1
|
Vo GTT, Nguyen KKH, Kim BS. Evaluation of the Role of PnuC Gene in Enhancing Nicotinamide Mononucleotide Synthesis. Biotechnol Appl Biochem 2025. [PMID: 39865734 DOI: 10.1002/bab.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/22/2024] [Indexed: 01/28/2025]
Abstract
The PnuC gene plays a crucial role in the complex processes related to the absorption and synthesis of the nicotinamide mononucleotide (NMN) precursor. NMN, a nicotinamide adenine dinucleotide (NAD+) precursor, is important for cellular energy metabolism, DNA repair, and antiaging. This study focuses on elucidating the precursor absorption mechanism and the specific function of the PnuC gene in encoding membrane transport proteins, as well as its impact on the regulation and dynamics of NMN within the cell. This understanding aims to provide insights into its potential effects on metabolic balance, illustrated through two NAD+ biosynthesis pathways based on renewable and readily available cytoplasmic resources, assessing the potential of PnuC gene expression in clarifying complex interactions within regulation mechanisms. Enhanced expression analysis of the PnuC gene has initiated discussions on its potential applications in treating aging-related diseases and dysfunctions, contributing to cellular health maintenance.
Collapse
Affiliation(s)
- Giang Thi Thu Vo
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Khang Khoa Hoang Nguyen
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
2
|
Chen Y, Ying Y, Lalsiamthara J, Zhao Y, Imani S, Li X, Liu S, Wang Q. From bacteria to biomedicine: Developing therapies exploiting NAD + metabolism. Bioorg Chem 2024; 142:106974. [PMID: 37984103 DOI: 10.1016/j.bioorg.2023.106974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) serves as a critical cofactor in cellular metabolism and redox reactions. Bacterial pathways rely on NAD+ participation, where its stability and concentration govern essential homeostasis and functions. This review delves into the role and metabolic regulation of NAD+ in bacteria, highlighting its influence on physiology and virulence. Notably, we explore enzymes linked to NAD+ metabolism as antibacterial drug targets and vaccine candidates. Moreover, we scrutinize NAD+'s medical potential, offering insights for its application in biomedicine. This comprehensive assessment informs future research directions in the dynamic realm of NAD+ and its biomedical significance.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Yuanyuan Ying
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Jonathan Lalsiamthara
- Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Saber Imani
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Xin Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Sijing Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Qingjing Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
3
|
Delmas VA, Perchat N, Monet O, Fouré M, Darii E, Roche D, Dubois I, Pateau E, Perret A, Döring V, Bouzon M. Genetic and biocatalytic basis of formate dependent growth of Escherichia coli strains evolved in continuous culture. Metab Eng 2022; 72:200-214. [PMID: 35341982 DOI: 10.1016/j.ymben.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
The reductive glycine pathway was described as the most energetically favorable synthetic route of aerobic formate assimilation. Here we report the successful implementation of formatotrophy in Escherichia coli by means of a stepwise adaptive evolution strategy. Medium swap and turbidostat regimes of continuous culture were applied to force the channeling of carbon flux through the synthetic pathway to pyruvate establishing growth on formate and CO2 as sole carbon sources. Labeling with 13C-formate proved the assimilation of the C1 substrate via the pathway metabolites. Genetic analysis of intermediate isolates revealed a mutational path followed throughout the adaptation process. Mutations were detected affecting the copy number (gene ftfL) or the coding sequence (genes folD and lpd) of genes which specify enzymes implicated in the three steps forming glycine from formate and CO2, the central metabolite of the synthetic pathway. The mutation R196S present in methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) abolishes the inhibition of cyclohydrolase activity by the substrate formyl-tetrahydrofolate. The mutation R273H in lipoamide dehydrogenase (Lpd) alters substrate affinities as well as kinetics at physiological substrate concentrations likely favoring a reactional shift towards lipoamide reduction. In addition, genetic reconstructions proved the necessity of all three mutations for formate assimilation by the adapted cells. The largely unpredictable nature of these changes demonstrates the usefulness of the evolutionary approach enabling the selection of adaptive mutations crucial for pathway engineering of biotechnological model organisms.
