1
|
Gross S, Müller A, Seinige D, Wohlsein P, Oliveira M, Steinhagen D, Kehrenberg C, Siebert U. Occurrence of Antimicrobial-Resistant Escherichia coli in Marine Mammals of the North and Baltic Seas: Sentinels for Human Health. Antibiotics (Basel) 2022; 11:antibiotics11091248. [PMID: 36140027 PMCID: PMC9495373 DOI: 10.3390/antibiotics11091248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is a global health threat that involves complex, opaque transmission processes in the environment. In particular, wildlife appears to function as a reservoir and vector for antimicrobial-resistant bacteria as well as resistance genes. In the present study, the occurrence of antimicrobial-resistant Escherichia coli was determined in marine mammals and various fish species of the North and Baltic Seas. Rectal or faecal swabs were collected from 66 live-caught or stranded marine mammals and 40 fish specimens. The antimicrobial resistance phenotypes and genotypes of isolated E. coli were determined using disk diffusion tests and PCR assays. Furthermore, isolates were assigned to the four major phylogenetic groups of E. coli. Additionally, post mortem examinations were performed on 41 of the sampled marine mammals. The investigations revealed resistant E. coli in 39.4% of the marine mammal samples, while no resistant isolates were obtained from any of the fish samples. The obtained isolates most frequently exhibited resistance against aminoglycosides, followed by β-lactams. Of the isolates, 37.2% showed multidrug resistance. Harbour porpoises (Phocoena phocoena) mainly carried E. coli isolates belonging to the phylogenetic group B1, while seal isolates were most frequently assigned to group B2. Regarding antimicrobial resistance, no significant differences were seen between the two sampling areas or different health parameters, but multidrug-resistant isolates were more frequent in harbour porpoises than in the sampled seals. The presented results provide information on the distribution of antimicrobial-resistant bacteria in the North and Baltic Seas, and highlight the role of these resident marine mammal species as sentinels from a One Health perspective.
Collapse
Affiliation(s)
- Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Anja Müller
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Frankfurter Str. 92, 35392 Giessen, Germany
| | - Diana Seinige
- Office for Veterinary Affairs and Consumer Protection, Ministry of Lower Saxony for Food, Agriculture and Consumer Protection, Alte Grenze 7, 29221 Celle, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Manuela Oliveira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Frankfurter Str. 92, 35392 Giessen, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
- Correspondence:
| |
Collapse
|
2
|
Ometere Boyi J, Stokholm I, Hillmann M, Søndergaard J, Persson S, de Wit CA, Siebert U, Kristina L. Relationships between gene transcription and contaminant concentrations in Baltic ringed seals: A comparison between tissue matrices. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106035. [PMID: 34856463 DOI: 10.1016/j.aquatox.2021.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Ringed seals (Pusa hispida) are slowly recovering in the eastern and northern parts of the Baltic Sea after years of hunting pressure and contaminant exposure. Still, consequences of anthropogenic activities such as contaminant exposure and increasing temperatures are stressors that continue to have deleterious effects on their habitat and health. Transcription profiles of seven health-related genes involved in xenobiotic metabolism, endocrine disruption and stress were evaluated in blood, blubber, and liver of Baltic ringed seals in a multi-tissue approach. Selected persistent organic pollutants and total mercury concentrations were measured in blubber and liver, and muscle and liver of these animals, respectively. Concentrations of contaminants varied across tissues on a lipid weight basis but not with sex. mRNA transcript levels for all seven target genes did not vary between sexes or age classes. Transcript levels of thyroid hormone receptor alpha (TRα), retinoic acid receptor alpha (RARα) and heat shock protein 70 (HSP70) correlated with levels of persistent organic pollutants. TRα transcript levels also correlated positively with mercury concentrations in the liver. Of the three tissues assessed in this multi-tissue approach, blubber showed highest transcription levels of aryl hydrocarbon receptor nuclear translocator (ARNT), thyroid stimulating hormone receptor beta (TSHβ), oestrogen receptor alpha (ESR1) and peroxisome proliferator activated receptor alpha (PPARα). The wide range of genes expressed highlights the value of minimally invasive sampling (e.g. biopsies) for assessing health endpoints in free-ranging marine wildlife and the importance of identifying optimal matrices for targeted gene expression studies. This gene transcript profile study has provided baseline information on transcript levels of biomarkers for early on-set health effects in ringed seals and will be a useful guide to assess the impacts of environmental change in Baltic pinnipeds for conservation and management.
