390/ijms19041128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/31/2018] [Accepted: 04/05/2018] [Indexed: 11/29/2022] Open
Abstract
Radiation of the chest during cancer therapy is deleterious to the heart, mostly due to oxidative stress and inflammation related injury. A single sub-lethal dose of irradiation has been shown to result in compensatory up-regulation of the myocardial connexin-43 (Cx43), activation of the protein kinase C (PKC) signaling along with the decline of microRNA (miR)-1 and an increase of miR-21 levels in the left ventricle (LV). We investigated whether drugs with antioxidant, anti-inflammatory or vasodilating properties, such as aspirin, atorvastatin, and sildenafil, may affect myocardial response in the LV and right ventricle (RV) following chest irradiation. Adult, male Wistar rats were subjected to a single sub-lethal dose of chest radiation at 25 Gy and treated with aspirin (3 mg/day), atorvastatin (0.25 mg/day), and sildenafil (0.3 mg/day) for six weeks. Cx43, PKCε and PKCδ proteins expression and levels of miR-1 as well as miR-21 were determined in the LV and RV. Results showed that the suppression of miR-1 was associated with an increase of total and phosphorylated forms of Cx43 as well as PKCε expression in the LV while having no effect in the RV post-irradiation as compared to the non-irradiated rats. Treatment with aspirin and atorvastatin prevented an increase in the expression of Cx43 and PKCε without change in the miR-1 levels. Furthermore, treatment with aspirin, atorvastatin, and sildenafil completely prevented an increase of miR-21 in the LV while having partial effect in the RV post irradiation. The increase in pro-apoptotic PKCδ was not affected by any of the used treatment. In conclusion, irradiation and drug-induced changes were less pronounced in the RV as compared to the LV. Treatment with aspirin and atorvastatin interfered with irradiation-induced compensatory changes in myocardial Cx43 protein and miR-21 by preventing their elevation, possibly via amelioration of oxidative stress and inflammation.
Collapse
|
41
|
Cejka C, Kossl J, Hermankova B, Holan V, Kubinova S, Zhang JH, Cejkova J. Therapeutic effect of molecular hydrogen in corneal UVB-induced oxidative stress and corneal photodamage. Sci Rep 2017; 7:18017. [PMID: 29269749 PMCID: PMC5740126 DOI: 10.1038/s41598-017-18334-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/08/2017] [Indexed: 01/27/2023] Open
Abstract
The aim of this study is to examine whether molecular hydrogen (H2) is able to reduce oxidative stress after corneal damage induced by UVB irradiation. We previously found that UVB irradiation of the cornea caused the imbalance between the antioxidant and prooxidant enzymes in the corneal epithelium, followed by the imbalance between metalloproteinases and their physiological inhibitors (imbalances in favour of prooxidants and metalloproteinases) contributing to oxidative stress and development of the intracorneal inflammation. Here we investigate the effect of H2 dissolved in PBS in the concentration 0.5 ppm wt/vol, applied on rabbit corneas during UVB irradiation and healing (UVB doses 1.01 J/cm2 once daily for four days). Some irradiated corneas remained untreated or buffer treated. In these corneas the oxidative stress appeared, followed by the excessive inflammation. Malondiladehyde and peroxynitrite expressions were present. The corneas healed with scar formation and neovascularization. In contrast, in H2 treated irradiated corneas oxidative stress was suppressed and malondiladehyde and peroxynitrite expressions were absent. The corneas healed with the restoration of transparency. The study provides the first evidence of the role of H2 in prevention of oxidative and nitrosative stress in UVB irradiated corneas, which may represent a novel prophylactic approach to corneal photodamage.
Collapse
Affiliation(s)
- Cestmir Cejka
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - Jan Kossl
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic.,Faculty of Natural Science, Charles University, Vinicna 7, 12843, Prague 2, Czech Republic
| | - Barbora Hermankova
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic.,Faculty of Natural Science, Charles University, Vinicna 7, 12843, Prague 2, Czech Republic
| | - Vladimir Holan
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic.,Faculty of Natural Science, Charles University, Vinicna 7, 12843, Prague 2, Czech Republic
| | - Sarka Kubinova
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - John H Zhang
- Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jitka Cejkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic.
| |
Collapse
|
42
|
Viczenczova C, Kura B, Chaudagar KK, Szeiffova Bacova B, Egan Benova T, Barancik M, Knezl V, Ravingerova T, Tribulova N, Slezak J. Myocardial connexin-43 is upregulated in response to acute cardiac injury in rats. Can J Physiol Pharmacol 2017; 95:911-919. [PMID: 28459162 DOI: 10.1139/cjpp-2016-0680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We aimed to explore whether myocardial intercellular channel protein connexin-43 (Cx43) along with PKCε and MMP-2 might be implicated in responses to acute cardiac injury induced by 2 distinct sublethal interventions in Wistar rats. Animals underwent either single chest irradiation at dose of 25 Gy or subcutaneous injection of isoproterenol (ISO, 120 mg/kg) and were compared with untreated controls. Forty-two days post-interventions, the hearts were excised and left ventricles were used for analysis. The findings showed an increase of total as well as phosphorylated forms of myocardial Cx43 regardless of the type of interventions. Enhanced phosphorylation of Cx43 coincided with increased PKCε expression in both models. Elevation of Cx43 was associated with its enhanced distribution on lateral surfaces of the cardiomyocytes in response to both interventions, while focal areas of fibrosis without Cx43 were found in post-ISO but not post-irradiated rat hearts. In parallel, MMP-2 activity was decreased in the former while increased in the latter. Cardiac function was maintained and the susceptibility of the hearts to ischemia or malignant arrhythmias was not deteriorated 42 days after interventions when compared with controls. Altogether, the findings indicate that myocardial Cx43 is most likely implicated in potentially salutary responses to acute heart injury.
Collapse
Affiliation(s)
- Csilla Viczenczova
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Branislav Kura
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | - Tamara Egan Benova
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Miroslav Barancik
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Vladimir Knezl
- c Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Tana Ravingerova
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Narcis Tribulova
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jan Slezak
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|