1
|
Gu X, Li X, Tian W, Zheng C, Cai Y, Xu X, Zhao C, Liu H, Sun Y, Luo Z, Zhu S, Zhou H, Ai X, Yang C. Preclinical pharmacokinetic studies and prediction of human PK profiles for Deg-AZM, a clinical-stage new transgelin agonist. Front Pharmacol 2024; 15:1423175. [PMID: 39253379 PMCID: PMC11381276 DOI: 10.3389/fphar.2024.1423175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Deglycosylated azithromycin (Deg-AZM), a newly developed Class I drug with good therapeutic effects on slow transit constipation, is a small-molecule transgelin agonist that has been approved for clinical trials in 2024. The preclinical pharmacokinetic profile of Deg-AZM was investigated to support further development. Methods A LC-MS/MS method was established and validated to detected the concentration of Deg-AZM in various biological samples. In vivo tests such as pharmacokinetic studies in rats and dogs, tissue distribution studies in rats, and extraction studies in rats were conducted to investigated the preclinical pharmacokinetic behaviors of Deg-AZM comprehensively. The plasma protein rate of Deg-AZM was determined by rapid equilibrium dialysis method in vitro. The metabolic stability and metabolite profile of Deg-AZM was assessed using pooled mice, rats, dogs, monkeys and humans microsomes in vitro. The PK profiles of Deg-AZM in human was predicted based on physiologically based pharmacokinetic (PBPK) models. Results The plasma protein binding rates of Deg-AZM were lower in mice and rats, higher in dogs, and moderate in humans. The metabolic process of Deg-AZM was similar in rat and human liver microsomes. From Pharmacokinetic studies in rats and dogs, Deg-AZM was rapidly absorbed into the blood and then quickly eliminated. Plasma exposure of Deg-AZM was dose dependent with no accumulation after continuous gavage administration. In addition, there is no significant gender difference in the pharmacokinetic behavior of Deg-AZM. Deg-AZM was widely distributed in the tissues without obvious accumulation, and mainly excreted from the urinary excretion pathway. Furthermore, the pharmacokinetic profiles of Deg-AZM in humans showed dose dependency. Conclusion The pharmacokinetic profiles of Deg-AZM was fully explored, these results could provide valuable information to support the first-in-human dosage prediction and phase I clinical design.
Collapse
Affiliation(s)
- Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Weixue Tian
- The National Institutes of Pharmaceutical R&D Co., Ltd., Beijing, China
| | - Chaoyue Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yutian Cai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiang Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Conglu Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hongting Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yao Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhilin Luo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuwen Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaoyu Ai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
2
|
Wodtke R, Laube M, Hauser S, Meister S, Ludwig FA, Fischer S, Kopka K, Pietzsch J, Löser R. Preclinical evaluation of an 18F-labeled N ε-acryloyllysine piperazide for covalent targeting of transglutaminase 2. EJNMMI Radiopharm Chem 2024; 9:1. [PMID: 38165538 PMCID: PMC10761660 DOI: 10.1186/s41181-023-00231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.
Collapse
Affiliation(s)
- Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany.
| |
Collapse
|
3
|
Fan Y, Xu C, Deng N, Gao Z, Jiang Z, Li X, Zhou Y, Pei H, Li L, Tang B. Understanding drug nanocarrier and blood-brain barrier interaction based on a microfluidic microphysiological model. LAB ON A CHIP 2023; 23:1935-1944. [PMID: 36891748 DOI: 10.1039/d2lc01077a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As many nanoparticles (NPs) have been exploited as drug carriers to overcome the resistance of the blood-brain barrier (BBB), reliable in vitro BBB models are urgently needed to help researchers to comprehensively understand drug nanocarrier-BBB interaction during penetration, which can prompt pre-clinical nanodrug exploitation. Herein, we developed a microfluidic microphysiological model, allowing the analysis of BBB homeostasis and NP penetration. We found that the BBB penetrability of gold nanoparticles (AuNPs) was size- and modification-dependent, which might be caused by a distinct transendocytosis pathway. Notably, transferrin-modified 13 nm AuNPs held the strongest BBB penetrability and induced the slightest BBB dysfunction, while bare 80 nm and 120 nm AuNPs showed opposite results. Moreover, further analysis of the protein corona showed that PEGylation reduced the protein absorption, and some proteins facilitated the BBB penetration of NPs. The developed microphysiological model provides a powerful tool for understanding the drug nanocarrier-BBB interaction, which is vital for exploiting high-efficiency and biocompatible nanodrugs.
