1
|
Qiu Z, Han Y, Li J, Ren Y, Liu X, Li S, Zhao GR, Du L. Metabolic division engineering of Escherichia coli consortia for de novo biosynthesis of flavonoids and flavonoid glycosides. Metab Eng 2025; 89:60-75. [PMID: 39947347 DOI: 10.1016/j.ymben.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/17/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
Heterologous biosynthesis of natural products with long biosynthetic pathways in microorganisms often suffers from diverse problems, such as enzyme promiscuity and metabolic burden. Flavonoids and their glycosides are important phytochemicals in the diet of human beings, with various health benefits and biological activities. Despite previous efforts and achievements, efficient microbial production of plant-derived flavonoid compounds with long pathways remains challenging. Herein, we applied metabolic division engineering of Escherichia coli consortia to overcome these limitations. By establishing new biosynthetic pathways, rationally adjusting metabolic node intermediates, and engineering different auxotrophic and orthogonal carbon sources for hosts, we established stable two- and three-bacteria co-culture systems to efficiently de novo produce 12 flavonoids (61.15-325.31 mg/L) and 36 corresponding flavonoid glycosides (1.31-191.79 mg/L). Furthermore, the co-culture system was rapidly extended in a plug-and-play manner to produce isoflavonoids, dihydrochalcones, and their glycosides. This study successfully alleviates metabolic burden and overcomes enzyme promiscuity, and provides significant insights that could guide the biosynthesis of other complex secondary metabolites.
Collapse
Affiliation(s)
- Zetian Qiu
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Yumei Han
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Jia Li
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Yi Ren
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Xue Liu
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Guang-Rong Zhao
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China.
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
3
|
Yu L, Ahmad N, Meng W, Zhao S, Chang Y, Wang N, Zhang M, Yao N, Liu X, Zhang J. Integrated Metabolomics and Transcriptomics Provide Key Molecular Insights into Floral Stage-Driven Flavonoid Pathway in Safflower. Int J Mol Sci 2024; 25:11903. [PMID: 39595977 PMCID: PMC11593580 DOI: 10.3390/ijms252211903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Safflower (Carthamus tinctorius L.) is a traditional Chinese medicinal herb renowned for its high flavonoid content and significant medicinal value. However, the dynamic changes in safflower petal flavonoid profiles across different flowering phases present a challenge in optimizing harvest timing and medicinal use. To enhance the utilization of safflower, this study conducted an integrated transcriptomic and metabolomic analysis of safflower petals at different flowering stages. Our findings revealed that certain flavonoids were more abundant during the fading stage, while others peaked during full bloom. Specifically, seven metabolites, including p-coumaric acid, naringenin chalcone, naringenin, dihydrokaempferol, apigenin, kaempferol, and quercetin, accumulated significantly during the fading stage. In contrast, dihydromyricetin and delphinidin levels were notably reduced. Furthermore, key genes in the flavonoid biosynthesis pathway, such as 4CL, DFR, and ANR, exhibited up-regulated expression with safflower's flowering progression, whereas CHI, F3H, and FLS were down-regulated. Additionally, exposure to UV-B stress at full bloom led to an up-regulation of flavonoid content and altered the expression of key flavonoid biosynthetic genes over time. This study not only elucidates the regulatory mechanisms underlying flavonoid metabolism in safflower but also provides insights for maximizing its medicinal and industrial applications.
