1
|
Mencel ML, Bittner GD. Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies. Front Physiol 2023; 14:1114779. [PMID: 37008019 PMCID: PMC10050709 DOI: 10.3389/fphys.2023.1114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Neuroscientists and Cell Biologists have known for many decades that eukaryotic cells, including neurons, are surrounded by a plasmalemma/axolemma consisting of a phospholipid bilayer that regulates trans-membrane diffusion of ions (including calcium) and other substances. Cells often incur plasmalemmal damage via traumatic injury and various diseases. If the damaged plasmalemma is not rapidly repaired within minutes, activation of apoptotic pathways by calcium influx often results in cell death. We review publications reporting what is less-well known (and not yet covered in neuroscience or cell biology textbooks): that calcium influx at the lesion sites ranging from small nm-sized holes to complete axonal transection activates parallel biochemical pathways that induce vesicles/membrane-bound structures to migrate and interact to restore original barrier properties and eventual reestablishment of the plasmalemma. We assess the reliability of, and problems with, various measures (e.g., membrane voltage, input resistance, current flow, tracer dyes, confocal microscopy, transmission and scanning electron microscopy) used individually and in combination to assess plasmalemmal sealing in various cell types (e.g., invertebrate giant axons, oocytes, hippocampal and other mammalian neurons). We identify controversies such as plug versus patch hypotheses that attempt to account for currently available data on the subcellular mechanisms of plasmalemmal repair/sealing. We describe current research gaps and potential future developments, such as much more extensive correlations of biochemical/biophysical measures with sub-cellular micromorphology. We compare and contrast naturally occurring sealing with recently-discovered artificially-induced plasmalemmal sealing by polyethylene glycol (PEG) that bypasses all natural pathways for membrane repair. We assess other recent developments such as adaptive membrane responses in neighboring cells following injury to an adjacent cell. Finally, we speculate how a better understanding of the mechanisms involved in natural and artificial plasmalemmal sealing is needed to develop better clinical treatments for muscular dystrophies, stroke and other ischemic conditions, and various cancers.
Collapse
Affiliation(s)
- Marshal L. Mencel
- Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
- *Correspondence: George D. Bittner,
| |
Collapse
|
2
|
Morano AA, Dvorin JD. The Ringleaders: Understanding the Apicomplexan Basal Complex Through Comparison to Established Contractile Ring Systems. Front Cell Infect Microbiol 2021; 11:656976. [PMID: 33954122 PMCID: PMC8089483 DOI: 10.3389/fcimb.2021.656976] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
The actomyosin contractile ring is a key feature of eukaryotic cytokinesis, conserved across many eukaryotic kingdoms. Recent research into the cell biology of the divergent eukaryotic clade Apicomplexa has revealed a contractile ring structure required for asexual division in the medically relevant genera Toxoplasma and Plasmodium; however, the structure of the contractile ring, known as the basal complex in these parasites, remains poorly characterized and in the absence of a myosin II homolog, it is unclear how the force required of a cytokinetic contractile ring is generated. Here, we review the literature on the basal complex in Apicomplexans, summarizing what is known about its formation and function, and attempt to provide possible answers to this question and suggest new avenues of study by comparing the Apicomplexan basal complex to well-studied, established cytokinetic contractile rings and their mechanisms in organisms such as S. cerevisiae and D. melanogaster. We also compare the basal complex to structures formed during mitochondrial and plastid division and cytokinetic mechanisms of organisms beyond the Opisthokonts, considering Apicomplexan diversity and divergence.
Collapse
Affiliation(s)
- Alexander A Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, United States.,Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Horváth P, Müller-Reichert T. A Structural View on ESCRT-Mediated Abscission. Front Cell Dev Biol 2020; 8:586880. [PMID: 33240884 PMCID: PMC7680848 DOI: 10.3389/fcell.2020.586880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/16/2020] [Indexed: 11/25/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) mediates cellular processes that are related to membrane remodeling, such as multivesicular body (MVB) formation, viral budding and cytokinesis. Abscission is the final stage of cytokinesis that results in the physical separation of the newly formed two daughter cells. Although abscission has been investigated for decades, there are still fundamental open questions related to the spatio-temporal organization of the molecular machinery involved in this process. Reviewing knowledge obtained from in vitro as well as in vivo experiments, we give a brief overview on the role of ESCRT components in abscission mainly focussing on mammalian cells.