Collapse
Affiliation(s)
- Yuanyuan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Chang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Ning Deng
- Shandong Institute for Product Quality Inspection, Jinan 250101, P. R. China
| | - Ze Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaoxiao Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Yingshun Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
4
|
de Oliveira BMM, Serpa PZ, da Costa Zanatta ME, Aires BA, Steffler AM, Somensi LB, Cury BJ, Dos Santos AC, Venzon L, Boeing T, Mota da Silva L, Roman Junior WA. Gastroprotective and gastric healing effects of the aqueous extract of Casearia sylvestris in rodents: Ultrasound, histological and biochemical analyzes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115660. [PMID: 35995277 DOI: 10.1016/j.jep.2022.115660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE Casearia sylvestris Sw. (Salicaceae) is a native plant from the Americas, where it is also known as "guaçatonga" or "erva-de-bugre." Although its leaves have been commonly used to treat inflammation and gastrointestinal disorders in South America, the antiulcer effects of an aqueous extract from this medicinal plant, similar to popular use, have not to be investigated yet. AIM OF THE STUDY This study evaluated the hypothesis that the aqueous extract a of C. sylvestris (AEC) prevents the gastric ulcers and accelerates the healing of ulcers already installed, by assessing ultrasound imaging, histological and biochemical analyses. MATERIALS AND METHODS Rats (females) were treated with AEC (3, 30 or 300 mg/kg) prior to the ethanol or piroxicam-induced gastric ulcers. The healing effect of AEC (300 mg/kg) was examined in 80% acetic acid-induced ulcer in rats, whereas the quality of healing was evaluated in recurrent 10% acetic acid-induced ulcer in mice with recurrence induced by interleukin 1β. To assess the responses of the lesions, in addition to the classical methods used to analyze gastroprotection (ex vivo), we also measured the gastric wall thickness (in vivo) using ultrasonography. After euthanasia, the extent of ulcer was determined and the levels of reduced glutathione (GSH), lipid hydroperoxides (LOOH), nitrate, and the activities of myeloperoxidase (MPO), N-acetyl-β-D-glycosaminidase (NAG), superoxide dismutase (SOD), and glutathione S-transferase (GST) were measured. The antisecretory activity of AEC was also examined based on pylorus ligated rats. Furthermore, gastric tissue samples were analyzed histologically, and phytochemical analyses of the C. sylvestris extract were parallelly performed. RESULTS The AEC (30 or 300 mg/kg) prevented ulcers in the ethanol- and piroxicam-induced acute. Moreover, the AEC at a dose of 300 mg/kg also accelerated the gastric healing of acetic acid-induced ulcer in rats by 48% and the ultrasonography records shown a decrease in the wall thickness and the extent of edema of ulcerous lesions promoted by the extract. The gastric healing effect of AEC was also accompanied by reduced MPO and NAG activities at acetic acid-induced ulcer in rats; as well as was by the reduction in the nitrate and LOOH levels, the increase in mucin and SOD activity, and by a partial recovery of GSH levels. The AEC (300 mg/kg) minimized the ulcer recurrence in mice exposed to IL-1β, but the extract administration did not change pH or peptic activity of gastric juice in pylorus ligated rats. CONCLUSION The results of this study provide convincing evidence for the therapeutic efficacy of C. sylvestris with respect to gastroprotection and indicate that ultrasound examination would be a potentially promising approach for evaluating gastroprotective effects in vivo. Collectively, our findings indicate that the gastric the gastroprotective and healing effects of aqueous extract C. sylvestris involve a reduction in acid secretion, promotion of the antioxidant system, reductions in the migration of neutrophils and mast cells, with a consequent lower inflammatory response, and the preservation of mucin.