Collapse
Affiliation(s)
- Joy Ometere Boyi
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum D-25761, Germany
| | - Iben Stokholm
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum D-25761, Germany
| | - Miriam Hillmann
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum D-25761, Germany
| | - Jens Søndergaard
- Department of Bioscience, Aarhus University, Roskilde DK-4000, Denmark
| | - Sara Persson
- Swedish Museum of Natural History, Department of Environmental Research and Monitoring, Stockholm SE-10405, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum D-25761, Germany
| | - Lehnert Kristina
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum D-25761, Germany.
| |
Collapse
|
3
|
Fraija-Fernández N, Waeschenbach A, Briscoe AG, Hocking S, Kuchta R, Nyman T, Littlewood DTJ. Evolutionary transitions in broad tapeworms (Cestoda: Diphyllobothriidea) revealed by mitogenome and nuclear ribosomal operon phylogenetics. Mol Phylogenet Evol 2021; 163:107262. [PMID: 34273503 DOI: 10.1016/j.ympev.2021.107262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/11/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022]
Abstract
Broad tapeworms (Diphyllobothriidea) are parasites whose adults are capable of infecting a wide range of freshwater, marine and terrestrial tetrapods including humans. Previous works examining the evolution of habitat and host use in this group have been hampered by the lack of a well-resolved phylogeny. In order to produce a robust phylogenetic framework for diphyllobothriideans, we sequenced the complete mitochondrial genome of 13 representatives, carefully chosen to cover the major clades, and two outgroup species representing the Spathebothriidea and Haplobothriidea. In addition, complementary data from the nuclear ribosomal operon was sequenced for 10 representative taxa. Mitogenomes and ssrDNA and lsrDNA were used towards elucidating the phylogenetic framework for the Diphyllobothriidea. The Cephalochlamydidae is confirmed as the earliest diverging diphyllobothriidean lineage, and Solenophoridae and Diphyllobothriidae are sister groups. We infer a probable freshwater origin of the diphyllobothriideans. The ancestral condition for life cycle complexity could not be unambiguously resolved. However, we infer exclusive use of a three-host life cycle following the origin of the Solenophoridae + Diphyllobothriidae. Regarding definitive host use, although we infer reptiles as the most likely ancestral condition, this result should be revisited with a more densely sampled phylogeny in future studies. Freshwater habitat is used by the early diverging lineages within the Solenophoridae + Diphyllobothriidae clade. For the latter, habitat use shifts between freshwater and marine environments, and definitive host use includes marine and terrestrial mammals and birds. We use mitochondrial genomes to distinguish Schistocephalus species occurring in different species of sticklebacks and demonstrate conspecificity of Ligula cf. intestinalis specimens collected from two Fennoscandian ringed seal subspecies.
Collapse
Affiliation(s)
- Natalia Fraija-Fernández
- Department of Life Sciences, Natural History Museum, London, United Kingdom; Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | | | - Andrew G Briscoe
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Suzanne Hocking
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| | | |
Collapse
|
4
|
Nyman T, Papadopoulou E, Ylinen E, Wutke S, Michell CT, Sromek L, Sinisalo T, Andrievskaya E, Alexeev V, Kunnasranta M. DNA barcoding reveals different cestode helminth species in northern European marine and freshwater ringed seals. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 15:255-261. [PMID: 34277335 PMCID: PMC8261468 DOI: 10.1016/j.ijppaw.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023]
Abstract
Three subspecies of the ringed seal (Pusa hispida) are found in northeastern Europe: P. h. botnica in the Baltic Sea, P. h saimensis in Lake Saimaa in Finland, and P. h. ladogensis in Lake Ladoga in Russia. We investigated the poorly-known cestode helminth communities of these closely related but ecologically divergent subspecies using COI barcode data. Our results show that, while cestodes from the Baltic Sea represent Schistocephalus solidus, all worms from the two lakes are identified as Ligula intestinalis, a species that has previously not been reported from seals. The observed shift in cestode communities appears to be driven by differential availability of intermediate fish host species in marine vs. freshwater environments. Both observed cestode species normally infect fish-eating birds, so further work is required to elucidate the health and conservation implications of cestode infections in European ringed seals, whether L. intestinalis occurs also in marine ringed seals, and whether the species is able to reproduce in seal hosts. In addition, a deep barcode divergence found within S. solidus suggests the presence of cryptic diversity under this species name. COI barcoding reveals different cestodes in marine and freshwater ringed seals. Ligula intestinalis is reported for the first time from seals. A deep barcode divergence is found within Schistocephalus solidus in the Baltic Sea.