Collapse
Affiliation(s)
- Lili Yu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Weijie Meng
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Shangyang Zhao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Yue Chang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Nan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Min Zhang
- Ginseng and Antler Products Testing Center of the Ministry of Agriculture PRC Jilin Agricultural University, Changchun 130118, China;
| | - Na Yao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Xiuming Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Institute for Safflower Industry Research, Pharmacy College, Shihezi University, Ministry of Education, Shihezi 832003, China
| | - Jian Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Institute for Safflower Industry Research, Pharmacy College, Shihezi University, Ministry of Education, Shihezi 832003, China
| |
Collapse
|
4
|
Xing ZY, Zhang CJ, Liu LJ. Targeting both ferroptosis and pyroptosis may represent potential therapies for acute liver failure. World J Gastroenterol 2024; 30:3791-3798. [PMID: 39351426 PMCID: PMC11438622 DOI: 10.3748/wjg.v30.i33.3791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
In this editorial, we comment on the article published in the recent issue of the World Journal of Gastroenterology. Acute liver failure (ALF) is a fatal disease that causes uncontrolled massive hepatocyte death and rapid loss of liver function. Ferroptosis and pyroptosis, cell death forms that can be initiated or blocked concurrently, can play significant roles in developing inflammation and various malignancies. However, their roles in ALF remain unclear. The article discovered the positive feedback between ferroptosis and pyroptosis in the progression of ALF, and revealed that the silent information regulator sirtuin 1 (SIRT1) inhibits both pathways through p53, dramatically reducing inflammation and protecting hepatocytes. This suggests the potential use of SIRT1 and its downstream molecules as therapeutics for ALF. Thus, we will discuss the role of ferroptosis and pyroptosis in ALF and the crosstalk between these cell death mechanisms. Additionally, we address potential treatments that could alleviate ALF by simultaneously inhibiting both cell death pathways, as well as examples of SIRT1 activators being used as disease treatment strategies, providing new insights into the therapy of ALF.
Collapse
Affiliation(s)
- Zhong-Yuan Xing
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chuan-Jie Zhang
- Department of Children Health Care, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430061, Hubei Province, China
| | - Li-Juan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
5
|
Liu Q, Liu L, Xie L, Zheng L, Xu Q, Li W, Liu X. Screening and evaluation of quality markers of Radix Cudramiae for liver disease based on an integrated strategy of in vivo pharmacokinetics and in vitro HPLC fingerprint. J Pharm Biomed Anal 2024; 242:116055. [PMID: 38412792 DOI: 10.1016/j.jpba.2024.116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Radix Cudramiae, the dried root of Cudrania cochinchinensis (Lour.) Kudo et Masam., is a valuable ethnomedicine with outstanding antihepatitis activity. However, the lack of reports on quality markers (Q-markers) hindered its quality evaluation and standardization, as a result restricted its clinical application. This paper aimed to discover the Q-markers of Radix Cudramiae with a comprehensive strategy based on in vivo pharmacokinetics and in vitro HPLC fingerprint. A rapid and sensitive ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) analytical method was firstly developed and validated for simultaneous determination of six potential active ingredients (eriodictyol, dihydrokaempferol, dihydromorin, kaempferol, naringenin and morin) of Radix Cudramiae in rat plasma and tissues, which was successfully applied to the holistic comparison of pharmacokinetics and tissue distribution between normal and acute liver injury rats. On the other hand, a representative HPLC fingerprint of Radix Cudramiae was also established to elucidate the chemical profile for overall quality evaluation. Dihydrokaempferol-7-O-β-D-glucoside (the naturally existed chemical formation of dihydrokaempferol) and kaempferol screened out with high exposure levels in vivo and high resolution in HPLC fingerprint were finally selected as Q-markers of Radix Cudramiae. To the best of our knowledge, it was the first time for people to discover in vivo properties and pharmacokinetic parameters of components in Radix Cudramiae, as well as the first report on its representative HPLC fingerprint. Also, the integrated strategy could offer an effective way for TCMs Q-markers screening.
Collapse
Affiliation(s)
- Qing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Anyang Hospital of Traditional Chinese Medicine, Anyang, Henan, PR China
| | - Luyao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Lintong Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Linyu Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Qianwei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xiao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| |
Collapse
|
6
|
Li J, Guo H, Dong Y, Yuan S, Wei X, Zhang Y, Dong L, Wang F, Bai T, Yang Y. Polysaccharides from Chinese herbal medicine: a review on the hepatoprotective and molecular mechanism. Chin J Nat Med 2024; 22:4-14. [PMID: 38278558 DOI: 10.1016/s1875-5364(24)60558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 01/28/2024]
Abstract
Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.