Collapse
Affiliation(s)
| | - Patrícia Zanotelli Serpa
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil.
| | | | - Bruna Agnoatto Aires
- Laboratório de Farmacognosia, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil.
| | - Amanda Maria Steffler
- Laboratório de Farmacognosia, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil.
| | - Lincon Bordignon Somensi
- Programa de Pós-Graduação em Desenvolvimento e Sociedade, Universidade Alto Vale do Rio do Peixe, CEP 89500-199, Caçador, SC, Brazil.
| | - Benhur Judah Cury
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil.
| | - Ana Caroline Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil.
| | - Larissa Venzon
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil.
| | - Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil.
| | - Luisa Mota da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil.
| | - Walter Antônio Roman Junior
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil; Laboratório de Farmacognosia, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil.
| |
Collapse
|
5
|
Palumbo M, Sissi C. Bench to bedside: The ambitious goal of transducing medicinal chemistry from the lab to the clinic. Bioorg Med Chem Lett 2022; 69:128787. [PMID: 35569688 DOI: 10.1016/j.bmcl.2022.128787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
This paper deals with a critical examination on the possibility of quantitatively predicting the in vivo activity of new chemical entities (NCEs) by making use of in silico and in vitro data including three-dimensional structure of drug-target complex, thermodynamic and crowding parameters, ADME (absorption, distribution, metabolism, excretion) properties, and off-target (toxic) interactions. This formidable challenge is still a dream, given the presently occurring exceedingly high (>95%) attrition rates of NCEs. As a solution we envisage exploiting advanced AI (artificial intelligence) algorithms. In fact, very recent AI implemented programs proved remarkably effective and accurate in predicting the 3D architecture of (any) protein, starting from the amino-acid sequence only. The same accuracy could not be obtained using classical conformational studies. Apart from these breakthrough results, AI algorithms could be profitably used to extract valuable information from the huge amount of data so far accumulated from previous studies. In case of positive results, the drug discovery procedure would be sensibly accelerated, and the relative costs remarkably reduced.
Collapse
Affiliation(s)
- Manlio Palumbo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, 35131 Padova, Italy.
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
6
|
Singh D, Deosarkar SP, Cadogan E, Flemington V, Bray A, Zhang J, Reiserer RS, Schaffer DK, Gerken GB, Britt CM, Werner EM, Gibbons FD, Kostrzewski T, Chambers CE, Davies EJ, Montoya AR, Fok JHL, Hughes D, Fabre K, Wagoner MP, Wikswo JP, Scott CW. A microfluidic system that replicates pharmacokinetic (PK) profiles in vitro improves prediction of in vivo efficacy in preclinical models. PLoS Biol 2022; 20:e3001624. [PMID: 35617197 PMCID: PMC9135222 DOI: 10.1371/journal.pbio.3001624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Test compounds used on in vitro model systems are conventionally delivered to cell culture wells as fixed concentration bolus doses; however, this poorly replicates the pharmacokinetic (PK) concentration changes seen in vivo and reduces the predictive value of the data. Herein, proof-of-concept experiments were performed using a novel microfluidic device, the Microformulator, which allows in vivo like PK profiles to be applied to cells cultured in microtiter plates and facilitates the investigation of the impact of PK on biological responses. We demonstrate the utility of the device in its ability to reproduce in vivo PK profiles of different oncology compounds over multiweek experiments, both as monotherapy and drug combinations, comparing the effects on tumour cell efficacy in vitro with efficacy seen in in vivo xenograft models. In the first example, an ERK1/2 inhibitor was tested using fixed bolus dosing and Microformulator-replicated PK profiles, in 2 cell lines with different in vivo sensitivities. The Microformulator-replicated PK profiles were able to discriminate between cell line sensitivities, unlike the conventional fixed bolus dosing. In a second study, murine in vivo PK profiles of multiple Poly(ADP-Ribose) Polymerase 1/2 (PARP) and DNA-dependent protein kinase (DNA-PK) inhibitor combinations were replicated in a FaDu cell line resulting in a reduction in cell growth in vitro with similar rank ordering to the in vivo xenograft model. Additional PK/efficacy insight into theoretical changes to drug exposure profiles was gained by using the Microformulator to expose FaDu cells to the DNA-PK inhibitor for different target coverage levels and periods of time. We demonstrate that the Microformulator enables incorporating PK exposures into cellular assays to improve in vitro-in vivo translation understanding for early therapeutic insight.
