1
|
Heo S, Noh M, Kim Y, Park S. Stem Cell-Laden Engineered Patch: Advances and Applications in Tissue Regeneration. ACS APPLIED BIO MATERIALS 2025; 8:62-87. [PMID: 39701826 DOI: 10.1021/acsabm.4c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Stem cell-based therapies are emerging as significant approaches in tissue engineering and regenerative medicine, applicable to both fundamental scientific research and clinical practice. Despite remarkable results in clinical studies, challenges such as poor standardization of graft tissues, limited sources, and reduced functionality have hindered the effectiveness of these therapies. In this review, we summarize the engineering approaches involved in fabricating stem cell assisted patches and the substantial strategies for designing stem cell-laden engineered patches (SCP) to complement the existing stem cell-based therapies. We then outline the potential applications of SCP in advancing tissue regeneration and regenerative medicine. By combining living stem cells with engineered patches, SCP can enhance the functions of both components, particularly for tissue engineering applications. Finally, we addressed current challenges, such as ethical considerations, high costs, and regulatory hurdles and proposed future research directions to overcome these barriers.
Collapse
Affiliation(s)
- Seyeong Heo
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Minhyeok Noh
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Yeonseo Kim
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Sunho Park
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
2
|
Wang X, Li F, Liu X, Zhang H. Applications and Recent Developments of Hydrogels in Ophthalmology. ACS Biomater Sci Eng 2023; 9:5968-5984. [PMID: 37906698 DOI: 10.1021/acsbiomaterials.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydrogels are a type of functional polymer material with a three-dimensional network structure composed of physically or chemically cross-linked polymers. All hydrogels have two common features: first, their structure contains a large number of hydrophilic groups; therefore, they have a high water content and can swell in water. Second, they have good regulation, and the physical and chemical properties of their cross-linked network can be changed by environmental factors and deliberate modification methods. In recent years, the application of hydrogels in ophthalmology has gradually attracted attention. By selecting an appropriate composition and cross-linking mode, hydrogels can be used in different fields for various applications, such as gel eye drops, in situ gel preparation, intravitreal injection, and corneal contact lenses. This Review provides a detailed introduction to the classification of hydrogels and their applications in glaucoma, vitreous substitutes, fundus diseases, corneal contact lenses, corneal diseases, and cataract surgery.
Collapse
Affiliation(s)
- Xi Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - FuQiang Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hui Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
3
|
Wang B, Wang X, Kenneth A, Drena A, Pacheco A, Kalvin L, Ibrahim ES, Rossi PJ, Thatcher K, Lincoln J. Developing small-diameter vascular grafts with human amniotic membrane: long-term evaluation of transplantation outcomes in a small animal model. Biofabrication 2023; 15. [PMID: 36626826 DOI: 10.1088/1758-5090/acb1da] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
While current clinical utilization of large vascular grafts for vascular transplantation is encouraging, tissue engineering of small grafts still faces numerous challenges. This study aims to investigate the feasibility of constructing a small vascular graft from decellularized amniotic membranes (DAMs). DAMs were rolled around a catheter and each of the resulting grafts was crosslinked with (a) 0.1% glutaraldehyde; (b) 1-ethyl-3-(3-dimethylaminopropyl) crbodiimidehydro-chloride (20 mM)-N-hydroxy-succinimide (10 mM); (c) 0.5% genipin; and (d) no-crosslinking, respectively. Our results demonstrated the feasibility of using a rolling technique followed by lyophilization to transform DAM into a vessel-like structure. The genipin-crosslinked DAM graft showed an improved integrated structure, prolonged stability, proper mechanical property, and superior biocompatibility. After transplantation in rat abdominal aorta, the genipin-crosslinked DAM graft remained patent up to 16 months, with both endothelial and smooth muscle cell regeneration, which suggests that the genipin-crosslinked DAM graft has great potential to beimplementedas a small tissue engineered graft for futurevasculartransplantation.
Collapse
Affiliation(s)
- Bo Wang
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Xiaolong Wang
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Allen Kenneth
- Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Alexander Drena
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America
| | - Arsenio Pacheco
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America
| | - Lindsey Kalvin
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Ei-Sayed Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Peter J Rossi
- Heart and Vascular Center, Froedtert Hospital, Milwaukee, WI 53226, United States of America
| | - Kaitlyn Thatcher
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| |
Collapse
|
4
|
Yi B, Zhou B, Song Z, Yu L, Wang W, Liu W. Step-wise CAG@PLys@PDA-Cu2+ modification on micropatterned nanofibers for programmed endothelial healing. Bioact Mater 2022; 25:657-676. [PMID: 37056258 PMCID: PMC10086768 DOI: 10.1016/j.bioactmat.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Native-like endothelium regeneration is a prerequisite for material-guided small-diameter vascular regeneration. In this study, a novel strategy is proposed to achieve phase-adjusted endothelial healing by step-wise modification of parallel-microgroove-patterned (i.e., micropatterned) nanofibers with polydopamine-copper ion (PDA-Cu2+) complexes, polylysine (PLys) molecules, and Cys-Ala-Gly (CAG) peptides (CAG@PLys@PDA-Cu2+). Using electrospun poly(l-lactide-co-caprolactone) random nanofibers as the demonstrating biomaterial, step-wise modification of CAG@PLys@PDA-Cu2+ significantly enhanced substrate wettability and protein adsorption, exhibited an excellent antithrombotic surface and outstanding phase-adjusted capacity of endothelium regeneration involving cell adhesion, endothelial monolayer formation, and the regenerated endothelium maturation. Upon in vivo implantation for segmental replacement of rabbit carotid arteries, CAG@PLys@PDA-Cu2+ modified grafts (2 mm inner diameter) with micropatterns on inner surface effectively accelerated native-like endothelium regeneration within 1 week, with less platelet aggregates and inflammatory response compared to those on non-modified grafts. Prolonged observations at 6- and 12-weeks post-implantation demonstrated a positive vascular remodeling with almost fully covered endothelium and mature smooth muscle layer in the modified vascular grafts, accompanied with well-organized extracellular matrix. By contrast, non-modified vascular grafts induced a disorganized tissue formation with a high risk of thrombogenesis. In summary, step-wise modification of CAG@PLys@PDA-Cu2+ on micropatterned nanofibers can significantly promote endothelial healing without inflicting thrombosis, thus confirming a novel strategy for developing functional vascular grafts or other blood-contacting materials/devices.
Collapse
|
5
|
Terzopoulou Z, Zamboulis A, Koumentakou I, Michailidou G, Noordam MJ, Bikiaris DN. Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules 2022; 23:1841-1863. [PMID: 35438479 DOI: 10.1021/acs.biomac.2c00047] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Krishnan AG, Joseph J, C. R. R, Nair SV, Nair M, Menon D. Silk-based bilayered small diameter woven vascular conduits for improved mechanical and cellular characteristics. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1999954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aarya G. Krishnan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - John Joseph
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Reshmi C. R.
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Manitha Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
7
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Abstract
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing their own scaffold. These continuously improved techniques, which allow rapid graft integration without immune rejection in the treatment of severely burned patients, give hope that similar results will be observed in the vascular and urological fields.
Collapse
|
9
|
Fabrication and Characterization of the Core-Shell Structure of Poly(3-Hydroxybutyrate-4-Hydroxybutyrate) Nanofiber Scaffolds. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8868431. [PMID: 33575351 PMCID: PMC7864743 DOI: 10.1155/2021/8868431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
Tissue engineering scaffolds with nanofibrous structures provide positive support for cell proliferation and differentiation in biomedical fields. These scaffolds are widely used for defective tissue repair and drug delivery. However, the degradation performance and mechanical properties of scaffolds are often unsatisfactory. Here, we successfully prepared a novel poly(3-hydroxybutyrate-4-hydroxybutyrate)/polypyrrole (P34HB-PPy) core-shell nanofiber structure scaffold with electrospinning and in situ surface polymerization technology. The obtained composite scaffold showed good mechanical properties, hydrophilicity, and thermal stability based on the universal material testing machine, contact angle measuring system, thermogravimetric analyzer, and other methods. The results of the in vitro bone marrow-derived mesenchymal stem cells (BMSCs) culture showed that the P34HB-PPy composite scaffold effectively mimicked the extracellular matrix (ECM) and exhibited good cell retention and proliferative capacity. More importantly, P34HB is a controllable degradable polyester material, and its degradation product 3-hydroxybutyric acid (3-HB) is an energy metabolite that can promote cell growth and proliferation. These results strongly support the application potential of P34HB-PPy composite scaffolds in biomedical fields, such as tissue engineering and soft tissue repair.