Collapse
Affiliation(s)
- Jifeng Li
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Haolin Guo
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Ying Dong
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Xiaotong Wei
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Yuxin Zhang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Lu Dong
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Fei Wang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Ting Bai
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China.
| | - Yong Yang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China.
| |
Collapse
|
7
|
Zhao Y, Hu J, Zhang Y, Tao H, Li L, He Y, Zhang X, Zhang C, Hong G. Unveiling targeted spatial metabolome of rice seed at the dough stage using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry imaging. Food Res Int 2023; 174:113578. [PMID: 37986446 DOI: 10.1016/j.foodres.2023.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Rice (Oryza sativa) seeds contain a variety of metabolites, which not only provide energy for their own growth and development, but also are an important source of nutrition for humans. It is crucial to study the distribution of metabolites in rice seeds, but the spatial metabolome of rice seeds is rarely investigated. In this study, Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) imaging was used to reveal the spatial distribution of free soluble sugars (glucose, fructose, sucrose, and maltose), amino acids (9 essential amino acids and 2 amino acids affecting rice eating quality: L-aspartic acid and L-glutamic acid), and 4 metabolites in the flavonoids synthesis pathway (cinnamic acid, naringenin chalcone, naringenin, and dihydrokaempferol) in rice seed at the dough stage. It was found that the 4 free soluble sugars present similar spatial distribution, mainly distributed in the seed cortex and embryo with high abundance. The majority of amino acids are also concentrated in the rice cortex and embryo, while the others are abundant in the whole seed. Besides cinnamic acid distributed in the seed cortex and embryo, the naringenin chalcone, naringenin, and dihydrokaempferol were also found in the endosperm and had lower content. Furthermore, a colocalization phylogenetic tree according to the spatial distribution imaging of each metabolite was constructed. This study revealed the distribution diversity of metabolites in different segmentations of rice seed at the dough stage, providing clues for the nutritional differences between brown rice and white rice, and serving as a reference for people to target a healthy diet.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jitao Hu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yilin Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Han Tao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
8
|
Wang Q, Zhang L, Pang P. Dihydrokaempferol attenuates LPS-induced inflammation and apoptosis in WI-38 cells. Allergol Immunopathol (Madr) 2023; 51:23-29. [PMID: 37937492 DOI: 10.15586/aei.v51i6.971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Globally, pneumonia has been associated as a primary cause of mortality in children aged less than 5 years. Dihydrokaempferol (DHK) has been proposed for being correlated with the process of various diseases. Nevertheless, whether DHK has a role in the progression of infantile pneumonia remains unclear. This study aimed at exploring whether DHK was involved in the progression of infantile pneumonia. METHODS Human fibroblast cells WI-38 were treated with lipopolysaccharide (LPS). The viability of WI-38 cells was measured via Cell counting kit-8. Reverse transcription-quantitative polymerase chain reaction was used to evaluate the levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). Western blot analysis revealed the protein levels of IL-1β, IL-6, TNF-α, Bax, and cleaved-caspase 3. Flow cytometry was applied for exploring the apoptosis of WI-38 cells. The concentrations of IL-1β, IL-6, and TNF-α were assessed via enzyme-linked-immunosorbent serologic assay. RESULTS DHK modulated the viability of WI-38 cells in infantile pneumonia. Furthermore, we identified that DHK treatment inversely changed LPS induction-mediated elevation on the levels of inflammation biomarkers. Besides, DHK counteracted LPS-induced production of reactive oxygen species (ROS) in WI-38 cells. DHK also decreased LPS-induced elevation of WI-38 cells apoptosis and mediated the levels of apoptosis-associated indexes. Moreover, modulating sirtuin-1 (SIRT1) protein level was lowered by the induction of LPS, and was reversed by DHK treatment. In addition, DHK counteracted LPS induction-mediated elevation of p-p65 and phosphorylated inhibitor of nuclear factor kappa-B kinase subunit alpha (p-IκBα) protein levels. CONCLUSION DHK alleviated LPS-induced WI-38 cells inflammation injury in infantile pneumonia through SIRT1/NF-κB pathway. The results shed light on the implications of DHK on the prevention and treatment of infantile pneumonia.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Pediatrics, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China;