Collapse
Affiliation(s)
- Valérie A Delmas
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France
| | - Nadia Perchat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France
| | - Oriane Monet
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France
| | - Marion Fouré
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France
| | - Ekatarina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France
| | - David Roche
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France
| | - Ivan Dubois
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France
| | - Volker Döring
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France.
| |
Collapse
|
4
|
Lee DW, Park YW, Lee MY, Jeong KH, Lee JY. Structural analysis and insight into effector binding of the niacin-responsive repressor NiaR from Bacillus halodurans. Sci Rep 2020; 10:21039. [PMID: 33273654 PMCID: PMC7713382 DOI: 10.1038/s41598-020-78148-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The niacin-responsive repressor, NiaR, is transcriptional repressor of certain nicotinamide adenine dinucleotide (NAD) biosynthetic genes in response to an increase in niacin levels. NAD is a vital molecule involved in various cellular redox reactions as an electron donor or electron acceptor. The NiaR family is conserved broadly in the Bacillus/Clostridium group, as well as in the Fusobacteria and Thermotogales lineages. The NiaR structure consists of two domains: an N-terminal DNA-binding domain, and a C-terminal regulation domain containing a metal-binding site. In this paper, we report the crystal structures of apo and niacin-bound forms of NiaR from Bacillus halodurans (BhNiaR). The analysis of metal-binding and niacin-binding sites through the apo and niacin-bound structures is described. Each N- and C-terminal domain structure of BhNiaR is almost identical with NiaR from Thermotoga maritima, but the overall domain arrangement is quite different. A zinc ion is fully occupied in each subunit with well-conserved residues in the C-terminal domain. Niacin is also located at a hydrophobic pocket near the zinc ion in the C-terminal domain.
Collapse
Affiliation(s)
- Dong Won Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Young Woo Park
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.,Structural Biology Lab, B2SBIO, Yeonsu-gu, Incheon, Republic of Korea
| | - Myung Yeon Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Kang Hwa Jeong
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
5
|
Structural and Functional Characterization of NadR from Lactococcus lactis. Molecules 2020; 25:molecules25081940. [PMID: 32331317 PMCID: PMC7221760 DOI: 10.3390/molecules25081940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/02/2022] Open
Abstract
NadR is a bifunctional enzyme that converts nicotinamide riboside (NR) into nicotinamide mononucleotide (NMN), which is then converted into nicotinamide adenine dinucleotide (NAD). Although a crystal structure of the enzyme from the Gram-negative bacterium Haemophilus influenzae is known, structural understanding of its catalytic mechanism remains unclear. Here, we purified the NadR enzyme from Lactococcus lactis and established an assay to determine the combined activity of this bifunctional enzyme. The conversion of NR into NAD showed hyperbolic dependence on the NR concentration, but sigmoidal dependence on the ATP concentration. The apparent cooperativity for ATP may be explained because both reactions catalyzed by the bifunctional enzyme (phosphorylation of NR and adenylation of NMN) require ATP. The conversion of NMN into NAD followed simple Michaelis-Menten kinetics for NMN, but again with the sigmoidal dependence on the ATP concentration. In this case, the apparent cooperativity is unexpected since only a single ATP is used in the NMN adenylyltransferase catalyzed reaction. To determine the possible structural determinants of such cooperativity, we solved the crystal structure of NadR from L. lactis (NadRLl). Co-crystallization with NAD, NR, NMN, ATP, and AMP-PNP revealed a ‘sink’ for adenine nucleotides in a location between two domains. This sink could be a regulatory site, or it may facilitate the channeling of substrates between the two domains.