Collapse
Affiliation(s)
- Péter Horváth
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Dekraker C, Boucher E, Mandato CA. Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anat Rec (Hoboken) 2018; 301:2051-2066. [PMID: 30312008 DOI: 10.1002/ar.23962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
Abstract
Cytokinesis and single-cell wound repair both involve contractile assemblies of filamentous actin (F-actin) and myosin II organized into characteristic ring-like arrays. The assembly of these actomyosin contractile rings (CRs) is specified spatially and temporally by small Rho GTPases, which trigger local actin polymerization and myosin II contractility via a variety of downstream effectors. We now have a much clearer view of the Rho GTPase signaling cascade that leads to the formation of CRs, but some factors involved in CR positioning, assembly, and function remain poorly understood. Recent studies show that this regulation is multifactorial and goes beyond the long-established Ca2+ -dependent processes. There is substantial evidence that the Ca2+ -independent changes in cell shape, tension, and plasma membrane composition that characterize cytokinesis and single-cell wound repair also regulate CR formation. Elucidating the regulation and mechanistic properties of CRs is important to our understanding of basic cell biology and holds potential for therapeutic applications in human disease. In this review, we present a primer on the factors influencing and regulating CR positioning, assembly, and contraction as they occur in a variety of cytokinetic and single-cell wound repair models. Anat Rec, 301:2051-2066, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Corina Dekraker
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Ahn HK, Kang YW, Lim HM, Hwang I, Pai HS. Physiological Functions of the COPI Complex in Higher Plants. Mol Cells 2015; 38:866-75. [PMID: 26434491 PMCID: PMC4625068 DOI: 10.14348/molcells.2015.0115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 11/27/2022] Open
Abstract
COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed α-, β-, β'-, γ-, δ-, ε-, and ζ-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The β'-, γ-, and δ-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of β'-, γ-, and δ-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of β'-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.
Collapse
Affiliation(s)
- Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
| | - Yong Won Kang
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
- Biospectrum Life Science Institute, Seongnam 462-120,
Korea
| | - Hye Min Lim
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752,
Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
| |
Collapse
|
6
|
Abstract
Cells are always subjected to mechanical stresses, resulting in wounds of the cell membrane, but cells are able to repair and reseal their wounded membrane. Previous reports have shown that actin and myosin II accumulate around the wound and that the constriction of this purse-string closes the membrane pore. Here, we developed a microsurgical wound assay to assess wound repair in Dictyostelium cells. Fluorescent dye that had been incorporated into the cells leaked out for only 2-3 sec after wounding, and a GFP-derived, fluorescent Ca(2+) sensor showed that intracellular Ca(2+) transiently increased immediately after wounding. In the absence of external Ca(2+), the cell failed to repair itself. During the repair process, actin accumulated at the wounded sites but myosin II did not. The wounds were repaired even in myosin II null cells to a comparable degree as the wild-type cells, suggesting that myosin II does not contribute to wound repair. Thus, the actomyosin purse-string constriction model is not a common mechanism for wound repair in eukaryotic cells, and this discrepancy may arise from the difference in cell size.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Sayaka Hashima
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Satsuki Muranaka
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
| |
Collapse
|
7
|
Lafaurie-Janvore J. [Temporal regulation of abscission, the last step of cell division]. Biol Aujourdhui 2013; 207:133-148. [PMID: 24103343 DOI: 10.1051/jbio/2013010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Indexed: 06/02/2023]
Abstract
Cell division is one of the most tightly controlled steps of the cell cycle. Indeed, the many steps of cell division have to be perfectly coordinated both in time and space in order to ensure an error-free division and an accurate transmission of the genome from the mother cell to the two daughter cells. Abscission, the last step of cytokinesis, consists in the severing of the intercellular bridge that connects the two daughter cells after the contraction of the acto-myosin ring. As is the case for any other step of cell division, abscission has to be precisely regulated in order to take place at the right time and the proper place. Whereas the spatial regulation of abscission is quite well understood, the study of temporal regulation is in its infancy. This review begins by describing the formation of the intercellular bridge, its organization, and its composition. Next the different models of abscission are discussed. Finally, the current understanding of the temporal regulation of abscission is detailed. In particular, I present my recent results on the role of forces exerted by the daughter cells on the intercellular bridge.