Collapse
|
10
|
Ngadimin KD, Stokes A, Gentile P, Ferreira AM. Biomimetic hydrogels designed for cartilage tissue engineering. Biomater Sci 2021; 9:4246-4259. [DOI: 10.1039/d0bm01852j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cartilage-like hydrogels based on materials like gelatin, chondroitin sulfate, hyaluronic acid and polyethylene glycol are reviewed and contrasted, revealing existing limitations and challenges on biomimetic hydrogels for cartilage regeneration.
Collapse
Affiliation(s)
- Kresanti D. Ngadimin
- Faculty of Medical Sciences
- Newcastle University
- Newcastle upon Tyne
- UK
- Faculty of Medicine
| | - Alexander Stokes
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Piergiorgio Gentile
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Ana M. Ferreira
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| |
Collapse
|
11
|
Yang L, Li X, Wu Y, Du P, Sun L, Yu Z, Song S, Yin J, Ma X, Jing C, Zhao J, Chen H, Dong Y, Zhang Q, Zhao L. Preparation of PU/Fibrin Vascular Scaffold with Good Biomechanical Properties and Evaluation of Its Performance in vitro and in vivo. Int J Nanomedicine 2020; 15:8697-8715. [PMID: 33192062 PMCID: PMC7656973 DOI: 10.2147/ijn.s274459] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The development of tissue-engineered blood vessels provides a new source of donors for coronary artery bypass grafting and peripheral blood vessel transplantation. Fibrin fiber has good biocompatibility and is an ideal tissue engineering vascular scaffold, but its mechanical property needs improvement. METHODS We mixed polyurethane (PU) and fibrin to prepare the PU/fibrin vascular scaffolds by using electrospinning technology in order to enhance the mechanical properties of fibrin scaffold. We investigated the morphological, mechanical strength, hydrophilicity, degradation, blood and cell compatibility of PU/fibrin (0:100), PU/fibrin (5:95), PU/fibrin (15:85) and PU/fibrin (25:75) vascular scaffolds. Based on the results in vitro, PU/fibrin (15:85) was selected for transplantation in vivo to repair vascular defects, and the extracellular matrix formation, vascular remodeling, and immune response were evaluated. RESULTS The results indicated that the fiber diameter of the PU/fibrin (15:85) scaffold was about 712nm. With the increase of PU content, the mechanical strength of the composite scaffolds increased, however, the degradation rate decreased gradually. The PU/fibrin scaffold showed good hydrophilicity and hemocompatibility. PU/fibrin (15:85) vascular scaffold could promote the adhesion and proliferation of mesenchymal stromal cells (MSCs). Quantitative RT-PCR experimental results showed that the expression of collagen, survivin and vimentin genes in PU/fibrin (15:85) was higher than that in PU/fibrin (25:75). The results in vivo indicated the mechanical properties and compliance of PU/fibrin grafts could meet clinical requirements and the proportion of thrombosis or occlusion was significantly lower. The graft showed strong vasomotor response, and the smooth muscle cells, endothelial cells, and ECM deposition of the neoartery were comparable to that of native artery after 3 months. At 3 months, the amount of macrophages in PU/fibrin grafts was significantly lower, and the secretion of pro-inflammatory and anti-inflammatory cytokines decreased. CONCLUSION PU/fibrin (15:85) vascular scaffolds had great potential to be used as small-diameter tissue engineering blood vessels.
Collapse
Affiliation(s)
- Lei Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
- Department of Orthopedics, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yiting Wu
- Xiacun Community Health Service Center, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Pengchong Du
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
- Department of Cardio-Thoracic Surgery, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Lulu Sun
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Zhenyang Yu
- Department of Orthopedics, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Shuang Song
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Jianshen Yin
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Xianfen Ma
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Changqin Jing
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Junqiang Zhao
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Hongli Chen
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yuzhen Dong
- Department of Orthopedics, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Qiqing Zhang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Liang Zhao
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, People’s Republic of China
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People’s Hospital, Zhengzhou, People’s Republic of China
- The Central Lab, The Third People’s Hospital of Datong, Datong, People’s Republic of China
| |
Collapse
|
12
|
Yan K, Yang C, Zhong W, Lu Z, Li X, Shi X, Wang D. Wire templated electrodeposition of vessel-like structured chitosan hydrogel by using a pulsed electrical signal. SOFT MATTER 2020; 16:9471-9478. [PMID: 32955063 DOI: 10.1039/d0sm01134g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, by performing a templated electrodeposition process with an oscillating electrical signal stimulation, a vessel-like structured chitosan hydrogel (diameter about 0.4 mm) was successfully prepared in the absence of salt conditions. Experimental results demonstrated that the hydrogel growth (e.g. the thickness) is linearly correlated with the imposed charge transfer and can be well quantified by using a theoretical moving front model. Morphological observations indicated that the heterogeneous multilayer structure was spatially and temporally controlled by an externally employed electrical signal sequence while the channel structure could be determined by the shaped electrode. Moreover, the oscillating ON-OFF cycles were proved to strongly affect the film structure, leading to a more compact hydrogel coating with a lower water content, higher crystallinity, complex layer architecture and relatively strong mechanical properties that could be easily peeled off as a free-standing hollow tube. Importantly, all the experiments were conducted under mild conditions that allowed additional enhancing materials to be added in to further improve the mechanical and/or biological properties. Thus, this work advances a very promising self-assembly technology for the construction of a multi-functional hydrogel coating and artificial blood vessel regeneration.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China. and School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Weibin Zhong
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Xiufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
13
|
Obiweluozor FO, Emechebe GA, Kim DW, Cho HJ, Park CH, Kim CS, Jeong IS. Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovasc Eng Technol 2020; 11:495-521. [PMID: 32812139 DOI: 10.1007/s13239-020-00482-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Current design strategies for small diameter vascular grafts (< 6 mm internal diameter; ID) are focused on mimicking native vascular tissue because the commercially available grafts still fail at small diameters, notably due to development of intimal hyperplasia and thrombosis. To overcome these challenges, various design approaches, material selection, and surface modification strategies have been employed to improve the patency of small-diameter grafts. REVIEW The purpose of this review is to outline various considerations in the development of small-diameter vascular grafts, including material choice, surface modifications to enhance biocompatibility/endothelialization, and mechanical properties of the graft, that are currently being implanted. Additionally, we have taken into account the general vascular physiology, tissue engineering approaches, and collective achievements of the authors in this area. We reviewed both commercially available synthetic grafts (e-PTFE and PET), elastic polymers such as polyurethane and biodegradable and bioresorbable materials. We included naturally occurring materials by focusing on their potential application in the development of future vascular alternatives. CONCLUSION Until now, there are few comprehensive reviews regarding considerations in the design of small-diameter vascular grafts in the literature. Here-in, we have discussed in-depth the various strategies employed to generate engineered vascular graft due to their high demand for vascular surgeries. While some TEVG design strategies have shown greater potential in contrast to autologous or synthetic ePTFE conduits, many are still hindered by high production cost which prevents their widespread adoption. Nonetheless, as tissue engineers continue to develop on their strategies and procedures for improved TEVGs, soon, a reliable engineered graft will be available in the market. Hence, we anticipate a viable TEVG with resorbable property, fabricated via electrospinning approach to hold a greater potential that can overcome the challenges observed in both autologous and allogenic grafts. This is because they can be mechanically tuned, incorporated/surface-functionalized with bioactive molecules and mass-manufactured in a reproducible manner. It is also found that most of the success in engineered vascular graft approaching commercialization is for large vessels rather than small-diameter grafts used as cardiovascular bypass grafts. Consequently, the field of vascular engineering is still available for future innovators that can take up the challenge to create a functional arterial substitute.