| | - Liwen Zhang
- Department of Pediatrics, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Ping Pang
- Department of Pediatrics, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| |
Collapse
|
9
|
Liu C, Song X, Li Y, Ding C, Li X, Dan L, Xu H, Zhang D. A Comprehensive Review on the Chemical Composition, Pharmacology and Clinical Applications of Ganoderma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1983-2040. [PMID: 37903715 DOI: 10.1142/s0192415x23500878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Ganoderma is the dried fruiting bodiy of Ganoderma lucidum (Leyss.ex Fr.) Karst. or Ganoderma sinense Zhao, Xu et Zhang, belonging to the family Polyporaceae, which grows mainly in tropical, subtropical, and temperate regions. As a traditional Chinese medicine, Ganoderma has been used in China for more than 2000 years because of its medicinal properties, such as relieving cough and asthma, providing nourishment, and strengthening. Currently, more than 470 natural compounds have been obtained from the fungus, mainly including terpenoids, steroids, alkaloids, phenols, and other types of compounds. Modern pharmacological studies have shown that Ganoderma has antitumor, anti-inflammatory, hypoglycemic, hypolipidemic, and immunomodulatory effects. It is mainly used in clinical practice for the treatment of Diabetic Nephropathy and malignant tumors, with few side effects and high safety. This paper reviews the progress of research on its chemical composition, pharmacological effects, and clinical applications, with the goal of providing a basis for the better development and utilization of Ganoderma.
Collapse
Affiliation(s)
- Chenwang Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Chao Ding
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Xin Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Linwei Dan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Haonan Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| |
Collapse
|
10
|
Xu J, Zhao L, Zhang X, Ying K, Zhou R, Cai W, Wu X, Jiang H, Xu Q, Miao D, Zeng Y, Yu F. Salidroside ameliorates acetaminophen-induced acute liver injury through the inhibition of endoplasmic reticulum stress-mediated ferroptosis by activating the AMPK/SIRT1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115331. [PMID: 37556956 DOI: 10.1016/j.ecoenv.2023.115331] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Acetaminophen (APAP) overdose has long been considered a major cause of drug-induced liver injury. Ferroptosis is a type of programmed cell death mediated by iron-dependent lipid peroxidation. Endoplasmic reticulum (ER) stress is a systemic response triggered by the accumulation of unfolded or misfolded proteins in the ER. Ferroptosis and ER stress have been proven to contribute to the progression of APAP-induced acute liver injury (ALI). It was reported that salidroside protects against APAP-induced ALI, but the potential mechanism remain unknown. In this study, male C57BL/6 J mice were intraperitoneally (i.p.) injected APAP (500 mg/kg) to induce an ALI model. Salidroside was i.p. injected at a dose of 100 mg/kg 2 h prior to APAP administration. Mice were sacrificed 12 h after APAP injection and the liver and serum of the mice were obtained for histological and biochemistry analysis. AML12 cells were used in in vitro assays. The results indicated that salidroside mitigated glutathione degradation via inhibiting cation transport regulator homolog 1 (CHAC1) to attenuate ferroptosis, and simultaneously suppressing PERK-eIF2α-ATF4 axis-mediated ER stress, thus alleviating APAP-induced ALI. However, PERK activator CCT020312 and overexpression of ATF4 inhibited the protective function of salidroside on CHAC1-mediated ferroptosis. Besides this, activation of the AMPK/SIRT1 signaling pathway by salidroside was demonstrated to have a protective effect against APAP-induced ALI. Interestingly, selective inhibition of SIRT1 ameliorated the protective effects of salidroside on ER stress and ferroptosis. Overall, salidroside plays a significant part in the mitigation of APAP-induced ALI by activating the AMPK/SIRT1 signaling to inhibit ER stress-mediated ferroptosis in the ATF4-CHAC1 axis.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luying Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangting Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kanglei Ying