Collapse
|
8
|
Prominin-1-containing membrane vesicles: origins, formation, and utility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:41-54. [PMID: 23161074 DOI: 10.1007/978-1-4614-5894-4_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The stem cell antigen prominin-1 (CD133) is associated with two major types (small and large) of extracellular membrane vesicles in addition to its selective concentration in various kinds of plasma membrane protrusion. During development of the mammalian central nervous system, differentiating neuroepithelial stem cells release these vesicles into the embryonic cerebrospinal fluid. In glioblastoma patients, an increase of such vesicles, particularly the smaller ones, have been also observed in cerebrospinal fluid. Similarly, hematopoietic stem and progenitor cells release small ones concomitantly with their differentiation. Although the functional significance of these prominin-1-containing membrane vesicles is poorly understood, a link between differentiation of stem (and cancer stem) cells and their release is emerging. In this chapter, I will summarize our knowledge about prominin-1-containing membrane vesicles including a potential role in cell-cell communication and highlight their prospective value as a new biomarker for tumorigenesis diagnostics.
Collapse
|
9
|
Clark AG, Sider JR, Verbrugghe K, Fenteany G, von Dassow G, Bement WM. Identification of small molecule inhibitors of cytokinesis and single cell wound repair. Cytoskeleton (Hoboken) 2012; 69:1010-20. [PMID: 23125193 DOI: 10.1002/cm.21085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/11/2022]
Abstract
Screening of small molecule libraries offers the potential to identify compounds that inhibit specific biological processes and, ultimately, to identify macromolecules that are important players in such processes. To date, however, most screens of small molecule libraries have focused on identification of compounds that inhibit known proteins or particular steps in a given process, and have emphasized automated primary screens. Here we have used "low tech" in vivo primary screens to identify small molecules that inhibit both cytokinesis and single cell wound repair, two complex cellular processes that possess many common features. The "diversity set", an ordered array of 1990 compounds available from the National Cancer Institute, was screened in parallel to identify compounds that inhibit cytokinesis in Dendraster excentricus (sand dollar) embryos and single cell wound repair in Xenopus laevis (frog) oocytes. Two small molecules were thus identified: Sph1 and Sph2. Sph1 reduces Rho activation in wound repair and suppresses formation of the spindle midzone during cytokinesis. Sph2 also reduces Rho activation in wound repair and may inhibit cytokinesis by blocking membrane fusion. The results identify two small molecules of interest for analysis of wound repair and cytokinesis, reveal that these processes are more similar than often realized and reveal the potential power of low tech screens of small molecule libraries for analysis of complex cellular processe.
Collapse
Affiliation(s)
- Andrew G Clark
- Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
10
|
Valverde-Islas LE, Arrangoiz E, Vega E, Robert L, Villanueva R, Reynoso-Ducoing O, Willms K, Zepeda-Rodríguez A, Fortoul TI, Ambrosio JR. Visualization and 3D reconstruction of flame cells of Taenia solium (cestoda). PLoS One 2011; 6:e14754. [PMID: 21412407 PMCID: PMC3055865 DOI: 10.1371/journal.pone.0014754] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 02/06/2011] [Indexed: 11/18/2022] Open
Abstract
Background Flame cells are the terminal cells of protonephridial systems, which are part of the excretory systems of invertebrates. Although the knowledge of their biological role is incomplete, there is a consensus that these cells perform excretion/secretion activities. It has been suggested that the flame cells participate in the maintenance of the osmotic environment that the cestodes require to live inside their hosts. In live Platyhelminthes, by light microscopy, the cells appear beating their flames rapidly and, at the ultrastructural, the cells have a large body enclosing a tuft of cilia. Few studies have been performed to define the localization of the cytoskeletal proteins of these cells, and it is unclear how these proteins are involved in cell function. Methodology/Principal Findings Parasites of two different developmental stages of T. solium were used: cysticerci recovered from naturally infected pigs and intestinal adults obtained from immunosuppressed and experimentally infected golden hamsters. Hamsters were fed viable cysticerci to recover adult parasites after one month of infection. In the present studies focusing on flame cells of cysticerci tissues was performed. Using several methods such as video, confocal and electron microscopy, in addition to computational analysis for reconstruction and modeling, we have provided a 3D visual rendition of the cytoskeletal architecture of Taenia solium flame cells. Conclusions/Significance We consider that visual representations of cells open a new way for understanding the role of these cells in the excretory systems of Platyhelminths. After reconstruction, the observation of high resolution 3D images allowed for virtual observation of the interior composition of cells. A combination of microscopic images, computational reconstructions and 3D modeling of cells appears to be useful for inferring the cellular dynamics of the flame cell cytoskeleton.