Collapse
Affiliation(s)
| | - Sudhir P. Deosarkar
- Oncology Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts, United States of America
| | - Elaine Cadogan
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Vikki Flemington
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alysha Bray
- CN Bio Innovations Limited, Cambridge, United Kingdom
| | - Jingwen Zhang
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts, United States of America
| | - Ronald S. Reiserer
- Department of Physics and Astronomy and the Vanderbilt Institute for Integrative Biosystems Research and Education, Nashville, Tennessee, United States of America
| | - David K. Schaffer
- Department of Physics and Astronomy and the Vanderbilt Institute for Integrative Biosystems Research and Education, Nashville, Tennessee, United States of America
| | - Gregory B. Gerken
- Department of Physics and Astronomy and the Vanderbilt Institute for Integrative Biosystems Research and Education, Nashville, Tennessee, United States of America
| | - Clayton M. Britt
- Department of Physics and Astronomy and the Vanderbilt Institute for Integrative Biosystems Research and Education, Nashville, Tennessee, United States of America
| | - Erik M. Werner
- Department of Physics and Astronomy and the Vanderbilt Institute for Integrative Biosystems Research and Education, Nashville, Tennessee, United States of America
| | - Francis D. Gibbons
- DMPK, Oncology R&D, AstraZeneca, Boston, Massachusetts, United States of America
| | | | | | - Emma J. Davies
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - David Hughes
- CN Bio Innovations Limited, Cambridge, United Kingdom
| | - Kristin Fabre
- MPS Center of Excellence, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts, United States of America
| | - Matthew P. Wagoner
- Oncology Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts, United States of America
| | - John P. Wikswo
- Department of Physics and Astronomy and the Vanderbilt Institute for Integrative Biosystems Research and Education, Nashville, Tennessee, United States of America
- Departments of Biomedical Engineering and Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Clay W. Scott
- Oncology Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Naga D, Parrott N, Ecker GF, Olivares-Morales A. Evaluation of the Success of High-Throughput Physiologically Based Pharmacokinetic (HT-PBPK) Modeling Predictions to Inform Early Drug Discovery. Mol Pharm 2022; 19:2203-2216. [PMID: 35476457 PMCID: PMC9257750 DOI: 10.1021/acs.molpharmaceut.2c00040] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Minimizing in vitro and in vivo testing
in early drug discovery
with the use of physiologically based pharmacokinetic (PBPK) modeling
and machine learning (ML) approaches has the potential to reduce discovery
cycle times and animal experimentation. However, the prediction success
of such an approach has not been shown for a larger and diverse set
of compounds representative of a lead optimization pipeline. In this
study, the prediction success of the oral (PO) and intravenous (IV)
pharmacokinetics (PK) parameters in rats was assessed using a “bottom-up”
approach, combining in vitro and ML inputs with a PBPK model. More
than 240 compounds for which all of the necessary inputs and PK data
were available were used for this assessment. Different clearance
scaling approaches were assessed, using hepatocyte intrinsic clearance
and protein binding as inputs. In addition, a novel high-throughput
PBPK (HT-PBPK) approach was evaluated to assess the scalability of
PBPK predictions for a larger number of compounds in drug discovery.
