1
|
Zhang Z, Mao Q, Gu Y, Shang X, Huang Y, Fang S. Ploidy levels influence cold tolerance of Cyclocarya paliurus: insight into the roles of WRKY genes. BMC Genomics 2025; 26:31. [PMID: 39806283 PMCID: PMC11730173 DOI: 10.1186/s12864-025-11218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited. Based on the ploidy identification of tested materials, an imitation experiment was conducted to investigate the variation in freezing injury index and expression of the CpaWRKY family members in diploid and tetraploid C. paliurus seedlings. The results indicated a significant difference in freezing injury index between diploids and tetraploids under the imitating temperature of southern warm temperate zone, with diploids showing better cold tolerance than the tetraploids. A total of 88 CpaWRKY genes were identified from the C. paliurus genome, and RNA-Seq results showed significant differences in WRKY gene expression in C. paliurus under cold stress. Correlation analysis between differentially expressed genes and freezing injury index suggested that CpaWRKY14, CpaWRKY26 and CpaWRKY86 play essential roles in the diploids to respond to cold stress. In contrast, the major genes involved in the cold stress response in tetraploids were CpaWRKY14, CpaWRKY60, CpaWRKY63 and CpaWRKY81. Moreover, CpaWRKY14 expression was considerably higher in diploids compared to tetraploids. The results from this study not only enhance our comprehension of the role of the CpaWRKY genes in cold stress, but also provide a foundation for the genetic improvement of C. paliurus.
Collapse
Affiliation(s)
- Zanpei Zhang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China
| | - Qianxing Mao
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China
| | - Yueying Gu
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China
| | - Xulan Shang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing, 210037, China
| | - Yanmeng Huang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China
| | - Shengzuo Fang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China.
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing, 210037, China.
| |
Collapse
|
2
|
Ping WX, Hu S, Su JQ, Ouyang SY. Metabolic disorders in prediabetes: From mechanisms to therapeutic management. World J Diabetes 2024; 15:361-377. [PMID: 38591088 PMCID: PMC10999048 DOI: 10.4239/wjd.v15.i3.361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 03/15/2024] Open
Abstract
Diabetes, one of the world's top ten diseases, is known for its high mortality and complication rates and low cure rate. Prediabetes precedes the onset of diabetes, during which effective treatment can reduce diabetes risk. Prediabetes risk factors include high-calorie and high-fat diets, sedentary lifestyles, and stress. Consequences may include considerable damage to vital organs, including the retina, liver, and kidneys. Interventions for treating prediabetes include a healthy lifestyle diet and pharmacological treatments. However, while these options are effective in the short term, they may fail due to the difficulty of long-term implementation. Medications may also be used to treat prediabetes. This review examines prediabetic treatments, particularly metformin, glucagon-like peptide-1 receptor agonists, sodium glucose cotransporter 2 inhibitors, vitamin D, and herbal medicines. Given the remarkable impact of prediabetes on the progression of diabetes mellitus, it is crucial to intervene promptly and effectively to regulate prediabetes. However, the current body of research on prediabetes is limited, and there is considerable confusion surrounding clinically relevant medications. This paper aims to provide a comprehensive summary of the pathogenesis of pre-diabetes mellitus and its associated therapeutic drugs. The ultimate goal is to facilitate the clinical utilization of medications and achieve efficient and timely control of diabetes mellitus.
Collapse
Affiliation(s)
- Wen-Xin Ping
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Shan Hu
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Jing-Qian Su
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Song-Ying Ouyang
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| |
Collapse
|
3
|
Yao Y, Wang X, Li D, Chen S, Li C, Guan H, Wang D, Nie X. Cyclocarya paliurus leaves alleviate high-sucrose diet-induced obesity by improving intestinal metabolic disorders. Aging (Albany NY) 2024; 16:5452-5470. [PMID: 38484370 PMCID: PMC11006468 DOI: 10.18632/aging.205657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/22/2024] [Indexed: 04/06/2024]
Abstract
High-sucrose diets are common in daily life but harmful to human health. Cyclocarya paliurus leaves (CPL) are a kind of tea used to alleviate metabolic diseases and are widely used in China. However, the effects of CPL on high-sucrose-induced obesity are unknown. This study aimed to describe the changes in gut metabolism induced by a high-sucrose diet and to reveal the potential mechanisms through which CPL alleviate high-sucrose diet-induced obesity. A high-sucrose-induced obesity model was generated in C57BL/6J and KM mice. The effects of CPL on obese mice were evaluated, and changes in the gut microbiota and intestinal metabolites induced by CPL treatment were observed. Furthermore, the fecal microbiota transplantation (FMT) method was used to prove that the effects of CPL on high-sucrose induced obesity depend on the changes of gut microbiota. The results of the C57BL/6J mouse experiment revealed that high-sucrose intake induced fat deposition and altered the gut microbiota. CPL treatment decreased fat deposition and alleviated disorders of the gut microbiota. Furthermore, CPL treatment increased the utilization of amnio acids, long fatty acids and saccharides and produced more bile acids, indole derivatives and less trimethylamine (TMA). A confirmatory experiment in KM mice also revealed that CPL can alleviate obesity, ameliorate intestinal metabolic disorders, and upregulate the expression of tight junction proteins in the intestinal mucosa. These results demonstrated that CPL could prevent high sucrose-induced obesity and generate more beneficial intestinal microbial metabolites but less harmful intestinal microbial metabolites.
Collapse
Affiliation(s)
- Ye Yao
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Xiaojuan Wang
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Dongyu Li
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Shujuan Chen
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chengjie Li
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Haiyu Guan
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoli Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
4
|
Zhang Y, Miao R, Ma K, Zhang Y, Fang X, Wei J, Yin R, Zhao J, Tian J. Effects and Mechanistic Role of Mulberry Leaves in Treating Diabetes and its Complications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1711-1749. [PMID: 37646143 DOI: 10.1142/s0192415x23500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Diabetes mellitus (DM) has become a surge burden worldwide owing to its high prevalence and range of associated complications such as coronary artery disease, blindness, stroke, and renal failure. Accordingly, the treatment and management of DM have become a research hotspot. Mulberry leaves (Morus alba L.) have been used in Traditional Chinese Medicine for a long time, with the first record of its use published in Shennong Bencao Jing (Shennong's Classic of Materia Medica). Mulberry leaves (MLs) are considered highly valuable medicinal food homologs that contain polysaccharides, flavonoids, alkaloids, and other bioactive substances. Modern pharmacological studies have shown that MLs have multiple bioactive effects, including hypolipidemic, hypoglycemic, antioxidation, and anti-inflammatory properties, with the ability to protect islet [Formula: see text]-cells, alleviate insulin resistance, and regulate intestinal flora. However, the pharmacological mechanisms of MLs in DM have not been fully elucidated. In this review, we summarize the botanical characterization, traditional use, chemical constituents, pharmacokinetics, and toxicology of MLs, and highlight the mechanisms involved in treating DM and its complications. This review can provide a valuable reference for the further development and utilization of MLs in the prevention and treatment of DM.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jingxue Zhao
- Development Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
5
|
Gui R, Wang YK, Wu JP, Deng GM, Cheng F, Zeng HL, Zeng PH, Long HP, Zhang W, Wei XF, Wang WX, Zhu GZ, Ren WQ, Chen ZH, He XA, Xu KP. Cyclocarya paliurus leaves alleviate hyperuricemic nephropathy via modulation of purine metabolism, antiinflammation, and antifibrosis. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|