Collapse
Affiliation(s)
- Laura E. Valverde-Islas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, Distrito Federal, México
| | - Esteban Arrangoiz
- Laboratorio de 3D, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, Distrito Federal, México
| | - Elio Vega
- Departamento de Visualización, Dirección General de Cómputo y de Tecnologías de Información y Comunicación (DGTIC), Universidad Nacional Autónoma de México (UNAM), México City, Distrito Federal, México
| | - Lilia Robert
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, Distrito Federal, México
| | - Rafael Villanueva
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, Distrito Federal, México
| | - Olivia Reynoso-Ducoing
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, Distrito Federal, México
| | - Kaethe Willms
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, Distrito Federal, México
| | - Armando Zepeda-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, Distrito Federal, México
| | - Teresa I. Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, Distrito Federal, México
| | - Javier R. Ambrosio
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, Distrito Federal, México
- * E-mail:
| |
Collapse
|
11
|
Guizetti J, Schermelleh L, Mäntler J, Maar S, Poser I, Leonhardt H, Müller-Reichert T, Gerlich DW. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 2011; 331:1616-20. [PMID: 21310966 DOI: 10.1126/science.1201847] [Citation(s) in RCA: 376] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After partitioning of cytoplasmic contents by cleavage furrow ingression, animal cells remain connected by an intercellular bridge, which subsequently splits by abscission. Here, we examined intermediate stages of abscission in human cells by using live imaging, three-dimensional structured illumination microscopy, and electron tomography. We identified helices of 17-nanometer-diameter filaments, which narrowed the cortex of the intercellular bridge to a single stalk. The endosomal sorting complex required for transport (ESCRT)-III co-localized with constriction zones and was required for assembly of 17-nanometer-diameter filaments. Simultaneous spastin-mediated removal of underlying microtubules enabled full constriction at the abscission site. The identification of contractile filament helices at the intercellular bridge has broad implications for the understanding of cell division and of ESCRT-III-mediated fission of large membrane structures.
Collapse
Affiliation(s)
- Julien Guizetti
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstrasse 18, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Guizetti J, Gerlich DW. Cytokinetic abscission in animal cells. Semin Cell Dev Biol 2010; 21:909-16. [PMID: 20708087 DOI: 10.1016/j.semcdb.2010.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/27/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Cytokinesis leads to the separation of dividing cells, which in animal cells involves the contraction of an actin-myosin ring and subsequent fission during abscission. Abscission requires a series of dynamic events, including midbody-targeted vesicle secretion, specialization of plasma membrane domains, disassembly of midbody-associated microtubule bundles and plasma membrane fission. A large number of molecular factors required for abscission have been identified through localization, loss-of-function and proteomics studies, but their coordinate function in abscission is still poorly understood. Here, we review the structural elements and molecular factors known to contribute to abscission, and discuss their potential role in the context of proposed models for the abscission mechanism.
Collapse
Affiliation(s)
- Julien Guizetti
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | | |
Collapse
|
13
|
Schiel JA, Prekeris R. Making the final cut - mechanisms mediating the abscission step of cytokinesis. ScientificWorldJournal 2010; 10:1424-34. [PMID: 20661535 PMCID: PMC4365978 DOI: 10.1100/tsw.2010.129] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cytokinesis is the final stage of mitotic cell division that results in a physical separation of two daughter cells. Cytokinesis begins in the early stages of anaphase after the positioning of the cleavage plane and after the chromosomes segregate. This involves the recruitment and assembly of an actomyosin contractile ring, which constricts the plasma membrane and compacts midzone microtubules to form an electron-dense region, termed the midbody, located within an intracellular bridge. The resolution of this intracellular bridge, known as abscission, is the last step in cytokinesis that separates the two daughter cells. While much research has been done to delineate the mechanisms mediating actomyosin ring formation and contraction, the machinery that is responsible for abscission remains largely unclear. Recent work from several laboratories has demonstrated that dramatic changes occur in cytoskeleton and endosome dynamics, and are a prerequisite for abscission. However, the mechanistic details that regulate the final plasma membrane fusion during abscission are only beginning to emerge and are the subject of considerable controversy. Here we review recent studies within this field and discuss the proposed models of cell abscission.