Collapse
Affiliation(s)
- Francis O Obiweluozor
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea.
| | - Gladys A Emechebe
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Do-Wan Kim
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea
| | - Hwa-Jin Cho
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - In Seok Jeong
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
14
|
Patel H, Vohra Y, Singh R, Thomas V. HuBiogel incorporated fibro-porous hybrid nanomatrix graft for vascular tissue interfaces. MATERIALS TODAY. CHEMISTRY 2020; 17:100323. [PMID: 33015427 PMCID: PMC7526799 DOI: 10.1016/j.mtchem.2020.100323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Native extracellular matrix (ECM) possesses the biochemical cues to promote cell survival. However, decellularized, the ECM loses its cell supporting mechanical integrity. We report, here, a novel biohybrid vascular graft of polycaprolactone (PCL), poliglecaprone (PGC) incorporated with human biomatrix as functional materials for vascular tissue interfacing by electrospinning, thus harnessing the biochemical cues from the ECM and the mechanical integrity of the polymer blends. The fabricated fibro-porous tubular small diameter graft (i.d. = 4 mm) from polymer blend was coated with a cocktail of collagenous matrix derived from human placenta called HuBiogel™. The compositional, morphological, and mechanical properties of graft were measured and compared with a non-coated tubular PCL/PGC graft using Fourier Transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). BCA assay was used to calculate the protein content and coating-uniformity throughout the hybrid graft. Mechanical properties such as tensile strength (1.6 MPa), Young's modulus (2.4 MPa), burst pressure (>1900 mmHg), and suture retention strength (2.3 N) of hybrid graft were found to be comparable to native blood vessels. Protein coating has improved the hydrophilicity and the biocompatibility (cell viability and cell-attachment) enhanced with human umbilical vein endothelial cells (HUVECs) seeded in vitro onto the lumen layer of the graft over two weeks. The overall results promise this new biohybrid graft to be a potential candidate for vascular tissue interface and regeneration.
Collapse
Affiliation(s)
- H.N. Patel
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL, 35294, USA
| | - Y.K. Vohra
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham (UAB), Birmingham, AL, 35294, USA
| | - R. Singh
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, 35294, USA
- Vivo Biosciences Inc., Birmingham, AL, 35205, USA
| | - V. Thomas
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL, 35294, USA
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham (UAB), Birmingham, AL, 35294, USA
- Department of Materials Science and Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL, 35294, USA
- Corresponding author. (V. Thomas)
| |
Collapse
|
15
|
Zhao L, Li X, Yang L, Sun L, Mu S, Zong H, Li Q, Wang F, Song S, Yang C, Zhao C, Chen H, Zhang R, Wang S, Dong Y, Zhang Q. Evaluation of remodeling and regeneration of electrospun PCL/fibrin vascular grafts in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111441. [PMID: 33255034 PMCID: PMC7445127 DOI: 10.1016/j.msec.2020.111441] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
The success of artificial vascular graft in the host to obtain functional tissue regeneration and remodeling is a great challenge in the field of small diameter tissue engineering blood vessels. In our previous work, poly(ε-caprolactone) (PCL)/fibrin vascular grafts were fabricated by electrospinning. It was proved that the PCL/fibrin vascular graft was a suitable small diameter tissue engineering vascular scaffold with good biomechanical properties and cell compatibility. Here we mainly examined the performance of PCL/fibrin vascular graft in vivo. The graft showed randomly arranged nanofiber structure, excellent mechanical strength, higher compliance and degradation properties. At 9 months after implantation in the rat abdominal aorta, the graft induced the regeneration of neoarteries, and promoted ECM deposition and rapid endothelialization. More importantly, the PCL/fibrin vascular graft showed more microvessels density and fewer calcification areas at 3 months, which was beneficial to improve cell infiltration and proliferation. Moreover, the ratio of M2/M1macrophage in PCL/fibrin graft had a higher expression level and the secretion amount of pro-inflammatory cytokines started to increase, and then decreased to similar to the native artery. Thus, the electrospun PCL/fibrin tubular vascular graft had great potential to become a new type of artificial blood vessel scaffold that can be implanted in vivo for long term.
Collapse
Affiliation(s)
- Liang Zhao
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China; Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, Zhengzhou, China.
| | - Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Lei Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China; First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Lulu Sun
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Songfeng Mu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China; First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Haibin Zong
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Qiong Li
- Nursing School, Xinxiang Medical University, Xinxiang, China
| | - Fengyao Wang
- The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Shuang Song
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Chengqiang Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Changhong Zhao
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Hongli Chen
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Rui Zhang
- Service Center for Transformation of Scientific and Technological Achievements, Xinxiang Medical University, Xinxiang, China
| | - Shicheng Wang
- General Surgery Department, West District Hospital of Nanyang The First People's Hospital, Nanyang, China
| | - Yuzhen Dong
- First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.
| | - Qiqing Zhang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
16
|
Chen X, Chen D, Ai X, Hu R, Zhang H. A new method for the preparation of three-layer vascular stents: a preliminary study on the preparation of biomimetic three-layer vascular stents using a three-stage electrospun membrane. ACTA ACUST UNITED AC 2020; 15:055010. [PMID: 32392542 DOI: 10.1088/1748-605x/ab920a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is an urgent need to design a tissue-engineered vascular graft that exhibits good biocompatibility and sufficient mechanical strength to repair and facilitate regeneration of defective vascular tissue. It is generally accepted that multi-layer stents can be used to simulate the structure and function of natural blood vessels. Here, we developed a new three-layer tubular graft that is rolled from a single Poly(L-lactide-co-caprolactone) electrospun membrane. We used a new electrospinning technique to place three different structures on a single electrospun membrane such that the stent is comprised of three different layers. The inner layer is dense and suitable for endothelial cell growth, the middle layer is a parallel loose structure suitable for smooth muscle cell growth, and the outer layer is a parallel structure with sparse alternating texture suitable for both smooth muscle cell growth and structural support. The vascular stent has good tensile strength. At the same time, endothelial cells and smooth muscle cells readily proliferate on the material in vitro. In particular, smooth muscle cells grow in parallel on the middle and outer materials. In vivo, all layers of the vascular graft were infiltrated by cells within one week of subcutaneous implantation, indicative of favorable biocompatibility. After a week of subcutaneous implantation, the vascular stent was orthotopically transplanted into the abdominal aorta of Sprague Dawley rats. After ten weeks of transplantation, ultrasound imaging of the abdomen showed vascular patency. The vascular stent was endothelialized, smooth muscle cells readily proliferated, and a large amount of elastic fibers were formed. Therefore, our specially designed tri-layer vascular graft may be of significant benefit in vascular reconstruction.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | |
Collapse
|
17
|
Catoira MC, González-Payo J, Fusaro L, Ramella M, Boccafoschi F. Natural hydrogels R&D process: technical and regulatory aspects for industrial implementation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:64. [PMID: 32696261 PMCID: PMC7374448 DOI: 10.1007/s10856-020-06401-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/08/2020] [Indexed: 05/17/2023]
Abstract
Since hydrogel therapies have been introduced into clinic treatment procedures, the biomedical industry has to face the technology transfer and the scale-up of the processes. This will be key in the roadmap of the new technology implementation. Transfer technology and scale-up are already known for some applications but other applications, such as 3D printing, are still challenging. Decellularized tissues offer a lot of advantages when compared to other natural gels, for example they display enhanced biological properties, due to their ability to preserve natural molecules. For this reason, even though their use as a source for bioinks represents a challenge for the scale-up process, it is very important to consider the advantages that originate with overcoming this challenge. Therefore, many aspects that influence the scaling of the industrial process should be considered, like the addition of drugs or cells to the hydrogel, also, the gelling process is important to determine the chemical and physical parameters that must be controlled in order to guarantee a successful process. Legal aspects are also crucial when carrying out the scale-up of the process since they determine the industrial implementation success from the regulatory point of view. In this context, the new law Regulation (EU) 2017/745 on biomedical devices will be considered. This review summarizes the different aspects, including the legal ones, that should be considered when scaling up hydrogels of natural origin, in order to balance these different aspects and to optimize the costs in terms of raw materials and engine.
Collapse
Affiliation(s)
- Marta Calvo Catoira
- Center for Translational Research on Autoimmune & Allergic Diseases-CAAD, 28100, Novara, Italy
- Tissuegraft srl, 28100, Novara, Italy
| | - Javier González-Payo
- Telecomunicación, Department of Signal Theory and Communications, University of Vigo, 36310, Vigo, Spain
| | - Luca Fusaro
- Tissuegraft srl, 28100, Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Francesca Boccafoschi
- Center for Translational Research on Autoimmune & Allergic Diseases-CAAD, 28100, Novara, Italy.
- Tissuegraft srl, 28100, Novara, Italy.