Collapse
Affiliation(s)
- Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| | - Elena Papadopoulou
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Eeva Ylinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Saskia Wutke
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Craig T Michell
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Ludmila Sromek
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Tuula Sinisalo
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | | | | - Mervi Kunnasranta
- Natural Resources Institute Finland, Joensuu, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
5
|
Penk SR, Bodner K, Vargas Soto JS, Chenery ES, Nascou A, Molnár PK. Mechanistic models can reveal infection pathways from prevalence data: the mysterious case of polar bears
Ursus maritimus
and
Trichinella nativa. OIKOS 2020. [DOI: 10.1111/oik.07458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephanie R. Penk
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Korryn Bodner
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Juan S. Vargas Soto
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Emily S. Chenery
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Alexander Nascou
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Péter K. Molnár
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| |
Collapse
|
6
|
Lynggaard C, Woolsey ID, Al-Sabi MNS, Bertram N, Jensen PM. Parasites in Myodes glareolus and their association with diet assessed by stable isotope analysis. Int J Parasitol Parasites Wildl 2018; 7:180-186. [PMID: 29988840 PMCID: PMC6032500 DOI: 10.1016/j.ijppaw.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 11/26/2022]
Abstract
Vertebrates are hosts to numerous parasites, belonging to many different taxa. These parasites differ in transmission, being through either direct contact, a faecal-oral route, ingestion of particular food items, vertical or sexual transmission, or by a vector. Assessing the impact of diet on parasitism can be difficult because analysis of faecal and stomach content are uncertain and labourious; and as with molecular methods, do not provide diet information over a longer period of time. We here explored whether the analysis of stable isotopes in hair provides insight into the impact of diet and the presence of parasites in the rodent Myodes glareolus. Twenty-one animals were examined for parasites and their hair analysed for stable isotopes (C and N). A positive correlation between δ15N and one species of intestinal parasite was observed in females. Furthermore, several ectoparasites were negatively correlated with δ15N, indicating that infections are further associated with foraging habits (size and layout of the home range, length and timing of foraging, interaction with other rodents, etc.) that set the rodents in direct contact with infected hosts. Although a limited number of animals were included, it seemed that the isotope values allowed for identification of the association between diet and parasite occurrence in this rodent. We therefore propose that this method is useful in providing further insight into host biology, feeding preferences and potential exposure to parasites species, contributing to the understanding of the complex relationship between hosts and parasites.
Collapse
Affiliation(s)
- Christina Lynggaard
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ian David Woolsey
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mohammad Nafi Solaiman Al-Sabi
- Section of Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| | - Nicolas Bertram
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Per Moestrup Jensen
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
7
|
Jędruch A, Bełdowska M, Kwasigroch U, Normant-Saremba M, Saniewska D. Mercury fractionation in marine macrofauna using thermodesorption technique: Method and its application. Talanta 2018; 189:534-542. [PMID: 30086956 DOI: 10.1016/j.talanta.2018.07.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/28/2022]
Abstract
Mercury (Hg) is one of the most dangerous elements, and its toxicity and ability to accumulate in organisms depend on its chemical form. There are numerous methods of Hg speciation analysis, out of which the least expensive and the least time-consuming one is thermodesorption. The method has been successfully used for the analysis of abiotic samples - soils and sediments. The aim of this study was to verify whether the simplified thermodesorption method can be used in the analysis of the tissues of animal organisms from different trophic levels. Hg fractionation analyses were performed on a DMA-80 analyser (Milestone, Italy). The results presented in this paper are the first published data on Hg fractionation by thermodesorption method in animal tissues. The study showed that the 5-step thermodesorption method can be applied to various types of environmental matrices, which makes it universal. This method is of great importance in terms of estimating the Hg uptake and transfer in the trophic chain, and also enables the assessment of global Hg circulation in the environment. The presented method does not require previous digestion of samples or the use of expensive reagents. It can also be used for the preliminary selection of samples for MeHg analysis. The results obtained by this 5-step fractionation could be comparable with different research, conducted using other Hg analysers.