Collapse
Affiliation(s)
- John A Schiel
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, USA
| | | |
Collapse
|
14
|
Lin A, Hokugo A, Choi J, Nishimura I. Small cytoskeleton-associated molecule, fibroblast growth factor receptor 1 oncogene partner 2/wound inducible transcript-3.0 (FGFR1OP2/wit3.0), facilitates fibroblast-driven wound closure. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:108-21. [PMID: 19959814 DOI: 10.2353/ajpath.2010.090256] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wounds created in the oral cavity heal rapidly and leave minimal scarring. We have examined a role of a previously isolated cDNA from oral wounds encoding wound inducible transcript-3.0 (wit3.0), also known as fibroblast growth factor receptor 1 oncogene partner 2 (FGFR1OP2). FGFR1OP2/wit3.0 was highly expressed in oral wound fibroblasts without noticeable up-regulation of alpha-smooth muscle actin. In silico analyses, denaturing and nondenaturing gel Western blot, and immunocytology together demonstrated that FGFR1OP2/wit3.0 were able to dimerize and oligomerize through coiled-coil structures and appeared to associate with cytoskeleton networks in oral wound fibroblasts. Overexpression of FGFR1OP2/wit3.0 increased the floating collagen gel contraction of naïve oral fibroblasts to the level of oral wound fibroblasts, which was in turn attenuated by small-interfering RNA knockdown. The FGFR1OP2/wit3.0 synthesis did not affect the expression of collagen I as well as procontractile peptides such as alpha-smooth muscle actin, and transforming growth factor-beta1 had no effect on FGFR1OP2/wit3.0 expression. Fibroblastic cells derived from embryonic stem cells carrying FGFR1OP2/wit3.0 (+/-) mutation showed significant retardation in cell migration. Thus, we postulate that FGFR1OP2/wit3.0 may regulate cell motility and stimulate wound closure. FGFR1OP2/wit3.0 was not up-regulated during skin wound healing; however, when treated with FGFR1OP2/wit3.0 -expression vector, the skin wound closure was significantly accelerated, resulting in the limited granulation tissue formation. Our data suggest that FGFR1OP2/wit3.0 may possess a therapeutic potential for wound management.
Collapse
Affiliation(s)
- Audrey Lin
- The Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, School of Dentistry, Los Angeles, CA 90095-1668, USA
| | | | | | | |
Collapse
|
15
|
Kennedy SM, Ji Z, Rockweiler NB, Hahn AR, Booske JH, Hagness SC. The Role of Plasmalemmal-Cortical Anchoring on the Stability of Transmembrane Electropores. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION : A PUBLICATION OF THE IEEE DIELECTRICS AND ELECTRICAL INSULATION SOCIETY 2009; 16:1251-1258. [PMID: 20490371 PMCID: PMC2873222 DOI: 10.1109/tdei.2009.5293935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The structure of eukaryotic cells is maintained by a network of filamentous actin anchored subjacently to the plasma membrane. This structure is referred to as the actin cortex. We present a locally constrained surface tension model for electroporation in order to address the influence of plasmalemmal-cortical anchoring on electropore dynamics. This model predicts that stable electropores are possible under certain conditions. The existence of stable electropores has been suggested in several experimental studies. The electropore radius at which stability is achieved is a function of the characteristic radii of locally constrained regions about the plasma membrane. This model opens the possibility of using actin-modifying compounds to physically manipulate cortical density, thereby manipulating electroporation dynamics. It also underscores the need to improve electroporation models further by incorporating the influence of trans-electropore ionic and aqueous flow, cortical flexibility, transmembrane protein mobility, and active cellular wound healing mechanisms.
Collapse
Affiliation(s)
- S M Kennedy
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison Madison, WI, 53706, USA
| | | | | | | | | | | |
Collapse
|
16
|
Steigemann P, Gerlich DW. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol 2009; 19:606-16. [PMID: 19733077 DOI: 10.1016/j.tcb.2009.07.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/18/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
The intercellular canal containing the midbody is one of the most prominent structures in dividing animal cells, yet its function in the completion of cytokinesis by abscission remains largely unknown. This is because of its small size, which makes it difficult to investigate the cytoskeletal and membrane dynamics underlying abscission by standard light microscopy. The advent of new fluorescent probes and imaging technologies, along with sophisticated perturbation tools, provides new possibilities to elucidate the molecular control of this essential cell biological process. Here we discuss the control of midbody assembly and current models for the mechanism of abscission in animal cells. We highlight new methodologies that will facilitate testing and refining of these models.