The results showed that bottom-up PBPK modeling was able to predict
the rat IV and PO PK parameters for the majority of compounds within
a 2- to 3-fold error range, using both direct scaling and dilution
methods for clearance predictions. The use of only ML-predicted inputs
from the structure did not perform well when using in vitro inputs,
likely due to clearance miss predictions. The HT-PBPK approach produced
comparable results to the full PBPK modeling approach but reduced
the simulation time from hours to seconds. In conclusion, a bottom-up
PBPK and HT-PBPK approach can successfully predict the PK parameters
and guide early discovery by informing compound prioritization, provided
that good in vitro assays are in place for key parameters such as
clearance.
Collapse
Affiliation(s)
- Doha Naga
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Neil Parrott
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Andrés Olivares-Morales
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
8
|
Xu Y, Zhang SX, Guo J, Chen LJ, Liou YL, Rao T, Peng JB, Guo Y, Huang WH, Tan ZR, Ou-yang DS, Zhou HH, Zhang W, Chen Y. A Joint Technology Combining the Advantages of Capillary Microsampling with Mass Spectrometry Applied to the Trans-Resveratrol Pharmacokinetic Study in Mice. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5952436. [PMID: 35083093 PMCID: PMC8786553 DOI: 10.1155/2022/5952436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Mice are the most frequently used animals in pharmacokinetic studies; however, collecting series of blood samples from mice is difficult because of their small sizes and tiny vessels. In addition, due to the small sample size, it is problematic to perform high required quantification. Thus, present work aims to find an effective strategy for overcoming these challenges using trans-resveratrol as a tool drug. Based on the idea of a joint technology, the capillary microsampling (CMS) was chosen for blood sample collection from mice after delivery of trans-resveratrol (150 mg/kg) by gavage, and a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of trans-resveratrol and its main metabolites. All the mouse blood samples were exactly collected by CMS without obvious deviation. This provided credible samples for subsequent quantitative analysis. The HPLC-MS/MS method was found to be sensitive, accurate, and repeatable, and the pharmacokinetic parameters for all analytes were comparable with those reported in previous studies. However, the present joint technology offers the advantages of less animal damage, easy for sample preparation, and improved reliability. It has overcome some of the major limitations revealed in previous pharmacokinetic studies in mice and therefore provides a more effective option for future studies.
Collapse
Affiliation(s)
- Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Song-xia Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Jing Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Li-jie Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Yu-ligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Jing-bo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Wei-hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Zhi-rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Dong-sheng Ou-yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Hong-hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| |
Collapse
|
9
|
Ramadan Q, Fardous RS, Hazaymeh R, Alshmmari S, Zourob M. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME. Adv Biol (Weinh) 2021; 5:e2100775. [PMID: 34323392 DOI: 10.1002/adbi.202100775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Despite many ongoing efforts across the full spectrum of pharmaceutical and biotech industries, drug development is still a costly undertaking that involves a high risk of failure during clinical trials. Animal models played vital roles in understanding the mechanism of human diseases. However, the use of these models has been a subject of heated debate, particularly due to ethical matters and the inevitable pathophysiological differences between animals and humans. Current in vitro models lack the sufficient functionality and predictivity of human pharmacokinetics and toxicity, therefore, are not capable to fully replace animal models. The recent development of micro-physiological systems has shown great potential as indispensable tools for recapitulating key physiological parameters of humans and providing in vitro methods for predicting the pharmacokinetics and pharmacodynamics in humans. Integration of Absorption, Distribution, Metabolism, and Excretion (ADME) processes within one close in vitro system is a paramount development that would meet important unmet pharmaceutical industry needs. In this review paper, synthesis of the ADME-centered organ-on-a-chip technology is systemically presented from what is achieved to what needs to be done, emphasizing the requirements of in vitro models that meet industrial needs in terms of the structure and functions.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Roa Saleem Fardous