Collapse
Affiliation(s)
- Agnieszka Jędruch
- Institute of Oceanography, University of Gdansk, Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Magdalena Bełdowska
- Institute of Oceanography, University of Gdansk, Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Urszula Kwasigroch
- Institute of Oceanography, University of Gdansk, Piłsudskiego 46, 81-378 Gdynia, Poland
| | | | - Dominika Saniewska
- Institute of Oceanography, University of Gdansk, Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
8
|
|
9
|
McGrew AK, O'Hara TM, Stricker CA, Margaret Castellini J, Beckmen KB, Salman MD, Ballweber LR. Ecotoxicoparasitology: Understanding mercury concentrations in gut contents, intestinal helminths and host tissues of Alaskan gray wolves (Canis lupus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:866-871. [PMID: 26283618 PMCID: PMC4807146 DOI: 10.1016/j.scitotenv.2015.07.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 05/15/2023]
Abstract
Some gastrointestinal helminths acquire nutrients from the lumen contents in which they live; thus, they may be exposed to non-essential elements, such as mercury (Hg), during feeding. The objectives of this study were: 1) determine the total mercury concentrations ([THg]) in Gray wolves (Canis lupus) and their parasites, and 2) use stable isotopes to evaluate the trophic relationships within the host. [THg] and stable isotopes (C and N) were determined for helminths, host tissues, and lumen contents from 88 wolves. Sixty-three wolves contained grossly visible helminths (71.5%). The prevalence of taeniids and ascarids was 63.6% (56/88) and 20.5% (18/88), respectively. Nine of these 63 wolves contained both taeniids and ascarids (14.3%). All ascarids were determined to be Toxascaris leonina. Taenia species present included T. krabbei and T. hydatigena. Within the GI tract, [THg] in the lumen contents of the proximal small intestine were significantly lower than in the distal small intestine. There was a significant positive association between hepatic and taeniid [THg]. Bioaccumulation factors (BAF) ranged from <1 to 22.9 in taeniids, and 1.1 to 12.3 in T. leonina. Taeniid and ascarid BAF were significantly higher than 1, suggesting that both groups are capable of THg accumulation in their wolf host. δ13C in taeniids was significantly lower than in host liver and skeletal muscle. [THg] in helminths and host tissues, in conjunction with stable isotope (C and N) values, provides insight into food-web dynamics of the host GI tract, and aids in elucidating ecotoxicoparasitologic relationships. Variation of [THg] throughout the GI tract, and between parasitic groups, underscores the need to further evaluate the effect(s) of feeding niche, and the nutritional needs of parasites, as they relate to toxicant exposure and distribution within the host.
Collapse
Affiliation(s)
- Ashley K McGrew
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1619, USA
| | - Todd M O'Hara
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1619, USA; Wildlife Toxicology Laboratory, Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Craig A Stricker
- U. S. Geological Survey, Fort Collins Science Center, Denver, CO 80225, USA
| | - J Margaret Castellini
- Wildlife Toxicology Laboratory, Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | | | - Mo D Salman
- Animal Population Health Institute, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1644, USA
| | - Lora R Ballweber
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1619, USA
| |
Collapse
|
10
|
Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Semmens BX, Ward EJ. Best practices for use of stable isotope mixing models in food-web studies. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2014-0127] [Citation(s) in RCA: 691] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stable isotope mixing models are increasingly used to quantify consumer diets, but may be misused and misinterpreted. We address major challenges to their effective application. Mixing models have increased rapidly in sophistication. Current models estimate probability distributions of source contributions, have user-friendly interfaces, and incorporate complexities such as variability in isotope signatures, discrimination factors, hierarchical variance structure, covariates, and concentration dependence. For proper implementation of mixing models, we offer the following suggestions. First, mixing models can only be as good as the study and data. Studies should have clear questions, be informed by knowledge of the system, and have strong sampling designs to effectively characterize isotope variability of consumers and resources on proper spatio-temporal scales. Second, studies should use models appropriate for the question and recognize their assumptions and limitations. Decisions about source grouping or incorporation of concentration dependence can influence results. Third, studies should be careful about interpretation of model outputs. Mixing models generally estimate proportions of assimilated resources with substantial uncertainty distributions. Last, common sense, such as graphing data before analyzing, is essential to maximize usefulness of these tools. We hope these suggestions for effective implementation of stable isotope mixing models will aid continued development and application of this field.