Collapse
|
6
|
Gao R, Wei W, Hassan BH, Li J, Deng J, Feng Y. A single regulator NrtR controls bacterial NAD + homeostasis via its acetylation. eLife 2019; 8:51603. [PMID: 31596237 PMCID: PMC6800001 DOI: 10.7554/elife.51603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/04/2019] [Indexed: 12/27/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an indispensable cofactor in all domains of life, and its homeostasis must be regulated tightly. Here we report that a Nudix-related transcriptional factor, designated MsNrtR (MSMEG_3198), controls the de novo pathway of NAD+biosynthesis in M. smegmatis, a non-tuberculosis Mycobacterium. The integrated evidence in vitro and in vivo confirms that MsNrtR is an auto-repressor, which negatively controls the de novo NAD+biosynthetic pathway. Binding of MsNrtR cognate DNA is finely mapped, and can be disrupted by an ADP-ribose intermediate. Unexpectedly, we discover that the acetylation of MsNrtR at Lysine 134 participates in the homeostasis of intra-cellular NAD+ level in M. smegmatis. Furthermore, we demonstrate that NrtR acetylation proceeds via the non-enzymatic acetyl-phosphate (AcP) route rather than by the enzymatic Pat/CobB pathway. In addition, the acetylation also occurs on the paralogs of NrtR in the Gram-positive bacterium Streptococcus and the Gram-negative bacterium Vibrio, suggesting that these proteins have a common mechanism of post-translational modification in the context of NAD+ homeostasis. Together, these findings provide a first paradigm for the recruitment of acetylated NrtR to regulate bacterial central NAD+ metabolism.
Collapse
Affiliation(s)
- Rongsui Gao
- Department of Pathogen Biology & Microbiology, and Department General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhui Wei
- Department of Pathogen Biology & Microbiology, and Department General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Jun Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jiaoyu Deng
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology, and Department General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Wang Q, Hassan BH, Lou N, Merritt J, Feng Y. Functional definition of NrtR, a remnant regulator of NAD + homeostasis in the zoonotic pathogen Streptococcus suis. FASEB J 2019; 33:6055-6068. [PMID: 30759348 PMCID: PMC8793812 DOI: 10.1096/fj.201802179rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
NAD+ is an enzyme cofactor required for the 3 domains of life. However, little is known about the NAD+ biosynthesis and salvage pathways in the opportunistic pathogen Streptococcus suis. A genome-wide search allows us to identify the NAD+ salvage pathway encoded by an operon of nadR-pnuC-nrtR (from SSU05_1973 to SSU05_1971 on the reverse strand) in the S. suis 05ZYH33 that causes streptococcal toxin shock-like syndrome. The regulator of this pathway is Nudix-related transcriptional regulator (NrtR), a transcription regulator of the Nudix family comprising an N-terminal Nudix-like effector domain, and a C-terminal DNA-binding winged helix-turn-helix-like domain. Intriguingly, the S. suis NrtR naturally contains a single amino acid substitution (K92E) in the catalytic site of its Nudix domain that renders it catalytically inactive but does not influence its ability to bind DNA. Despite its lack of enzymatic activity, DNA-binding activity of NrtR is antagonized by the effector ADP-ribose. Furthermore, nrtR knockout in S. suis serotype 2 reduces its capacity to form biofilms and attenuates its virulence in a mouse infection model. Genome mining indicates that nrtR appears in a strain-specific manner whose occupancy is correlated to bacterial infectivity. Unlike the paradigmatic member of NrtR family having 2 unrelated functions (Nudix hydrolase and DNA binding), S. suis 2 retains a single regulatory role in the modulation of NAD+ salvage. This control of NAD+ homeostasis contributes to S. suis virulence.-Wang, Q., Hassan, B. H., Lou, N., Merritt, J., Feng, Y. Functional definition of NrtR, a remnant regulator of NAD+ homeostasis in the zoonotic pathogen Streptococcus suis.