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
18
|
Marin E, Boschetto F, Sunthar TPM, Zanocco M, Ohgitani E, Zhu W, Pezzotti G. Antibacterial effects of barium titanate reinforced polyvinyl-siloxane scaffolds. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1725757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Matteo Zanocco
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, Tokyo, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
19
|
Eufrásio-da-Silva T, Ruiz-Hernandez E, O'Dwyer J, Picazo-Frutos D, Duffy GP, Murphy BP. Enhancing medial layer recellularization of tissue-engineered blood vessels using radial microchannels. Regen Med 2019; 14:1013-1028. [PMID: 31746270 DOI: 10.2217/rme-2019-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Cell repopulation of tissue-engineered vascular grafts (TEVGs) from decellularized arterial scaffolds is limited by dense concentric tunica media layers which impede cells migrating radially between the layers. We aimed to develop and validate a new microneedle device to modify decellularized carotid arteries with radial microchannels to enhance medial layer repopulation. Material & methods: Modified decellularized porcine arteries were seeded with rat mesenchymal stem cells using either standard longitudinal injection, or a dual vacuum-perfusion bioreactor. Mechanical tests were used to assess the arterial integrity following modification. Results & conclusion: The method herein achieved radial recellularization of arteries in vitro without significant loss of mechanical integrity, Thus, we report a novel method for successful radial repopulation of decellularized carotid artery-based tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Tatiane Eufrásio-da-Silva
- Department of Anatomy, Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,Advanced Materials & BioEngineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| | - Eduardo Ruiz-Hernandez
- Advanced Materials & BioEngineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland.,School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin, Ireland
| | - Joanne O'Dwyer
- Department of Anatomy, Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,School of Pharmacy, RCSI, Dublin, Ireland.,Anatomy, School of Medicine, College of Medicine Nursing & Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Dolores Picazo-Frutos
- Department of Anatomy, Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,School of Pharmacy, RCSI, Dublin, Ireland
| | - Garry P Duffy
- Department of Anatomy, Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,Advanced Materials & BioEngineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland.,Anatomy, School of Medicine, College of Medicine Nursing & Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Bruce P Murphy
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,Advanced Materials & BioEngineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland.,Department of Mechanical & Manufacturing Engineering, TCD, Dublin, Ireland
| |
Collapse
|
20
|
Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:115. [PMID: 31599365 PMCID: PMC6787111 DOI: 10.1007/s10856-019-6318-7] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/27/2019] [Indexed: 05/18/2023]
Abstract
Hydrogels from different materials can be used in biomedical field as an innovative approach in regenerative medicine. Depending on the origin source, hydrogels can be synthetized through chemical and physical methods. Hydrogel can be characterized through several physical parameters, such as size, elastic modulus, swelling and degradation rate. Lately, research is focused on hydrogels derived from biologic materials. These hydrogels can be derived from protein polymers, such as collage, elastin, and polysaccharide polymers like glycosaminoglycans or alginate among others. Introduction of decellularized tissues into hydrogels synthesis displays several advantages compared to natural or synthetic based hydrogels. Preservation of natural molecules such as growth factors, glycans, bioactive cryptic peptides and natural proteins can promote cell growth, function, differentiation, angiogenesis, anti-angiogenesis, antimicrobial effects, and chemotactic effects. Versatility of hydrogels make possible multiple applications and combinations with several molecules on order to obtain the adequate characteristic for each scope. In this context, a lot of molecules such as cross link agents, drugs, grow factors or cells can be used. This review focuses on the recent progress of hydrogels synthesis and applications in order to classify the most recent and relevant matters in biomedical field.
Collapse
Affiliation(s)
- Marta Calvo Catoira
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Tissuegraft srl, 28100, Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara, 28100, Italy
| | - Luca Fusaro
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Tissuegraft srl, 28100, Novara, Italy
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy.
- Tissuegraft srl, 28100, Novara, Italy.
- Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara, 28100, Italy.
| |
Collapse
|
21
|
Hazwani A, Sha'Ban M, Azhim A. Characterization and in vivo study of decellularized aortic scaffolds using closed sonication system. Organogenesis 2019; 15:120-136. [PMID: 31495272 DOI: 10.1080/15476278.2019.1656997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix (ECM) based bioscaffolds prepared by decellularization has increasingly emerged in tissue engineering application because it has structural, biochemical, and biomechanical cues that have dramatic effects upon cell behaviors. Therefore, we developed a closed sonication decellularization system to prepare ideal bioscaffolds with minimal adverse effects on the ECM. The decellularization was achieved at 170 kHz of ultrasound frequency in 0.1% and 2% Sodium Dodecyl Sulphate (SDS) solution for 10 hours. The immersion treatment as control was performed to compare the decellularization efficiency with our system. Cell removal and ECM structure were determined by histological staining and biochemical assay. Biomechanical properties were investigated by the indentation testing to test the stiffness, a residual force and compression of bioscaffolds. Additionally, in vivo implantation was performed in rat to investigate host tissue response. Compared to native tissues, histological staining and biochemical assay confirm the absence of cellularity with preservation of ECM structure. Moreover, sonication treatment has not affected the stiffness [N/mm] and a residual force [N] of the aortic scaffolds except for compression [%] which 2% SDS significantly decreased compared to native tissues showing higher SDS has a detrimental effect on ECM structure. Finally, minimal inflammatory response was observed after 1 and 5 weeks of implantation. This study reported that the novelty of our developed closed sonication system to prepare ideal bioscaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Aqilah Hazwani
- Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia , Kuantan , Pahang , Malaysia
| | - Munirah Sha'Ban
- Department of Physical Rehabilitation Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia , Kuantan , Pahang , Malaysia
| | - Azran Azhim
- Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia , Kuantan , Pahang , Malaysia
| |
Collapse
|
22
|
Wang W, Xu X, Li Z, Kratz K, Ma N, Lendlein A. Modulating human mesenchymal stem cells using poly(n-butyl acrylate) networks in vitro with elasticity matching human arteries. Clin Hemorheol Microcirc 2019; 71:277-289. [PMID: 30530970 DOI: 10.3233/ch-189418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Non-swelling hydrophobic poly(n-butyl acrylate) network (cPnBA) is a candidate material for synthetic vascular grafts owing to its low toxicity and tailorable mechanical properties. Mesenchymal stem cells (MSCs) are an attractive cell type for accelerating endothelialization because of their superior anti-thrombosis and immune modulatory function. Further, they can differentiate into smooth muscle cells or endothelial-like cells and secret pro-angiogenic factors such as vascular endothelial growth factor (VEGF). MSCs are sensitive to the substrate mechanical properties, with the alteration of their major cellular behavior and functions as a response to substrate elasticity. Here, we cultured human adipose-derived mesenchymal stem cells (hADSCs) on cPnBAs with different mechanical properties (cPnBA250, Young's modulus (E) = 250 kPa; cPnBA1100, E = 1100 kPa) matching the elasticity of native arteries, and investigated their cellular response to the materials including cell attachment, proliferation, viability, apoptosis, senescence and secretion. The cPnBA allowed high cell attachment and showed negligible cytotoxicity. F-actin assembly of hADSCs decreased on cPnBA films compared to classical tissue culture plate. The difference of cPnBA elasticity did not show dramatic effects on cell attachment, morphology, cytoskeleton assembly, apoptosis and senescence. Cells on cPnBA250, with lower proliferation rate, had significantly higher VEGF secretion activity. These results demonstrated that tuning polymer elasticity to regulate human stem cells might be a potential strategy for constructing stem cell-based artificial blood vessels.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Zhengdong Li
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials for Medicine", Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials for Medicine", Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials for Medicine", Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
23
|
3D Printing Artificial Blood Vessel Constructs Using PCL/Chitosan/Hydrogel Biocomposites. ChemistrySelect 2019. [DOI: 10.1002/slct.201803740] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Li X, Zhao H. Mechanical and degradation properties of small-diameter vascular grafts in an in vitro biomimetic environment. J Biomater Appl 2019; 33:1017-1034. [DOI: 10.1177/0885328218820751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Small-diameter vascular grafts may fail after implantation due to various reasons from mechanical and biological aspects. In order to evaluate the mechanical durability of small-diameter vascular grafts after implantation, an artificial vascular biomimetic environment that can simulate body temperature, the liquid environment outside the vessel, and continuous blood flow and pulsatile pressure was constructed. This device can be used as a “pre-test” prior to animal experiments to explore the changes of mechanical and degradation properties in the long-term in vivo environment. At the same time, braided tube-reinforced silk fibroin/poly (l-lactic acid-co-ε-caprolactone) small-diameter vascular grafts were fabricated and tested under the biomimetic environment. Mechanical changes, including tensile properties, suture retention strength, compliance, and degradation behavior of the braided tube-reinforced poly (l-lactic acid-co-ε-caprolactone)/silk fibroin small-diameter vascular grafts were explored over various periods of time in the biomimetic environment. The results shown that under a period of testing in the in vitro biomimetic environment, the comprehensive mechanical properties (including tensile properties, suture retention strength, estimated-bursting pressure, and compliance) of small-diameter vascular grafts exhibited varying degrees of changes but that there was no obvious degradation behavior in the short term.
