1
|
Arad M, Ku K, Frey C, Hare R, McAfee A, Ghafourifar G, Foster LJ. What proteomics has taught us about honey bee (Apis mellifera) health and disease. Proteomics 2025; 25:e2400075. [PMID: 38896501 PMCID: PMC11735666 DOI: 10.1002/pmic.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The Western honey bee, Apis mellifera, is currently navigating a gauntlet of environmental pressures, including the persistent threat of parasites, pathogens, and climate change - all of which compromise the vitality of honey bee colonies. The repercussions of their declining health extend beyond the immediate concerns of apiarists, potentially imposing economic burdens on society through diminished agricultural productivity. Hence, there is an imperative to devise innovative monitoring techniques for assessing the health of honey bee populations. Proteomics, recognized for its proficiency in biomarker identification and protein-protein interactions, is poised to play a pivotal role in this regard. It offers a promising avenue for monitoring and enhancing the resilience of honey bee colonies, thereby contributing to the stability of global food supplies. This review delves into the recent proteomic studies of A. mellifera, highlighting specific proteins of interest and envisioning the potential of proteomics to improve sustainable beekeeping practices amidst the challenges of a changing planet.
Collapse
Affiliation(s)
- Maor Arad
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
- Department of Biochemistry and Molecular BiologyMichael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| | - Kenneth Ku
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
| | - Connor Frey
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
- Department of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Rhien Hare
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
- Faculty of Health SciencesSimon Fraser UniversityBurnabyBCCanada
| | - Alison McAfee
- Department of Biochemistry and Molecular BiologyMichael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of Applied EcologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Golfam Ghafourifar
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular BiologyMichael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
2
|
Yang S, Zhao H, Deng Y, Deng S, Wang X, Diao Q, Hou C. A Reverse Genetics System for the Israeli Acute Paralysis Virus and Chronic Bee Paralysis Virus. Int J Mol Sci 2020; 21:ijms21051742. [PMID: 32143291 PMCID: PMC7084666 DOI: 10.3390/ijms21051742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022] Open
Abstract
Honey bee viruses are associated with honey bee colony decline. Israeli acute paralysis virus (IAPV) is considered to have a strong impact on honey bee survival. Phylogenetic analysis of the viral genomes from several regions of the world showed that various IAPV lineages had substantial differences in virulence. Chronic bee paralysis virus (CBPV), another important honey bee virus, can induce two significantly different symptoms. However, the infection characteristics and pathogenesis of IAPV and CBPV have not been completely elucidated. Here, we constructed infectious clones of IAPV and CBPV using a universal vector to provide a basis for studying their replication and pathogenesis. Infectious IAPV and CBPV were rescued from molecular clones of IAPV and CBPV genomes, respectively, that induced typical paralysis symptoms. The replication levels and expression proteins of IAPV and CBPV in progeny virus production were confirmed by qPCR and Western blot. Our results will allow further dissection of the role of each gene in the context of viral infection while helping to study viral pathogenesis and develop antiviral drugs using reverse genetics systems.
Collapse
Affiliation(s)
- Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China;
| | - Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Correspondence: ; Tel.: +86-10-62597285
| |
Collapse
|
3
|
Robertson AJ, Scruten E, Mostajeran M, Robertson T, Denomy C, Hogan D, Roesler A, Rutherford C, Kusalik A, Griebel P, Napper S. Kinome Analysis of Honeybee (Apis mellifera L.) Dark-Eyed Pupae Identifies Biomarkers and Mechanisms of Tolerance to Varroa Mite Infestation. Sci Rep 2020; 10:2117. [PMID: 32034205 PMCID: PMC7005721 DOI: 10.1038/s41598-020-58927-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/17/2020] [Indexed: 02/01/2023] Open
Abstract
The mite Varroa destructor is a serious threat to honeybee populations. Selective breeding for Varroa mite tolerance could be accelerated by biomarkers within individual bees that could be applied to evaluate a colony phenotype. Previously, we demonstrated differences in kinase-mediated signaling between bees from colonies of extreme phenotypes of mite susceptibility. We expand these findings by defining a panel of 19 phosphorylation events that differ significantly between individual pupae from multiple colonies with distinct Varroa mite tolerant phenotypes. The predictive capacity of these biomarkers was evaluated by analyzing uninfested pupae from eight colonies representing a spectrum of mite tolerance. The pool of biomarkers effectively discriminated individual pupae on the basis of colony susceptibility to mite infestation. Kinome analysis of uninfested pupae from mite tolerant colonies highlighted an increased innate immune response capacity. The implication that differences in innate immunity contribute to mite susceptibility is supported by the observation that induction of innate immune signaling responses to infestation is compromised in pupae of the susceptible colonies. Collectively, biomarkers within individual pupae that are predictive of the susceptibility of colonies to mite infestation could provide a molecular tool for selective breeding of tolerant colonies.