Collapse
Affiliation(s)
- Qingjing Wang
- Department of Pathogen Biology and MicrobiologyDepartment of General Intensive Care Unit of Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Bachar H. Hassan
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNew YorkUSA
| | - Ningjie Lou
- Department of Pathogen Biology and MicrobiologyDepartment of General Intensive Care Unit of Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Justin Merritt
- Department of Restorative DentistryOregon Health and Science UniversityPortlandOregonUSA
| | - Youjun Feng
- Department of Pathogen Biology and MicrobiologyDepartment of General Intensive Care Unit of Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
8
|
Finn TJ, Shewaramani S, Leahy SC, Janssen PH, Moon CD. Dynamics and genetic diversification of Escherichia coli during experimental adaptation to an anaerobic environment. PeerJ 2017; 5:e3244. [PMID: 28480139 PMCID: PMC5419217 DOI: 10.7717/peerj.3244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/29/2017] [Indexed: 01/25/2023] Open
Abstract
Background Many bacteria are facultative anaerobes, and can proliferate in both anoxic and oxic environments. Under anaerobic conditions, fermentation is the primary means of energy generation in contrast to respiration. Furthermore, the rates and spectra of spontaneous mutations that arise during anaerobic growth differ to those under aerobic growth. A long-term selection experiment was undertaken to investigate the genetic changes that underpin how the facultative anaerobe, Escherichia coli, adapts to anaerobic environments. Methods Twenty-one populations of E. coli REL4536, an aerobically evolved 10,000th generation descendent of the E. coli B strain, REL606, were established from a clonal ancestral culture. These were serially sub-cultured for 2,000 generations in a defined minimal glucose medium in strict aerobic and strict anaerobic environments, as well as in a treatment that fluctuated between the two environments. The competitive fitness of the evolving lineages was assessed at approximately 0, 1,000 and 2,000 generations, in both the environment of selection and the alternative environment. Whole genome re-sequencing was performed on random colonies from all lineages after 2,000-generations. Mutations were identified relative to the ancestral genome, and based on the extent of parallelism, traits that were likely to have contributed towards adaptation were inferred. Results There were increases in fitness relative to the ancestor among anaerobically evolved lineages when tested in the anaerobic environment, but no increases were found in the aerobic environment. For lineages that had evolved under the fluctuating regime, relative fitness increased significantly in the anaerobic environment, but did not increase in the aerobic environment. The aerobically-evolved lineages did not increase in fitness when tested in either the aerobic or anaerobic environments. The strictly anaerobic lineages adapted more rapidly to the anaerobic environment than did the fluctuating lineages. Two main strategies appeared to predominate during adaptation to the anaerobic environment: modification of energy generation pathways, and inactivation of non-essential functions. Fermentation pathways appeared to alter through selection for mutations in genes such as nadR, adhE, dcuS/R, and pflB. Mutations were frequently identified in genes for presumably dispensable functions such as toxin-antitoxin systems, prophages, virulence and amino acid transport. Adaptation of the fluctuating lineages to the anaerobic environments involved mutations affecting traits similar to those observed in the anaerobically evolved lineages. Discussion There appeared to be strong selective pressure for activities that conferred cell yield advantages during anaerobic growth, which include restoring activities that had previously been inactivated under long-term continuous aerobic evolution of the ancestor.
Collapse
Affiliation(s)
- Thomas J Finn
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand.,New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sonal Shewaramani
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand.,New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand.,Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States of America
| | - Sinead C Leahy
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Peter H Janssen
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Christina D Moon
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
9
|
Abstract
Universal and ubiquitous redox cofactors, nicotinamide adenine dinucleotide (NAD) and its phosphorylated analog (NADP), collectively contribute to approximately 12% of all biochemical reactions included in the metabolic model of Escherichia coli K-12. A homeostasis of the NAD pool faithfully maintained by the cells results from a dynamic balance in a network of NAD biosynthesis, utilization, decomposition, and recycling pathways that is subject to tight regulation at various levels. A brief overview of NAD utilization processes is provided in this review, including some examples of nonredox utilization. The review focuses mostly on those aspects of NAD biogenesis and utilization in E. coli and Salmonella that emerged within the past 12 years. The first pyridine nucleotide cycle (PNC) originally identified in mammalian systems and termed the Preiss-Handler pathway includes a single-step conversion of niacin (Na) to NaMN by nicotinic acid phosphoribosyltransferase (PncB). In E. coli and many other prokaryotes, this enzyme, together with nicotinamide deamidase (PncA), compose the major pathway for utilization of the pyridine ring in the form of amidated (Nm) or deamidated (Na) precursors. The existence of various regulatory mechanisms and checkpoints that control the NAD biosynthetic machinery reflects the importance of maintaining NAD homeostasis in a variety of growth conditions. Among the most important regulatory mechanisms at the level of individual enzymes are a classic feedback inhibition of NadB, the first enzyme of NAD de novo biosynthesis, by NAD and a metabolic regulation of NadK by reduced cofactors.