Collapse
Affiliation(s)
- Xiangshun Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Huijing Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Weber C, Reinhardt S, Eghbalzadeh K, Wacker M, Guschlbauer M, Maul A, Sterner-Kock A, Wahlers T, Wippermann J, Scherner M. Patency and in vivo compatibility of bacterial nanocellulose grafts as small-diameter vascular substitute. J Vasc Surg 2018; 68:177S-187S.e1. [DOI: 10.1016/j.jvs.2017.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
26
|
Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique. Acta Biomater 2018; 79:168-181. [PMID: 30121374 DOI: 10.1016/j.actbio.2018.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023]
Abstract
Innterconnected porous architecture is critical for tissue engineering scaffold as well as biomimetic nanofibrous structure. In addition, a paradigm shift is recently taking place in the scaffold design from homogeneous porous scaffold to heterogeneous porous scaffold for the complex tissues. In this study, a versatile and simple one-pot method, dual phase separation, is developed to fabricate macroporous nanofibrous scaffold by phase separating the mixture solutions of immiscible polymer blends without using porogens. The macropores in the scaffold are interconnected, and their size can be tuned by the polymer blend ratio. Moreover, benefiting from the easy operation of dual phase separation technique, an innovative, versatile and facile two-step phase separation method is developed to fabricate heterogeneous porous layered nanofibrous scaffolds with different shapes, such as bilayered tubular scaffold and tri-layered cylindrical scaffold. The bilayered tubular nanofibrous scaffold composed of poly(l-lactic acid) (PLLA)/poly(l-lactide-co-ε-caprolactone) (PLCL) microporous inner layer and PLLA/poly(ε-caprolactone) (PCL) macroporous outer layer matches simultaneously the functional growth of endothelial cells (ECs) and smooth muscle cells (SMCs), and shows the favorable performance for potential small diameter blood vessel application. Therefore, this study provides the novel and facile strategies to fabricate macroporous nanofibrous scaffold and heterogeneous porous layered nanofibrous scaffold for tissue engineering applications. STATEMENT OF SIGNIFICANCE The fabrication of porous tissue engineering scaffold made of non-water-soluble polymer commonly requires the use of porogen materials. This is complex and time-consuming, resulting in greater difficulty to prepare heterogeneous porous layered scaffold for multifunctional tissues repair, such as blood vessel and osteochondral tissue. Herein, a novel, versatile and simple one-pot dual phase separation technique is developed for the first time to fabricate porous scaffold without using porogens. Simultaneously, it also endows the resultant scaffold with the biomimetic nanofibrous architecture. Based on the easy operation of this dual phase separation technique, a facile two-step phase separation method is also put forward for the first time and applied in fabricating heterogeneous porous layered nanofibrous scaffold for tissue engineering applications.
Collapse
|
27
|
Cheng Z, Landish B, Chi Z, Nannan C, Jingyu D, Sen L, Xiangjin L. 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:244-252. [DOI: 10.1016/j.msec.2017.08.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 11/17/2022]
|
28
|
|
29
|
Gao LP, Du MJ, Lv JJ, Schmull S, Huang RT, Li J. Use of human aortic extracellular matrix as a scaffold for construction of a patient-specific tissue engineered vascular patch. ACTA ACUST UNITED AC 2017; 12:065006. [PMID: 28714856 DOI: 10.1088/1748-605x/aa801b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Synthetic or biologic materials are usually used to repair vascular malformation in congenital heart defects; however, non-autologous materials show both mismatch compliance and antigenicity, as well as a lack of recellularization on its surface. Here, we constructed a tissue-engineered vascular patch (TEVP) using decellularized extracellular matrix (ECM) scaffold obtained from excised human aorta during surgery, which was seeded with patient-derived bone marrow CD34-positive (CD34+) progenitor cells. While cellular components were removed, the decellularized ECM scaffold retained native ECM composition, similar mechanical performance to undecellularized aortic tissue, and supported the adhesion, survival and proliferation of CD34+ progenitor cells. Interestingly, after in vitro seeding of decellularized aortic ECM scaffold for 21 d, CD34+ progenitor cells differentiated into mature vascular endothelial cells without addition of any growth factors, as confirmed by the increased levels of endothelial surface markers (CD31, Von Willebrand factor (VWF), VE-cadherin and ICAM-2) and upregulated gene levels (CD31, VWF and eNOS) concurrently with decreased expression of stem cell markers (CD133 and CD34), thus, resulting in surface endothelialization of decellularized ECM scaffold. Consequently, the patient-specific TEVP constructed in this study holds great potential for clinical use in pediatric patients with vascular malformation.
Collapse
Affiliation(s)
- Li-Ping Gao
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Marcolin C, Draghi L, Tanzi M, Faré S. Electrospun silk fibroin-gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:80. [PMID: 28397163 DOI: 10.1007/s10856-017-5884-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/12/2017] [Indexed: 06/07/2023]
Abstract
In this work an innovative method to obtain natural and biocompatible small diameter tubular structures is proposed. The biocompatibility and good mechanical properties of electrospun silk fibroin tubular matrices (SFts), extensively studied for tissue engineering applications, have been coupled with the excellent cell interaction properties of gelatin. In fact, an innovative non-cytotoxic gelatin gel, crosslinked in mild conditions via a Michael-type addition reaction, has been used to coat SFt matrices and obtain SFt/gel structures (I.D. = 6 mm). SFts/gel exhibited homogeneous gelatin coating on the electrospun fibrous tubular structure. Circumferential tensile tests performed on SFts/gel showed mechanical properties comparable to those of natural blood vessels in terms of UTS, compliance and viscoelastic behavior. Finally, SFt/gel in vitro cytocompatibility was confirmed by the good viability and spread morphology of L929 fibroblasts up to 7 days. These results demonstrated that SFt/gel is a promising off-the-shelf graft for small diameter blood vessel regeneration.
Collapse
Affiliation(s)
- Chiara Marcolin
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci 32, Milano, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci 32, Milano, Italy
- Local Unit Politecnico di Milano, INSTM, Milano, Italy
| | | | - Silvia Faré
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci 32, Milano, Italy.
- Local Unit Politecnico di Milano, INSTM, Milano, Italy.
| |
Collapse
|
31
|
Sekuła M, Domalik-Pyzik P, Morawska-Chochół A, Bobis-Wozowicz S, Karnas E, Noga S, Boruczkowski D, Adamiak M, Madeja Z, Chłopek J, Zuba-Surma EK. Polylactide- and polycaprolactone-based substrates enhance angiogenic potential of human umbilical cord-derived mesenchymal stem cells in vitro - implications for cardiovascular repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:521-533. [PMID: 28532062 DOI: 10.1016/j.msec.2017.03.281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/04/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023]
Abstract
Recent approaches in tissue regeneration focus on combining innovative achievements of stem cell biology and biomaterial sciences to develop novel therapeutic strategies for patients. Growing recent evidence indicates that mesenchymal stem cells harvested from human umbilical cord Wharton's jelly (hUC-MSCs) are a new valuable source of cells for autologous as well as allogeneic therapies in humans. hUC-MSCs are multipotent, highly proliferating cells with prominent immunoregulatory activity. In this study, we evaluated the impact of widely used FDA approved poly(α-esters) including polylactide (PLA) and polycaprolactone (PCL) on selected biological properties of hUC-MSCs in vitro. We found that both polymers can be used as non-toxic substrates for ex vivo propagation of hUC-MSCs as shown by no major impact on cell proliferation or viability. Moreover, PCL significantly enhanced the migratory capacity of hUC-MSCs. Importantly, genetic analysis indicated that both polymers promoted the angiogenic differentiation potential of hUC-MSCs with no additional chemical stimulation. These results indicate that PLA and PCL enhance selected biological properties of hUC-MSCs essential for their regenerative capacity including migratory and proangiogenic potential, which are required for effective vascular repair in vivo. Thus, PLA and PCL-based scaffolds combined with hUC-MSCs may be potentially employed as future novel grafts in tissue regeneration such as blood vessel reconstruction.