Collapse
Affiliation(s)
| | - Erin Scruten
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Tom Robertson
- Meadow Ridge Enterprises Ltd., Saskatoon, SK, Canada
| | - Connor Denomy
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anna Roesler
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Philip Griebel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
4
|
Li G, Zhao H, Liu Z, Wang H, Xu B, Guo X. The Wisdom of Honeybee Defenses Against Environmental Stresses. Front Microbiol 2018; 9:722. [PMID: 29765357 PMCID: PMC5938604 DOI: 10.3389/fmicb.2018.00722] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
As one of the predominant pollinator, honeybees provide important ecosystem service to crops and wild plants, and generate great economic benefit for humans. Unfortunately, there is clear evidence of recent catastrophic honeybee colony failure in some areas, resulting in markedly negative environmental and economic effects. It has been demonstrated that various environmental stresses, including both abiotic and biotic stresses, functioning singly or synergistically, are the potential drivers of colony collapse. Honeybees can use many defense mechanisms to decrease the damage from environmental stress to some extent. Here, we synthesize and summarize recent advances regarding the effects of environmental stress on honeybees and the wisdom of honeybees to respond to external environmental stress. Furthermore, we provide possible future research directions about the response of honeybees to various form of stressors.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
5
|
de Mattos IM, Soares AEE, Tarpy DR. Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:32-44. [PMID: 29067534 DOI: 10.1007/s10646-017-1868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Honey bee (Apis mellifera L.) populations have been experiencing notable mortality in Europe and North America. No single cause has been identified for these dramatic losses, but rather multiple interacting factors are likely responsible (such as pesticides, malnutrition, habitat loss, and pathogens). Paraquat is one of the most widely used non-selective herbicides, especially in developing countries. This herbicide is considered slightly toxic to honey bees, despite being reported as a highly effective inducer of oxidative stress in a wide range of living systems. Here, we test the effects of paraquat on the expression of detoxification and antioxidant-related genes, as well as on the dynamics of pathogen titers. Moreover, we tested the effects of pollen as mitigating factor to paraquat exposure. Our results show significant changes in the expression of several antioxidant-related and detoxification-related genes in the presence of paraquat, as well as an increase of pathogens titers. Finally, we demonstrate a mitigating effect of pollen through the up-regulation of specific genes and improvement of survival of bees exposed to paraquat. The presence of pollen in the diet was also correlated with a reduced prevalence of Nosema and viral pathogens. We discuss the importance of honey bees' nutrition, especially the availability of pollen, on colony losses chronically reported in the USA and Europe.
Collapse
Affiliation(s)
- Igor Medici de Mattos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14.049-900, Brazil.