Collapse
|
10
|
Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters. Biol Chem 2015; 396:955-66. [DOI: 10.1515/hsz-2015-0113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/17/2015] [Indexed: 11/15/2022]
Abstract
AbstractMany bacteria can take up vitamins from the environment via specific transport machineries. Uptake is essential for organisms that lack complete vitamin biosynthesis pathways, but even in the presence of biosynthesis routes uptake is likely preferred, because it is energetically less costly. Pnu transporters represent a class of membrane transporters for a diverse set of B-type vitamins. They were identified 30 years ago and catalyze transport by the mechanism of facilitated diffusion, without direct coupling to ATP hydrolysis or transport of coupling ions. Instead, directionality is achieved by metabolic trapping, in which the vitamin substrate is converted into a derivative that cannot be transported, for instance by phosphorylation. The recent crystal structure of the nicotinamide riboside transporter PnuC has provided the first insights in substrate recognition and selectivity. Here, we will summarize the current knowledge about the function, structure, and evolution of Pnu transporters. Additionally, we will highlight their role for potential biotechnological and pharmaceutical applications.
Collapse
|
11
|
Yamamoto K, Watanabe H, Ishihama A. Expression levels of transcription factors in Escherichia coli: growth phase- and growth condition-dependent variation of 90 regulators from six families. Microbiology (Reading) 2014; 160:1903-1913. [DOI: 10.1099/mic.0.079889-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression pattern of the genome in Escherichia coli is controlled by regulating the utilization of a limited number of RNA polymerases between a total of 4600 genes on its genome. The distribution pattern of RNA polymerase on the genome changes after two steps of protein–protein interaction with seven sigma subunits and about 300 transcription factors (TFs). Based on a systematic search for the regulation target promoters recognized by each TF, we propose two novel concepts: each TF regulates a number of target promoters; and each promoter is regulated by many TFs. In parallel, attempts have been made to determine the intracellular concentrations of all TFs using two systems: quantitative immunoblot analysis using TF-specific antibodies; and reporter assay of TF promoter activities. The direct measurement of TF protein level has so far been published for a set of 60 regulators with known functions. This study describes the determination of growth phase-dependent expression levels of 90 TFs using the reporter assay system. The translational fusion vector was constructed from the TF promoter sequence including an N-terminal proximal TF segment and the reporter GFP. At the beginning of cell growth, high-level expression was observed only for a small number of TFs. In the exponential phase, approximately 80 % TFs are expressed, but the expressed TF species change upon transfer to the stationary phase. Significant changes in the pattern of TF expression were observed between aerobic and anaerobic conditions. The list of intracellular levels of TFs provides further understanding to the transcription regulation of the E. coli genome under various stressful conditions.