Collapse
Affiliation(s)
- Małgorzata Sekuła
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 7A Gronostajowa St., 30-387 Krakow, Poland
| | - Patrycja Domalik-Pyzik
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
| | - Anna Morawska-Chochół
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
| | - Sylwia Bobis-Wozowicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Krakow, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 7A Gronostajowa St., 30-387 Krakow, Poland
| | - Sylwia Noga
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 7A Gronostajowa St., 30-387 Krakow, Poland
| | | | - Marta Adamiak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Krakow, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Krakow, Poland
| | - Jan Chłopek
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| | - Ewa K Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Krakow, Poland.
| |
Collapse
|
32
|
Xu ZC, Zhang Q, Li H. Engineering of the human vessel wall with hair follicle stem cells in vitro. Mol Med Rep 2016; 15:417-422. [PMID: 27959397 DOI: 10.3892/mmr.2016.6013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/11/2016] [Indexed: 11/05/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are increasingly used as a stem cell paradigm in vascular tissue engineering due to the fact that they are a rich source of easily accessible multipotent adult stem cells. Promising results have been demonstrated with small diameter (less than 6 mm) tissue engineered blood vessels under low blood pressure, however engineering large vessels (>6 mm in diameter) remains a challenge due to the fact it demands a higher number of seed cells and higher quality biomechanical properties. The aim of the current study was to engineer a large vessel (6 mm in diameter) with differentiated smooth muscle cells (SMCs) induced from human (h)HFSCs using transforming growth factor‑β1 and platelet‑derived growth factor BB in combination with low‑serum culture medium. The cells were seeded onto polyglycolic acid and then wrapped around a silicone tube and further cultured in vitro. A round vessel wall was formed subsequent to 8 weeks of culture. Histological examination indicated that layers of smooth muscle‑like cells and collagenous fibres were oriented in the induced group. In contrast, disorganised cells and collagenous fibres were apparent in the undifferentiated group. The approach developed in the current study demonstrated potential for constructing large muscular vessels with differentiated SMCs induced from hHFSCs.
Collapse
Affiliation(s)
- Zhi-Cheng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Qun Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Hong Li
- Department of Life Information and Instrument Engineering, Hangzhou Electronic Science and Technology University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
33
|
Aubin H, Mas-Moruno C, Iijima M, Schütterle N, Steinbrink M, Assmann A, Gil FJ, Lichtenberg A, Pegueroles M, Akhyari P. Customized Interface Biofunctionalization of Decellularized Extracellular Matrix: Toward Enhanced Endothelialization. Tissue Eng Part C Methods 2016; 22:496-508. [PMID: 27018545 PMCID: PMC4870611 DOI: 10.1089/ten.tec.2015.0556] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 11/12/2022] Open
Abstract
Interface biofunctionalization strategies try to enhance and control the interaction between implants and host organism. Decellularized extracellular matrix (dECM) is widely used as a platform for bioengineering of medical implants, having shown its suitability in a variety of preclinical as well as clinical models. In this study, specifically designed, custom-made synthetic peptides were used to functionalize dECM with different cell adhesive sequences (RGD, REDV, and YIGSR). Effects on in vitro endothelial cell adhesion and in vivo endothelialization were evaluated in standardized models using decellularized ovine pulmonary heart valve cusps (dPVCs) and decellularized aortic grafts (dAoGs), respectively. Contact angle measurements and fluorescent labeling of custom-made peptides showed successful functionalization of dPVCs and dAoGs. The functionalization of dPVCs with a combination of bioactive sequences significantly increased in vitro human umbilical vein endothelial cell adhesion compared to nonfunctionalized controls. In a functional rodent aortic transplantation model, fluorescent-labeled peptides on dAoGs were persistent up to 10 days in vivo under exposure to systemic circulation. Although there was a trend toward enhanced in vivo endothelialization of functionalized grafts compared to nonfunctionalized controls, there was no statistical significance and a large biological variability in both groups. Despite failing to show a clear biological effect in the used in vivo model system, our initial findings do suggest that endothelialization onto dECM may be modulated by customized interface biofunctionalization using the presented method. Since bioactive sequences within the dECM-synthetic peptide platform are easily interchangeable and combinable, further control of host cell proliferation, function, and differentiation seems to be feasible, possibly paving the way to a new generation of multifunctional dECM scaffolds for regenerative medicine.
Collapse
Affiliation(s)
- Hug Aubin
- Department of Cardiovascular Surgery, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), Barcelona, Spain
- Center for Research in NanoEngineering (CRNE), Technical University of Catalonia (UPC), Barcelona, Spain
| | - Makoto Iijima
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nicolas Schütterle
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Meike Steinbrink
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexander Assmann
- Department of Cardiovascular Surgery, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Francesc Javier Gil
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), Barcelona, Spain
- Center for Research in NanoEngineering (CRNE), Technical University of Catalonia (UPC), Barcelona, Spain
| | - Artur Lichtenberg
- Department of Cardiovascular Surgery, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Marta Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), Barcelona, Spain
- Center for Research in NanoEngineering (CRNE), Technical University of Catalonia (UPC), Barcelona, Spain
| | - Payam Akhyari
- Department of Cardiovascular Surgery, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
34
|
Shen H, Hu X, Cui H, Zhuang Y, Huang D, Yang F, Wang X, Wang S, Wu D. Fabrication and effect on regulating vSMC phenotype of a biomimetic tunica media scaffold. J Mater Chem B 2016; 4:7689-7696. [DOI: 10.1039/c6tb02437h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We constructed a bFGF@TGF-β1 loaded porous film-like PLGA scaffold with dual surface topography of nanofiber and micro-orientation structures for regulating the phenotype of vascular smooth muscle cell (vSMC).
Collapse
Affiliation(s)
- Hong Shen
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xixue Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Haiyan Cui
- Ninth People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200011
- China
| | - Yaping Zhuang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Da Huang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Shenguo Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
35
|
Dettin M, Zamuner A, Roso M, Iucci G, Samouillan V, Danesin R, Modesti M, Conconi MT. Facile and selective covalent grafting of an RGD-peptide to electrospun scaffolds improves HUVEC adhesion. J Pept Sci 2015; 21:786-95. [DOI: 10.1002/psc.2808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/31/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Monica Dettin
- Department of Industrial Engineering; University of Padova; Padova Italy
| | - Annj Zamuner
- Department of Industrial Engineering; University of Padova; Padova Italy
| | - Martina Roso
- Department of Industrial Engineering; University of Padova; Padova Italy
| | | | - Valerie Samouillan
- Inter-university Centre for Materials Research and Engineering; University Toulouse-Paul Sabatier; Toulouse France
| | - Roberta Danesin
- Department of Industrial Engineering; University of Padova; Padova Italy
| | - Michele Modesti
- Department of Industrial Engineering; University of Padova; Padova Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences; University of Padova; Padova Italy
| |
Collapse
|
36
|
Xu ZC, Zhang Q, Li H. Elastic large muscular vessel wall engineered with bone marrow‑derived cells under pulsatile stimulation in a bioreactor. Mol Med Rep 2015; 12:6005-12. [PMID: 26238613 DOI: 10.3892/mmr.2015.4147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 07/03/2015] [Indexed: 11/05/2022] Open
Abstract
Bone marrow‑derived cells (BMCs) have demonstrated their ability to differentiate into multiple cell lineages and may be a promising cell source for vascular tissue engineering. Although much progress has been made in the engineering of small blood vessels (<6 mm in diameter) with biodegradable materials such as polyglycolic acid (PGA), it remains a challenge to engineer large vessels (>6 mm in diameter) due to unsatisfactory biomechanical properties. The present study was to engineered an elastic large vessel wall (6 mm in diameter) using a PGA unwoven fibre scaffold covered with BMCs from canine humeri. The cell‑PGA sheet was then loaded into a bioreactor designed for the present study, with dynamic pulsatile culture conditions to mimic the physiological vessel environment. After four weeks of the pulsatile stimuli culture, an elastic vessel wall was formed. Histological analyses demonstrated that layers of smooth muscle‑like cells and well‑oriented collagenous fibres were evenly oriented in the dynamic group. By contrast, disorganised cells and randomly collagenous fibres were apparent in the static group. Furthermore, the engineered vessel wall in the dynamic group exhibited significantly improved biomechanical properties compared with those in static culture group. The approach developed in the present study was demonstrated to have promising potential to be used for the engineering of large vessel as well as other smooth muscle cell‑containing tissues, including bladder, urethral and intestinal tissues.