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruoru Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weimin Cai
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoran Jiang
- Department of Urology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan Miao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Liu Y, Nie X, Wang J, Zhao Z, Wang Z, Ju F. Visualizing the distribution of flavonoids in litchi ( Litchi chinenis) seeds through matrix-assisted laser desorption/ionization mass spectrometry imaging. FRONTIERS IN PLANT SCIENCE 2023; 14:1144449. [PMID: 36909412 PMCID: PMC9998689 DOI: 10.3389/fpls.2023.1144449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Flavonoids are one of the most important bioactive components in litchi (Litchi chinensis Sonn.) seeds and have broad-spectrum antiviral and antitumor activities. Litchi seeds have been shown to inhibit the proliferation of cancer cells and induce apoptosis, particularly effective against breast and liver cancers. Elucidating the distribution of flavonoids is important for understanding their physiological and biochemical functions and facilitating their efficient extraction and utilization. However, the spatial distribution patterns and expression states of flavonoids in litchi seeds remain unclear. Herein, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used for in situ detection and imaging of the distribution of flavonoids in litchi seed tissue sections for the first time. Fifteen flavonoid ion signals, including liquiritigenin, apigenin, naringenin, luteolin, dihydrokaempferol, daidzein, quercetin, taxifolin, kaempferol, isorhamnetin, myricetin, catechin, quercetin 3-β-d-glucoside, baicalin, and rutin, were successfully detected and imaged in situ through MALDI-MSI in the positive ion mode using 2-mercaptobenzothiazole as a matrix. The results clearly showed the heterogeneous distribution of flavonoids, indicating the potential of litchi seeds for flavonoid compound extraction. MALDI-MS-based multi-imaging enhanced the visualization of spatial distribution and expression states of flavonoids. Thus, apart from improving our understanding of the spatial distribution of flavonoids in litchi seeds, our findings also facilitate the development of MALDI-MSI-based metabolomics as a novel effective molecular imaging tool for evaluating the spatial distribution of endogenous compounds.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Breast Surgery, Breast Disease Center, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Xiaofei Nie
- Department of Oncology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Jilong Wang
- Department of Acupuncture and Moxibustion, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Zhenqi Zhao
- Department of Radiology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Zhimei Wang
- Department of Gynecological Neoplasms, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Fang Ju
- Department of Oncology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Liu Q, Pei Y, Wan H, Wang M, Liu L, Li W, Jin J, Liu X. Chemical profiling and identification of Radix Cudramiae and their metabolites in rats using an ultra-high-performance liquid chromatography method coupled with time-of-flight tandem mass spectrometry. J Sep Sci 2023; 46:e2200767. [PMID: 36538732 DOI: 10.1002/jssc.202200767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Radix Cudramiae, known as "Chuan-Po-Shi" in China, is a herbal medicine widely used in the southwest of the country, especially applied by the Miao and Zhuang nationalities for the treatment of liver diseases, such as acute liver injury and liver fibrosis. As a kind of ethnomedicine, the report on its chemical analysis was still blank, which restricted its clinical application. Therefore, this paper aimed to illustrate the chemical characteristics of Radix Cudramiae. A rapid analytical strategy based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed to profile the natural small-molecular compounds in Radix Cudramiae, as well as the related prototypes and their metabolites in rats after drug administration. As a result, a total of 74 compounds were detected in the aqueous exact of Radix Cudramiae. In vivo, 45 chemicals including 16 prototypes and 29 metabolites in rat serum, along with 35 chemicals including 17 prototypes and 18 metabolites in rat liver, were screened out and identified. For the first time, the chemical constituents of Radix Cudramiae and their metabolic characteristics were discovered. It was hoped that this work would be beneficial for the safe and effective application of Radix Cudramiae in a clinic.