Collapse
Affiliation(s)
- Kaneyoshi Yamamoto
- Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo 185-8584, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 185-8584, Japan
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 185-8584, Japan
| | - Akira Ishihama
- Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo 185-8584, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 185-8584, Japan
| |
Collapse
|
12
|
Teramoto H, Inui M, Yukawa H. NdnR is an NAD-responsive transcriptional repressor of the ndnR operon involved in NAD de novo biosynthesis in Corynebacterium glutamicum. MICROBIOLOGY-SGM 2012; 158:975-982. [PMID: 22301909 DOI: 10.1099/mic.0.057513-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Corynebacterium glutamicum ndnR gene, which is chromosomally located in a gene cluster involved in NAD de novo biosynthesis, negatively regulates expression of the cluster genes, i.e. nadA, nadC, nadS and ndnR itself. Although ndnR encodes a member of the recently identified NrtR family of transcriptional regulators, whether or not the NdnR protein directly regulates these NAD biosynthesis genes remains to be verified. Here, two NdnR binding sites in the promoter region of the ndnR-nadA-nadC-nadS operon in C. glutamicum were confirmed by in vitro DNA binding assay and analysis of in vivo expression of the chromosomally integrated ndnR promoter-lacZ reporter fusion. Electrophoretic mobility shift assay revealed that the NdnR protein binds to the 5'-upstream region of ndnR, and that the binding is significantly enhanced by NAD. Mutation in two 21 bp NdnR binding motifs in the ndnR promoter region inhibited the binding of NdnR in vitro. The mutation also enhanced the promoter activity in cells cultured in the presence of nicotinate, which is utilized in NAD biosynthesis, resulting in the loss of the repression in response to an exogenous NAD precursor; this is consistent with the effect of deletion of ndnR reported in our previous study. These results indicate that NAD acts as a co-repressor for the NdnR protein that directly regulates the ndnR operon involved in NAD de novo biosynthesis; the NAD-NdnR regulatory system likely plays an important role in the control of NAD homeostasis in C. glutamicum.
Collapse
Affiliation(s)
- Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| |
Collapse
|
13
|
Regulation of the expression of genes involved in NAD de novo biosynthesis in Corynebacterium glutamicum. Appl Environ Microbiol 2010; 76:5488-95. [PMID: 20601509 DOI: 10.1128/aem.00906-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three genes, nadA, nadB, and nadC, involved in NAD de novo biosynthesis are broadly conserved in the genomes of numerous bacterial species. In the genome of Corynebacterium glutamicum, nadA and nadC but not nadB are annotated. The nadA and nadC genes are located in a gene cluster containing two other genes, designated ndnR and nadS herein. ndnR encodes a member of the Nudix-related transcriptional regulator (NrtR) family. nadS encodes a homologue of cysteine desulfurase involved in Fe-S cluster assembly. The gene cluster ndnR-nadA-nadC-nadS is genetically characterized herein. Mutant strains deficient in nadA, nadC, or nadS required exogenous nicotinate for growth, and the nicotinate auxotrophy was complemented by introduction of the corresponding gene in trans, indicating that each of these genes is essential for growth in the absence of an exogenous source of NAD biosynthesis. The results of reverse transcriptase PCR analyses and ndnR promoter-lacZ expression analyses revealed that the expression of ndnR, nadA, nadC, and nadS genes was markedly and coordinately repressed by nicotinate. The expression of these genes was enhanced by the disruption of ndnR, resulting in the loss of the nicotinate-responsive regulation of gene expression. These results suggest that NdnR acts as a transcriptional repressor of NAD de novo biosynthesis genes and plays an essential role in the regulation of the response to nicotinate.
Collapse
|
14
|
Huang N, De Ingeniis J, Galeazzi L, Mancini C, Korostelev YD, Rakhmaninova AB, Gelfand MS, Rodionov DA, Raffaelli N, Zhang H. Structure and function of an ADP-ribose-dependent transcriptional regulator of NAD metabolism. Structure 2009; 17:939-51. [PMID: 19604474 DOI: 10.1016/j.str.2009.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/21/2009] [Accepted: 05/06/2009] [Indexed: 01/12/2023]
Abstract
Besides its function as an essential redox cofactor, nicotinamide adenine dinucleotide (NAD) also serves as a consumable substrate for several reactions with broad impact on many cellular processes. NAD homeostasis appears to be tightly controlled, but the mechanism of its regulation is little understood. Here we demonstrate that a previously predicted bacterial transcriptional regulator, NrtR, represses the transcription of NAD biosynthetic genes in vitro. The NAD metabolite ADP-ribose functions as an activator suppressing NrtR repressor activity. The presence of high ADP-ribose levels in the cell is indicative of active NAD turnover in bacteria, which could signal the activation of NAD biosynthetic gene expression via inhibiting the repressor function of NrtR. By comparing the crystal structures of NrtR in complex with DNA and with ADP-ribose, we identified a "Nudix switch" element that likely plays a critical role in the allosteric regulation of DNA binding and repressor function of NrtR.