Collapse
Affiliation(s)
- Zhi Cheng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Qun Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Hong Li
- Department of Life Information and Instrument Engineering, Hangzhou Electronic Science and Technology University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
37
|
Catto V, Farè S, Cattaneo I, Figliuzzi M, Alessandrino A, Freddi G, Remuzzi A, Tanzi MC. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:101-11. [PMID: 26046273 DOI: 10.1016/j.msec.2015.05.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 02/25/2015] [Accepted: 05/02/2015] [Indexed: 11/26/2022]
Abstract
To overcome the drawbacks of autologous grafts currently used in clinical practice, vascular tissue engineering represents an alternative approach for the replacement of small diameter blood vessels. In the present work, the production and characterization of small diameter tubular matrices (inner diameter (ID)=4.5 and 1.5 mm), obtained by electrospinning (ES) of Bombyx mori silk fibroin (SF), have been considered. ES-SF tubular scaffolds with ID=1.5 mm are original, and can be used as vascular grafts in pediatrics or in hand microsurgery. Axial and circumferential tensile tests on ES-SF tubes showed appropriate properties for the specific application. The burst pressure and the compliance of ES-SF tubes were estimated using the Laplace's law. Specifically, the estimated burst pressure was higher than the physiological pressures and the estimated compliance was similar or higher than that of native rat aorta and Goretex® prosthesis. Enzymatic in vitro degradation tests demonstrated a decrease of order and crystallinity of the SF outer surface as a consequence of the enzyme activity. The in vitro cytocompatibility of the ES-SF tubes was confirmed by the adhesion and growth of primary porcine smooth muscle cells. The in vivo subcutaneous implant into the rat dorsal tissue indicated that ES-SF matrices caused a mild host reaction. Thus, the results of this investigation, in which comprehensive morphological and mechanical aspects, in vitro degradation and in vitro and in vivo biocompatibility were considered, indicate the potential suitability of these ES-SF tubular matrices as scaffolds for the regeneration of small diameter blood vessels.
Collapse
Affiliation(s)
- Valentina Catto
- Biomaterials Laboratory, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci 32, Milano, Italy; Local Unit Politecnico di Milano, INSTM, Italy
| | - Silvia Farè
- Biomaterials Laboratory, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci 32, Milano, Italy; Local Unit Politecnico di Milano, INSTM, Italy.
| | - Irene Cattaneo
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bioengineering Department, via Stezzano 87, Bergamo, Italy
| | - Marina Figliuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bioengineering Department, via Stezzano 87, Bergamo, Italy
| | - Antonio Alessandrino
- INNOVHUB - SSI, Div. Stazione Sperimentale per la Seta, via G. Colombo 83, Milan, Italy
| | - Giuliano Freddi
- INNOVHUB - SSI, Div. Stazione Sperimentale per la Seta, via G. Colombo 83, Milan, Italy
| | - Andrea Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bioengineering Department, via Stezzano 87, Bergamo, Italy; Università di Bergamo, Industrial Engineering Department, Via Marconi 5, Dalmine, Bergamo, Italy
| | - Maria Cristina Tanzi
- Biomaterials Laboratory, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci 32, Milano, Italy; Local Unit Politecnico di Milano, INSTM, Italy
| |
Collapse
|
38
|
Noel S, Hachem A, Merhi Y, De Crescenzo G. Development of a Polyester Coating Combining Antithrombogenic and Cell Adhesive Properties: Influence of Sequence and Surface Density of Adhesion Peptides. Biomacromolecules 2015; 16:1682-94. [DOI: 10.1021/acs.biomac.5b00219] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samantha Noel
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (QC), Canada H3C 3A7
| | - Ahmed Hachem
- Université de Montréal, Montreal Heart Institute, 5000 Belanger Est, Montréal (QC), Canada H1T 1C8
| | - Yahye Merhi
- Université de Montréal, Montreal Heart Institute, 5000 Belanger Est, Montréal (QC), Canada H1T 1C8
| | - Gregory De Crescenzo
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (QC), Canada H3C 3A7
| |
Collapse
|
39
|
Lin L, Marchant RE, Zhu J, Kottke-Marchant K. Extracellular matrix-mimetic poly(ethylene glycol) hydrogels engineered to regulate smooth muscle cell proliferation in 3-D. Acta Biomater 2014; 10:5106-5115. [PMID: 25173839 DOI: 10.1016/j.actbio.2014.08.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/22/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022]
Abstract
The goal of this project is to engineer a defined, synthetic poly(ethylene glycol) (PEG) hydrogel as a model system to investigate smooth muscle cell (SMC) proliferation in three-dimensions (3-D). To mimic the properties of extracellular matrix, both cell-adhesive peptide (GRGDSP) and matrix metalloproteinase (MMP) sensitive peptide (VPMSMRGG or GPQGIAGQ) were incorporated into the PEG macromer chain. Copolymerization of the biomimetic macromers results in the formation of bioactive hydrogels with the dual properties of cell adhesion and proteolytic degradation. Using these biomimetic scaffolds, the authors studied the effect of scaffold properties, including RGD concentration, MMP sensitivity, and network crosslinking density, as well as heparin as an exogenous factor on 3-D SMC proliferation. The results indicated that the incorporation of cell-adhesive ligand significantly enhanced SMC spreading and proliferation, with cell-adhesive ligand concentration mediating 3-D SMC proliferation in a biphasic manner. The faster degrading hydrogels promoted SMC proliferation and spreading. In addition, 3-D SMC proliferation was inhibited by increasing network crosslinking density and exogenous heparin treatment. These constructs are a good model system for studying the effect of hydrogel properties on SMC functions and show promise as a tissue engineering platform for vascular in vivo applications.
Collapse
Affiliation(s)
- Lin Lin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Roger E Marchant
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Junmin Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kandice Kottke-Marchant
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, L21, Cleveland, OH 44195, USA.
| |
Collapse
|
40
|
Tissue engineered scaffolds for an effective healing and regeneration: reviewing orthotopic studies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:398069. [PMID: 25250319 PMCID: PMC4163448 DOI: 10.1155/2014/398069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/22/2014] [Indexed: 12/20/2022]
Abstract
It is commonly stated that tissue engineering is the most promising approach to treat or replace failing tissues/organs. For this aim, a specific strategy should be planned including proper selection of biomaterials, fabrication techniques, cell lines, and signaling cues. A great effort has been pursued to develop suitable scaffolds for the restoration of a variety of tissues and a huge number of protocols ranging from in vitro to in vivo studies, the latter further differentiating into several procedures depending on the type of implantation (i.e., subcutaneous or orthotopic) and the model adopted (i.e., animal or human), have been developed. All together, the published reports demonstrate that the proposed tissue engineering approaches spread toward multiple directions. The critical review of this scenario might suggest, at the same time, that a limited number of studies gave a real improvement to the field, especially referring to in vivo investigations. In this regard, the present paper aims to review the results of in vivo tissue engineering experimentations, focusing on the role of the scaffold and its specificity with respect to the tissue to be regenerated, in order to verify whether an extracellular matrix-like device, as usually stated, could promote an expected positive outcome.
Collapse
|
41
|
Chen YE, Xie C, Yang B. Stem cells for vascular engineering. BIOMATERIALS AND REGENERATIVE MEDICINE 2014:621-639. [DOI: 10.1017/cbo9780511997839.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Blood vessel-derived acellular matrix for vascular graft application. BIOMED RESEARCH INTERNATIONAL 2014; 2014:685426. [PMID: 25136610 PMCID: PMC4124812 DOI: 10.1155/2014/685426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/12/2014] [Accepted: 07/07/2014] [Indexed: 01/22/2023]
Abstract
To overcome the issues connected to the use of autologous vascular grafts and artificial materials for reconstruction of small diameter (<6 mm) blood vessels, this study aimed to develop acellular matrix- (AM-) based vascular grafts. Rat iliac arteries were decellularized by a detergent-enzymatic treatment, whereas endothelial cells (ECs) were obtained through enzymatic digestion of rat skin followed by immunomagnetic separation of CD31-positive cells. Sixteen female Lewis rats (8 weeks old) received only AM or previously in vitro reendothelialized AM as abdominal aorta interposition grafts (about 1 cm). The detergent-enzymatic treatment completely removed the cellular part of vessels and both MHC class I and class II antigens. One month after surgery, the luminal surface of implanted AMs was partially covered by ECs and several platelets adhered in the areas lacking cell coverage. Intimal hyperplasia, already detected after 1 month, increased at 3 months. On the contrary, all grafts composed by AM and ECs were completely covered at 1 month and their structure was similar to that of native vessels at 3 months. Taken together, our findings show that prostheses composed of AM preseeded with ECs could be a promising approach for the replacement of blood vessels.