Collapse
Affiliation(s)
- Patrick Steigemann
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
17
|
Bement WM, Yu HYE, Burkel BM, Vaughan EM, Clark AG. Rehabilitation and the single cell. Curr Opin Cell Biol 2007; 19:95-100. [PMID: 17174083 PMCID: PMC4364133 DOI: 10.1016/j.ceb.2006.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 12/05/2006] [Indexed: 11/15/2022]
Abstract
Cellular damage triggers rapid resealing of the plasma membrane and repair of the cortical cytoskeleton. Plasma membrane resealing results from calcium-dependent fusion of membranous organelles and the plasma membrane at the site of the damage. Cortical cytoskeletal repair results from local assembly of actin filaments (F-actin), myosin-2 and microtubules into an array that closes around the original wound site. Control of the cytoskeletal response is exerted by local activation of the small GTPases, Rho and Cdc42. Recent work has given insight into both the membrane fusion and cytoskeletal responses to plasma membrane damage and we propose that Rho GTPase activation results at least in part from the events that drive membrane repair.
Collapse
Affiliation(s)
- William M Bement
- Department of Zoology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
18
|
Fan L, Sebe A, Péterfi Z, Masszi A, Thirone AC, Rotstein OD, Nakano H, McCulloch CA, Szászi K, Mucsi I, Kapus A. Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway. Mol Biol Cell 2007; 18:1083-97. [PMID: 17215519 PMCID: PMC1805104 DOI: 10.1091/mbc.e06-07-0602] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal-myofibroblast transition (EMT), a key feature in organ fibrosis, is regulated by the state of intercellular contacts. Our recent studies have shown that an initial injury of cell-cell junctions is a prerequisite for transforming growth factor-beta1 (TGF-beta1)-induced transdifferentiation of kidney tubular cells into alpha-smooth muscle actin (SMA)-expressing myofibroblasts. Here we analyzed the underlying contact-dependent mechanisms. Ca(2+) removal-induced disruption of intercellular junctions provoked Rho/Rho kinase (ROK)-mediated myosin light chain (MLC) phosphorylation and Rho/ROK-dependent SMA promoter activation. Importantly, myosin-based contractility itself played a causal role, because the myosin ATPase inhibitor blebbistatin or a nonphosphorylatable, dominant negative MLC (DN-MLC) abolished the contact disruption-triggered SMA promoter activation, eliminated the synergy between contact injury and TGF-beta1, and suppressed SMA expression. To explore the responsible mechanisms, we investigated the localization of the main SMA-inducing transcription factors, serum response factor (SRF), and its coactivator myocardin-related transcription factor (MRTF). Contact injury enhanced nuclear accumulation of SRF and MRTF. These processes were inhibited by DN-Rho or DN-MLC. TGF-beta1 strongly facilitated nuclear accumulation of MRTF in cells with reduced contacts but not in intact epithelia. DN-myocardin abrogated the Ca(2+)-removal- +/- TGF-beta1-induced promoter activation. These studies define a new mechanism whereby cell contacts regulate epithelial-myofibroblast transition via Rho-ROK-phospho-MLC-dependent nuclear accumulation of MRTF.
Collapse
Affiliation(s)
- Lingzhi Fan
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Attila Sebe
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
- Nephrology Research Center, Semmelweis University, Budapest, Hungary H-1089
| | - Zalán Péterfi
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - András Masszi
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Ana C.P. Thirone
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Ori D. Rotstein
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Hiroyasu Nakano
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan 113-8421
| | | | - Katalin Szászi
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - István Mucsi
- First Department of Internal Medicine, Semmelweis University, Budapest, Hungary H-1083
| | - András Kapus
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| |
Collapse
|
19
|
Carlsson AE. Contractile stress generation by actomyosin gels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:051912. [PMID: 17279944 DOI: 10.1103/physreve.74.051912] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/24/2006] [Indexed: 05/13/2023]
Abstract
The tension generated by randomly distributed myosin minifilaments in an actin gel is evaluated using a rigorous theorem relating the surface forces acting on the gel to the forces exerted by the myosins. The maximum tension generated per myosin depends strongly on the lengths of the myosin minifilaments and the actin filaments. The result is used to place an upper bound on the tension that can be generated during cytokinesis. It is found that actomyosin contraction by itself generates too little force for ring contraction during cytokinesis unless the actin filaments are tightly crosslinked into inextensible units much longer than a single actin filament.
Collapse
Affiliation(s)
- A E Carlsson
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| |
Collapse
|