Collapse
Affiliation(s)
- Qing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Haoting Wan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Mengqing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Luyao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Junjie Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Department of TCM Quality, Nanjing Haichang Chinese Medicine Group Corporation, Nanjing, P. R. China
| | - Xiao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
13
|
Analysis of Metabolic Differences in the Water Extract of Shenheling Fermented by Lactobacillus fermentum Based on Nontargeted Metabolomics. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective: To explore the characteristics of metabolites in Shenheling (SHL) fermented by Lactobacillus fermentum. Methods: In this study, ultrahigh-performance liquid chromatography-quadrupole electrostatic field orbit trap mass spectrometry (UHPLC-QE-MS) was used to qualitatively, quantitatively, and differentially analyze the metabolites of SHL before and after fermentation. Results: A total of 102 significant differential metabolites in nine categories were analyzed before and after fermentation. It mainly includes 29 terpenoids, 17 alkaloids, 14 organic acids and derivatives, 10 flavonoids, 9 phenylpropanoids, 6 phenols, 3 aromaticity, and 3 amino acid derivatives. Further screening found that the content of most active substances, such as alkaloids, organic acids, and flavonoids, increased significantly. These metabolites play an important role in improving the taste and efficacy of SHL. After fermentation, the contents of differential metabolites, such as panaquinquecol 2, ginsenoside Rh3, ginsenoside Rg3, dehydronuciferin, nicotinic acid, 5-hydroxytryptophan, azelaic acid, dihydrokaempferol, and chrysin, were increased, which increased the effects of antioxidation, anti-obesity, hypoglycemic, antibacterial, and improved immunity compared with those before fermentation. KEGG pathway analysis identified 10 metabolic pathways. Isoquinoline alkaloid biosynthesis, vitamin B6 metabolism, beta-alanine metabolism, nicotinate, and nicotinamide metabolism, purine metabolism, pantothenate and CoA biosynthesis, glyoxylate and dicarboxylate metabolism, tyrosine metabolism, citrate cycle (TCA cycle), phenylpropanoid biosynthesis, etc. Conclusions: Fermentation significantly changed the metabolites in SHL and played an important role in improving its taste, aroma quality, antioxidant, anti-obesity, and other health care functional components.
Collapse
|
14
|
Fan G, Li F, Wang P, Jin X, Liu R. Natural-Product-Mediated Autophagy in the Treatment of Various Liver Diseases. Int J Mol Sci 2022; 23:ijms232315109. [PMID: 36499429 PMCID: PMC9739742 DOI: 10.3390/ijms232315109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Autophagy is essential for the maintenance of hepatic homeostasis, and autophagic malfunction has been linked to the pathogenesis of substantial liver diseases. As a popular source of drug discovery, natural products have been used for centuries to effectively prevent the progression of various liver diseases. Emerging evidence has suggested that autophagy regulation is a critical mechanism underlying the therapeutic effects of these natural products. In this review, relevant studies are retrieved from scientific databases published between 2011 and 2022, and a novel scoring system was established to critically evaluate the completeness and scientific significance of the reviewed literature. We observed that numerous natural products were suggested to regulate autophagic flux. Depending on the therapeutic or pathogenic role autophagy plays in different liver diseases, autophagy-regulative natural products exhibit different therapeutic effects. According to our novel scoring system, in a considerable amount of the involved studies, convincing and reasonable evidence to elucidate the regulatory effects and underlying mechanisms of natural-product-mediated autophagy regulation was missing and needed further illustration. We highlight that autophagy-regulative natural products are valuable drug candidates with promising prospects for the treatment of liver diseases and deserve more attention in the future.
Collapse
Affiliation(s)
- Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Ping Wang
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xuejing Jin
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| |
Collapse
|
15
|
Long Y, Li Z, Huang C, Lu Z, Qiu K, He M, Fang Z, Ding B, Yuan X, Zhu W. Mechanism and Protective Effect of Smilax glabra Roxb on the Treatment of Heart Failure via Network Pharmacology Analysis and Vitro Verification. Front Pharmacol 2022; 13:868680. [PMID: 35677443 PMCID: PMC9169610 DOI: 10.3389/fphar.2022.868680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Smilax glabra Roxb (SGR) has been widely applied alone or in combination with other Chinese herbs in heart failure (HF), but its mechanism and protective effect have not been investigated. We aimed to explore the mechanism and protective effect of SGR on the treatment of HF. Network pharmacology analysis predicted that SGR was involved in the regulation of cell proliferation, oxidation–reduction process, apoptotic process, ERK1 and ERK2 cascade, MAPK cascade, etc. Its mechanism was mainly involved in the MAPK signaling pathway, calcium signaling pathway, cardiac muscle contraction, etc. Subsequently, SGR was proved to improve cellular viability, restore cellular morphology, suppress cellular and mitochondrial ROS production, improve H2O2-induced lysosome inhibition, attenuate mitochondrial dysfunction, and protect mitochondrial respiratory and energy metabolism in H9c2 cells. SGR activated the p38MAPK pathway by decreasing the mRNA expression of AKT, PP2A, NF-KB, PP2A, RAC1, and CDC42 and increasing the mRNA expression of Jun, IKK, and Sirt1. SGR also decreased the protein expression of ERK1, ERK2, JNK, Bax, and Caspase3 and increased the protein expression of p38MAPK and Bcl-2. In addition, Istidina at the highest degree was identified in SGR via the UHPLCLTQ-Orbitrap-MSn method, and it was suggested as anti-heart failure agents by targeting SRC with molecular docking analysis. In conclusion, SGR has a protective effect on HF through cellular and mitochondrial protection via multi-compounds and multi-targets, and its mechanism is involved in activating the p38 MAPK pathway. Istidina may be possible anti-HF agents by targeting SRC.