Collapse
|
43
|
Vascular Tissue Engineering: Recent Advances in Small Diameter Blood Vessel Regeneration. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/923030] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the leading cause of mortality around the globe. The development of a functional and appropriate substitute for small diameter blood vessel replacement is still a challenge to overcome the main drawbacks of autografts and the inadequate performances of synthetic prostheses made of polyethylene terephthalate (PET, Dacron) and expanded polytetrafluoroethylene (ePTFE, Goretex). Therefore, vascular tissue engineering has become a promising approach for small diameter blood vessel regeneration as demonstrated by the increasing interest dedicated to this field. This review is focused on the most relevant and recent studies concerning vascular tissue engineering for small diameter blood vessel applications. Specifically, the present work reviews research on the development of tissue-engineered vascular grafts made of decellularized matrices and natural and/or biodegradable synthetic polymers and their realization without scaffold.
Collapse
|
44
|
|
45
|
Palamaro L, Guarino V, Scalia G, Antonini D, De Falco L, Bianchino G, Fusco A, Romano R, Grieco V, Missero C, Del Vecchio L, Ambrosio L, Pignata C. Human skin-derived keratinocytes and fibroblasts co-cultured on 3D poly ε-caprolactone scaffold support in vitro HSC differentiation into T-lineage committed cells. Int Immunol 2013; 25:703-14. [DOI: 10.1093/intimm/dxt035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
46
|
Böer U, Spengler C, Jonigk D, Klingenberg M, Schrimpf C, Lützner S, Harder M, Kreipe HH, Haverich A, Wilhelmi M. Coating decellularized equine carotid arteries with CCN1 improves cellular repopulation, local biocompatibility, and immune response in sheep. Tissue Eng Part A 2013; 19:1829-42. [PMID: 23521030 DOI: 10.1089/ten.tea.2012.0558] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Decellularized equine carotid arteries (dEAC) are potential alternatives to alloplastic vascular grafts although there are certain limitations in biocompatibility and immunogenicity. Here, dEAC were coated with the matricellular protein CCN1 and evaluated in vitro for its cytotoxic and angiogenic effects and in vivo for cellular repopulation, local biocompatibility, neovascularization, and immunogenicity in a sheep model. CCN1 coating resulted in nontoxic matrices not compromising viability of L929 fibroblasts and endothelial cells (ECs) assessed by WST-8 assay. Functionality of CCN1 was maintained as it induced typical changes in fibroblast morphology and MMP3 secretion. For in vivo testing, dEAC±CCN1 (n=3 each) and polytetrafluoroethylene (PTFE) protheses serving as controls (n=6) were implanted as cervical arteriovenous shunts. After 14 weeks, grafts were harvested and evaluated immunohistologically. PTFE grafts showed a patency rate of only 33% and lacked cellular repopulation. Both groups of bioartificial grafts were completely patent and repopulated with ECs and smooth muscle cells (SMCs). However, whereas dEAC contained only patch-like aggregates of SMCs and a partial luminal lining with ECs, CCN1-coated grafts showed multiple layers of SMCs and a complete endothelialization. Likewise, CCN1 coating reduced leukocyte infiltration and fibrosis and supported neovascularization. In addition, in a three-dimensional assay, CCN1 coating increased vascular tube formation in apposition to the matrix 1.6-fold. Graft-specific serum antibodies were increased by CCN1 up to 6 weeks after implantation (0.89±0.03 vs. 1.08±0.04), but were significantly reduced after 14 weeks (0.85±0.04 vs. 0.69±0.02). Likewise, restimulated lymphocyte proliferation was significantly lower after 14 weeks (1.78±0.09 vs. 1.32±0.09-fold of unstimulated). Thus, CCN1 coating of biological scaffolds improves local biocompatibility and accelerates scaffold remodeling by enhancing cellular repopulation and immunologic tolerance, making it a promising tool for generation of bioartificial vascular prostheses.
Collapse
Affiliation(s)
- Ulrike Böer
- GMP Model Laboratory for Tissue Engineering, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stoppato M, Stevens HY, Carletti E, Migliaresi C, Motta A, Guldberg RE. Effects of silk fibroin fiber incorporation on mechanical properties, endothelial cell colonization and vascularization of PDLLA scaffolds. Biomaterials 2013; 34:4573-81. [PMID: 23522374 DOI: 10.1016/j.biomaterials.2013.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
Abstract
Attainment of functional vascularization of engineered constructs is one of the fundamental challenges of tissue engineering. However, the development of an extracellular matrix in most tissues, including bone, is dependent upon the establishment of a well developed vascular supply. In this study a poly(d,l-lactic acid) (PDLLA) salt-leached sponge was modified by incorporation of silk fibroin fibers to create a multicomponent scaffold, in an effort to better support endothelial cell colonization and to promote in vivo vascularization. Scaffolds with and without silk fibroin fibers were compared for microstructure, mechanical properties, ability to maintain cell populations in vitro as well as to permit vascular ingrowth into acellular constructs in vivo. We demonstrated that adding silk fibroin fibers to a PDLLA salt-leached sponge enhanced scaffold properties and heightened its capacity to support endothelial cells in vitro and to promote vascularization in vivo. Therefore refinement of scaffold properties by inclusion of materials with beneficial attributes may promote and shape cellular responses.
Collapse
Affiliation(s)
- Matteo Stoppato
- Department of Industrial Engineering and Biotech Research Center, University of Trento, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Mauri A, Zeisberger SM, Hoerstrup SP, Mazza E. Analysis of the Uniaxial and Multiaxial Mechanical Response of a Tissue-Engineered Vascular Graft. Tissue Eng Part A 2013; 19:583-92. [DOI: 10.1089/ten.tea.2012.0075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arabella Mauri
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Steffen M. Zeisberger
- Swiss Center for Regenerative Medicine (SCRM), University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Surgical Research and Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Swiss Center for Regenerative Medicine (SCRM), University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Surgical Research and Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology, EMPA, Duebendorf, Switzerland
| |
Collapse
|
49
|
Negishi J, Funamoto S, Kimura T, Nam K, Higami T, Kishida A. Porcine radial artery decellularization by high hydrostatic pressure. J Tissue Eng Regen Med 2012; 9:E144-51. [PMID: 23233238 DOI: 10.1002/term.1662] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 10/16/2012] [Accepted: 10/30/2012] [Indexed: 01/24/2023]
Abstract
Many types of decellularized tissues have been studied and some have been commercially used in clinics. In this study, small-diameter vascular grafts were made using HHP to decellularize porcine radial arteries. One decellularization method, high hydrostatic pressure (HHP), has been used to prepare the decellularized porcine tissues. Low-temperature treatment was effective in preserving collagen and collagen structures in decellularized porcine carotid arteries. The collagen and elastin structures and mechanical properties of HHP-decellularized radial arteries were similar to those of untreated radial arteries. Xenogeneic transplantation (into rats) was performed using HHP-decellularized radial arteries and an untreated porcine radial artery. Two weeks after transplantation into rat carotid arteries, the HHP-decellularized radial arteries were patent and without thrombosis. In addition, the luminal surface of each decellularized artery was covered by recipient endothelial cells and the arterial medium was fully infiltrated with recipient cells.
Collapse
Affiliation(s)
- Jun Negishi
- Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan
| | - Seiichi Funamoto
- Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan.,Japan Science and Technology Agency (CREST), Saitama, Japan
| | - Tsuyoshi Kimura
- Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan.,Japan Science and Technology Agency (CREST), Saitama, Japan
| | - Kwangoo Nam
- Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan.,Japan Science and Technology Agency (CREST), Saitama, Japan
| | - Tetsuya Higami
- Department of Thoracic and Cardiovascular Surgery, Sapporo Medical University School of Medicine, Japan
| | - Akio Kishida
- Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan.,Japan Science and Technology Agency (CREST), Saitama, Japan
| |
Collapse
|
50
|
Renth AN, Detamore MS. Leveraging "raw materials" as building blocks and bioactive signals in regenerative medicine. TISSUE ENGINEERING. PART B, REVIEWS 2012; 18:341-62. [PMID: 22462759 PMCID: PMC3458620 DOI: 10.1089/ten.teb.2012.0080] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/28/2012] [Indexed: 01/15/2023]
Abstract
Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of "raw materials" used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies.
Collapse
Affiliation(s)
- Amanda N. Renth
- Bioengineering Program, University of Kansas, Lawrence, Kansas
| | - Michael S. Detamore
- Bioengineering Program, University of Kansas, Lawrence, Kansas
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| |
Collapse
|