Collapse
Affiliation(s)
- Nian Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Rodionov DA, Li X, Rodionova IA, Yang C, Sorci L, Dervyn E, Martynowski D, Zhang H, Gelfand MS, Osterman AL. Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon. Nucleic Acids Res 2008; 36:2032-46. [PMID: 18276644 PMCID: PMC2330245 DOI: 10.1093/nar/gkn046] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A comparative genomic approach was used to reconstruct transcriptional regulation of NAD biosynthesis in bacteria containing orthologs of Bacillus subtilis gene yrxA, a previously identified niacin-responsive repressor of NAD de novo synthesis. Members of YrxA family (re-named here NiaR) are broadly conserved in the Bacillus/Clostridium group and in the deeply branching Fusobacteria and Thermotogales lineages. We analyzed upstream regions of genes associated with NAD biosynthesis to identify candidate NiaR-binding DNA motifs and assess the NiaR regulon content in these species. Representatives of the two distinct types of candidate NiaR-binding sites, characteristic of the Firmicutes and Thermotogales, were verified by an electrophoretic mobility shift assay. In addition to transcriptional control of the nadABC genes, the NiaR regulon in some species extends to niacin salvage (the pncAB genes) and includes uncharacterized membrane proteins possibly involved in niacin transport. The involvement in niacin uptake proposed for one of these proteins (re-named NiaP), encoded by the B. subtilis gene yceI, was experimentally verified. In addition to bacteria, members of the NiaP family are conserved in multicellular eukaryotes, including human, pointing to possible NaiP involvement in niacin utilization in these organisms. Overall, the analysis of the NiaR and NrtR regulons (described in the accompanying paper) revealed mechanisms of transcriptional regulation of NAD metabolism in nearly a hundred diverse bacteria.
Collapse
|
17
|
|
18
|
Rodionov DA, De Ingeniis J, Mancini C, Cimadamore F, Zhang H, Osterman AL, Raffaelli N. Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. Nucleic Acids Res 2008; 36:2047-59. [PMID: 18276643 PMCID: PMC2330246 DOI: 10.1093/nar/gkn047] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A novel family of transcription factors responsible for regulation of various aspects of NAD synthesis in a broad range of bacteria was identified by comparative genomics approach. Regulators of this family (here termed NrtR for Nudix-related transcriptional regulators), currently annotated as ADP-ribose pyrophosphatases from the Nudix family, are composed of an N-terminal Nudix-like effector domain and a C-terminal DNA-binding HTH-like domain. NrtR regulons were reconstructed in diverse bacterial genomes by identification and comparative analysis of NrtR-binding sites upstream of genes involved in NAD biosynthetic pathways. The candidate NrtR-binding DNA motifs showed significant variability between microbial lineages, although the common consensus sequence could be traced for most of them. Bioinformatics predictions were experimentally validated by gel mobility shift assays for two NrtR family representatives. ADP-ribose, the product of glycohydrolytic cleavage of NAD, was found to suppress the in vitro binding of NrtR proteins to their DNA target sites. In addition to a major role in the direct regulation of NAD homeostasis, some members of NrtR family appear to have been recruited for the regulation of other metabolic pathways, including sugar pentoses utilization and biogenesis of phosphoribosyl pyrophosphate. This work and the accompanying study of NiaR regulon demonstrate significant variability of regulatory strategies for control of NAD metabolic pathway in bacteria.