Collapse
Affiliation(s)
- Donald L. Phillips
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th Street, Corvallis, OR 97330, USA
| | - Richard Inger
- Environment and Sustainability Institute, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK
| | - Stuart Bearhop
- Environment and Sustainability Institute, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK
| | - Andrew L. Jackson
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Jonathan W. Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Andrew C. Parnell
- School of Mathematical Sciences (Statistics), Complex and Adaptive Systems Laboratory, University College Dublin, Dublin 4, Ireland
| | - Brice X. Semmens
- Scripps Institution of Oceanography, University of California – San Diego, San Diego, CA 92093, USA
| | - Eric J. Ward
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| |
Collapse
|
11
|
Locke SA, Marcogliese DJ, Valtonen ET. Vulnerability and diet breadth predict larval and adult parasite diversity in fish of the Bothnian Bay. Oecologia 2013; 174:253-62. [PMID: 24026499 DOI: 10.1007/s00442-013-2757-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Recent studies of aquatic food webs show that parasite diversity is concentrated in nodes that likely favour transmission. Various aspects of parasite diversity have been observed to be correlated with the trophic level, size, diet breadth, and vulnerability to predation of hosts. However, no study has attempted to distinguish among all four correlates, which may have differential importance for trophically transmitted parasites occurring as larvae or adults. We searched for factors that best predict the diversity of larval and adult endoparasites in 4105 fish in 25 species studied over a three-year period in the Bothnian Bay, Finland. Local predator-prey relationships were determined from stomach contents, parasites, and published data in 8,229 fish in 31 species and in seals and piscivorous birds. Fish that consumed more species of prey had more diverse trophically transmitted adult parasites. Larval parasite diversity increased with the diversity of both prey and predators, but increases in predator diversity had a greater effect. Prey diversity was more strongly associated with the diversity of adult parasites than with that of larvae. The proportion of parasite species present as larvae in a host species was correlated with the diversity of its predators. There was a notable lack of association with the diversity of any parasite guild and fish length, trophic level, or trophic category. Thus, diversity is associated with different nodal properties in larval and adult parasites, and association strengths also differ, strongly reflecting the life cycles of parasites and the food chains they follow to complete transmission.
Collapse
Affiliation(s)
- Sean A Locke
- Aquatic Biodiversity Section, Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate, Science and Technology Branch, St. Lawrence Centre, Environment Canada, 105 McGill, 7th Floor, Montreal, QC, H2Y 2E7, Canada
| | | | | |
Collapse
|
12
|
Lahti M, Oikari A. Vertical distribution of pharmaceuticals in lake sediments-citalopram as potential chemomarker. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1738-1744. [PMID: 22639393 DOI: 10.1002/etc.1901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/13/2012] [Accepted: 04/26/2012] [Indexed: 06/01/2023]
Abstract
The use of pharmaceuticals has increased enormously over the last few decades and serious concerns about their environmental fate and effects have arisen. Thus far, there is little knowledge about the historical pollution of the environment by pharmaceuticals. In the present study, sediment columns from three lake sites adjacent to wastewater treatment plants were collected, further divided in 2- or 2.5-cm slices, and analyzed for 15 pharmaceuticals by liquid chromatography-tandem mass spectrometry. In addition, sediment columns were historically interpreted by analyzing fecal sterols (coprostanol and cholesterol) as well as organic material and organic carbon. Several pharmaceuticals were detected in sediments, the most abundant being citalopram, bisoprolol, and propranolol. At site A, pharmaceuticals prevailed only in the uppermost 15 cm, whereas at site B they existed in the whole sediment column (0-30 cm). Pharmaceuticals were not found in site C sediments. Based on the sterol analyses, municipal wastewater contamination at sites A, B, and C was found in the uppermost 15, 30, and 20 cm, respectively. For the first time, contamination of sediments by pharmaceuticals was demonstrated below the subsurface (up to a depth of 30 cm). When considering the consumption and the observed concentration profiles of pharmaceuticals, a clear increasing trend of citalopram toward the surface was evident at site A.
Collapse
Affiliation(s)
- Marja Lahti
- Division of Environmental Science and Technology, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | | |
Collapse
|
13
|
|
14
|
Bertrand M, Cabana G, Marcogliese DJ, Magnan P. Estimating the feeding range of a mobile consumer in a river-flood plain system using δ13C gradients and parasites. J Anim Ecol 2011; 80:1313-23. [DOI: 10.1111/j.1365-2656.2011.01861.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Vertebrate diets derived from trophically transmitted fish parasites in the Bothnian Bay. Oecologia 2009; 162:139-52. [DOI: 10.1007/s00442-009-1451-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
|
16
|
Trophic ecology of Pacific salmon (Oncorhynchus spp.) in the ocean: a synthesis of stable isotope research. Ecol Res 2008. [DOI: 10.1007/s11284-008-0559-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|