Collapse
Affiliation(s)
- Yingxin Long
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zunjiang Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunxia Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongyu Lu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kuncheng Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meixing He
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijian Fang
- Department of Emergency, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Banghan Ding
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaohong Yuan
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Wei Zhu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Dong W, Jia C, Li J, Zhou Y, Luo Y, Liu J, Zhao Z, Zhang J, Lin S, Chen Y. Fisetin Attenuates Diabetic Nephropathy-Induced Podocyte Injury by Inhibiting NLRP3 Inflammasome. Front Pharmacol 2022; 13:783706. [PMID: 35126159 PMCID: PMC8816314 DOI: 10.3389/fphar.2022.783706] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the primary complications of diabetes. Fisetin is a flavonoid polyphenol that is present in several vegetables and fruits. The present study investigated the mechanisms of fisetin in DN-induced podocyte injury both in vitro and in vivo. The results revealed that fisetin ameliorated high glucose (HG)-induced podocyte injury and streptozotocin (STZ)-induced DN in mice. CDKN1B mRNA expression in the glomeruli of patients with DN decreased based on the Nephroseq dataset, and fisetin reversed CDKN1B expression at mRNA and protein levels in a dose-dependent manner in podocytes and mice kidney tissues. Furthermore, fisetin suppressed the phosphorylation of P70S6K, a downstream target of CDKN1B, activated autophagosome formation, and inhibited Nod-like receptor protein 3 (NLRP3) inflammasomes. Interfering CDKN1B reduced the protective effects of fisetin against high glucose-induced podocyte injury. Molecular docking results revealed a potential interaction between fisetin and CDKN1B. In summary, the present study revealed that fisetin alleviated high glucose-induced podocyte injury and STZ-induced DN in mice by restoring autophagy-mediated CDKN1B/P70S6K pathway and inhibiting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Wenmin Dong
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenglin Jia
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji Li
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zhou
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Luo
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jibo Liu
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiguo Zhao
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Zhang
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shan Lin
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Chen
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Zhao J, Qiao L, Dong J, Wu R. Antioxidant Effects of Irisin in Liver Diseases: Mechanistic Insights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3563518. [PMID: 35035659 PMCID: PMC8759828 DOI: 10.1155/2022/3563518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 02/08/2023]
Abstract
Oxidative stress is a crucial factor in the development of various liver diseases. Irisin, a metabolic hormone discovered in 2012, is mainly produced by proteolytic cleavage of fibronectin type III domain containing 5 (FNDC5) in skeletal muscles. Irisin is induced by physical exercise, and a rapidly growing body of literature suggests that irisin is, at least partially, responsible for the beneficial effects of regular exercise. The major biological function of irisin is believed to be involved in the maintenance of metabolic homeostasis. However, recent studies have suggested the therapeutic potential of irisin against a variety of liver diseases involving its antioxidative function. In this review, we aim to summarize the accumulating evidence demonstrating the antioxidative effects of irisin in liver diseases, with an emphasis on the current understanding of the potential molecular mechanisms.
Collapse
Affiliation(s)
- Junzhou Zhao
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Linlan Qiao
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jian Dong
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|