Collapse
|
19
|
Rodionov DA. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev 2007; 107:3467-97. [PMID: 17636889 PMCID: PMC2643304 DOI: 10.1021/cr068309+] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dmitry A Rodionov
- Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| |
Collapse
|
20
|
Enikeeva FN, Kotelnikova EA, Gelfand MS, Makeev VJ. A model of evolution with constant selective pressure for regulatory DNA sites. BMC Evol Biol 2007; 7:125. [PMID: 17662135 PMCID: PMC1978210 DOI: 10.1186/1471-2148-7-125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 07/27/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular evolution is usually described assuming a neutral or weakly non-neutral substitution model. Recently, new data have become available on evolution of sequence regions under a selective pressure, e.g. transcription factor binding sites. To reconstruct the evolutionary history of such sequences, one needs evolutionary models that take into account a substantial constant selective pressure. RESULTS We present a simple evolutionary model with a single preferred (consensus) nucleotide and the neutral substitution model adopted for all other nucleotides. This evolutionary model has a rate matrix in which all substitutions that do not involve the consensus nucleotide occur with the same rate. The model has two time scales for achieving a stationary distribution; in the general case only one of the two rate parameters can be evaluated from the stationary distribution. In the middle-time zone, a counterintuitive behavior was observed for some parameter values, with a probability of conservation for a non-consensus nucleotide greater than that for the consensus nucleotide. Such an effect can be observed only in the case of weak preference for the consensus nucleotide, when the probability to observe the consensus nucleotide in the stationary distribution is less than 1/2. If the substitution rate is represented as a product of mutation and fixation, only the fixation can be calculated from the stationary distribution. The exhibited conservation of non-consensus nucleotides does not take place if the elements of mutation matrix are identical, and can be related to the reduced mutation rate between the non-consensus nucleotides. This bias can have no effect on the stationary distribution of nucleotide frequencies calculated over the ensemble of multiple alignments, e.g. transcription factor binding sites upstream of different sets of co-regulated orthologous genes. CONCLUSION The derived model can be used as a null model when analyzing the evolution of orthologous transcription factor binding sites. In particular, our findings show that a nucleotide preferred at some position of a multiple alignment of binding sites for some transcription factor in the same genome is not necessarily the most conserved nucleotide in an alignment of orthologous sites from different species. However, this effect can take place only in the case of a mutation matrix whose elements are not identical.
Collapse
Affiliation(s)
- Farida N Enikeeva
- Institute for Information Transmission Problems (the Kharkevich Institute) of RAS, Bolshoi Karetny pereulok, 19, GSP-4, Moscow, 127994, Russia
| | - Ekaterina A Kotelnikova
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1st Dorozhnyj proezd, 1, Moscow, 113535, Russia
- Ariadne Genomics Inc. 9700 Great Seneca Highway, Suite 113, Rockville, MD 20850, USA
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems (the Kharkevich Institute) of RAS, Bolshoi Karetny pereulok, 19, GSP-4, Moscow, 127994, Russia
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Vorobyevy Gory 1-73, Moscow, 119992, Russia
| | - Vsevolod J Makeev
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1st Dorozhnyj proezd, 1, Moscow, 113535, Russia
- Engelgardt Institute of Molecular Biology of RAS, Vavilova 32, Moscow, 119991, Russia
| |
Collapse
|
21
|
Weekes D, Miller MD, Krishna SS, McMullan D, McPhillips TM, Acosta C, Canaves JM, Elsliger MA, Floyd R, Grzechnik SK, Jaroszewski L, Klock HE, Koesema E, Kovarik JS, Kreusch A, Morse AT, Quijano K, Spraggon G, van den Bedem H, Wolf G, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of a transcription regulator (TM1602) from Thermotoga maritima at 2.3 A resolution. Proteins 2007; 67:247-52. [PMID: 17256761 DOI: 10.1002/prot.21221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|