| | - Ademilson E E Soares
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14.049-900, Brazil
| | - David R Tarpy
- Department of Entomology & Plant Pathology, College of Agriculture and Life Science, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
6
|
Trapp J, McAfee A, Foster LJ. Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees. Mol Ecol 2017; 26:718-739. [DOI: 10.1111/mec.13986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Judith Trapp
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Alison McAfee
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
7
|
Cappelle K, Smagghe G, Dhaenens M, Meeus I. Israeli Acute Paralysis Virus Infection Leads to an Enhanced RNA Interference Response and Not Its Suppression in the Bumblebee Bombus terrestris. Viruses 2016; 8:v8120334. [PMID: 27999371 PMCID: PMC5192395 DOI: 10.3390/v8120334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi) is the primary antiviral defense system in insects and its importance for pollinator health is indisputable. In this work, we examined the effect of Israeli acute paralysis virus (IAPV) infection on the RNAi process in the bumblebee, Bombus terrestris, and whether the presence of possible functional viral suppressors could alter the potency of the host's immune response. For this, a two-fold approach was used. Through a functional RNAi assay, we observed an enhancement of the RNAi system after IAPV infection instead of its suppression, despite only minimal upregulation of the genes involved in RNAi. Besides, the presence of the proposed suppressor 1A and the predicted OrfX protein in IAPV could not be confirmed using high definition mass spectrometry. In parallel, when bumblebees were infected with cricket paralysis virus (CrPV), known to encode a suppressor of RNAi, no increase in RNAi efficiency was seen. For both viruses, pre-infection with the one virus lead to a decreased replication of the other virus, indicating a major effect of competition. These results are compelling in the context of Dicistroviridae in multi-virus/multi-host networks as the effect of a viral infection on the RNAi machinery may influence subsequent virus infections.
Collapse
Affiliation(s)
- Kaat Cappelle
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Maarten Dhaenens
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
McAfee A, Harpur BA, Michaud S, Beavis RC, Kent CF, Zayed A, Foster LJ. Toward an Upgraded Honey Bee (Apis mellifera L.) Genome Annotation Using Proteogenomics. J Proteome Res 2016; 15:411-21. [DOI: 10.1021/acs.jproteome.5b00589] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alison McAfee
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Brock A. Harpur
- Department
of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Sarah Michaud
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ronald C. Beavis
- Department
of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, 336-745 Bannatyne Avenue, Winnipeg, Manitoba R3E
0J9, Canada
| | - Clement F. Kent
- Department
of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Amro Zayed
- Department
of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
9
|
McAfee A, Michaud S, Foster LJ. “Controlled, cross-species dataset for exploring biases in genome annotation and modification profiles”. Data Brief 2015; 5:829-33. [PMID: 26693519 PMCID: PMC4660258 DOI: 10.1016/j.dib.2015.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 11/12/2022] Open
Abstract
Since the sequencing of the honey bee genome, proteomics by mass spectrometry has become increasingly popular for biological analyses of this insect; but we have observed that the number of honey bee protein identifications is consistently low compared to other organisms [1]. In this dataset, we use nanoelectrospray ionization-coupled liquid chromatography–tandem mass spectrometry (nLC–MS/MS) to systematically investigate the root cause of low honey bee proteome coverage. To this end, we present here data from three key experiments: a controlled, cross-species analyses of samples from Apis mellifera, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Mus musculus and Homo sapiens; a proteomic analysis of an individual honey bee whose genome was also sequenced; and a cross-tissue honey bee proteome comparison. The cross-species dataset was interrogated to determine relative proteome coverages between species, and the other two datasets were used to search for polymorphic sequences and to compare protein cleavage profiles, respectively.
Collapse
|
10
|
Shamchuk AL, MacMillan HA. Crossing boundaries and building bridges: integrative zoology. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2015-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The invited papers in this special issue highlight contributions to the symposium with the same title, held at Genomes to Biomes: the First Joint Meeting of the Canadian Society for Ecology and Evolution, the Canadian Society of Zoologists, and the Society of Canadian Limnologists. Today, leading researchers cross boundaries between layers of biological organization and traditional areas of expertise, and increasingly reach beyond their historical role in society to serve as public educators and science advocates. This series includes reviews of the integrative study of animals ranging from the very small (the world’s southernmost insect) to the very large (rorqual whales), a review on using ancient DNA to elucidate the physiology of long-extinct animals, and research articles that take us from the proteomic response of honey bees to Israeli acute paralysis virus (IAPV) infection to the geographic spread of a harmful invasive earthworm in the boreal forest.
Collapse
Affiliation(s)
- Angela L. Shamchuk
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Heath A. MacMillan
- Zoophysiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|