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, G4 0RE, United Kingdom
| | - Rana Hazaymeh
- Almaarefa University, Riyadh, 13713, Kingdom of Saudi Arabia
| | - Sultan Alshmmari
- Saudi Food and Drug Authority, Riyadh, 13513-7148, Kingdom of Saudi Arabia
| | | |
Collapse
|
10
|
Wang R, Zhang Z, Liu B, Xue J, Liu F, Tang T, Liu W, Feng F, Qu W. Strategies for the design of nanoparticles: starting with long-circulating nanoparticles, from lab to clinic. Biomater Sci 2021; 9:3621-3637. [PMID: 34008587 DOI: 10.1039/d0bm02221g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Short half-life is one of the main causes of drug attrition in clinical development, which also leads to the failure of many leading compounds and hits to become drug candidates. Nowadays, nanomaterials have been applied to drug development to address this problem. In fact, the clinical application of nanoparticles (NPs) is severely limited due to their rapid elimination by the reticuloendothelial system (RES) in vivo. In this paper, we aim to summarize representative strategies on prolonging the circulation time for bridging the gap between excellent pharmaceutics and proper half-life and encourage clinical translation.
Collapse
Affiliation(s)
- Ruyi Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Zhongtao Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Bowen Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Jingwei Xue
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, 271000, China and Taian City institute of Digestive Disease, Taian City Central Hospital, Taian, 271000, China
| | - Fulei Liu
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, 271000, China and Pharmaceutical Department, Taian City Central Hospital, Taian, 271000, China
| | - Tongzhong Tang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China and Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China. and Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
11
|
Longuespée R, Theile D, Fresnais M, Burhenne J, Weiss J, Haefeli WE. Approaching sites of action of drugs in clinical pharmacology: New analytical options and their challenges. Br J Clin Pharmacol 2020; 87:858-874. [PMID: 32881012 DOI: 10.1111/bcp.14543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical pharmacology is an important discipline for drug development aiming to define pharmacokinetics (PK), pharmacodynamics (PD) and optimum exposure to drugs, i.e. the concentration-response relationship and its modulators. For this purpose, information on drug concentrations at the anatomical, cellular and molecular sites of action is particularly valuable. In pharmacological assays, the limited accessibility of target cells in readily available samples (i.e. blood) often hampers mass spectrometry-based monitoring of the absolute quantity of a compound and the determination of its molecular action at the cellular level. Recently, new sample collection methods have been developed for the specific capture of rare circulating cells, especially for the diagnosis of circulating tumour cells. In parallel, new advances and developments in mass spectrometric instrumentation now allow analyses to be scaled down to the cellular level. Together, these developments may permit the monitoring of minute drug quantities and show their effect at the cellular level. In turn, such PK/PD associations on a cellular level would not only enrich our pharmacological knowledge of a given compound but also expand the basis for PK/PD simulations. In this review, we describe novel concepts supporting clinical pharmacology at the anatomical, cellular and molecular sites of action, and highlight the new challenges in mass spectrometry-based monitoring. Moreover, we present methods to tackle these challenges and define future needs.
Collapse
Affiliation(s)
- Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Human biodistribution and radiation dosimetry of the 5-HT 2A receptor agonist Cimbi-36 labeled with carbon-11 in two positions. EJNMMI Res 2019; 9:71. [PMID: 31367837 PMCID: PMC6669221 DOI: 10.1186/s13550-019-0527-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Cimbi-36 can be 11C-labeled to form an agonist radioligand used for positron emission tomography (PET) imaging of the 5-HT2A receptor in the brain. In its non-labeled form (25B-NBOMe), it is used as a recreational drug that can lead to severe adverse effects, in some cases, with fatal outcome. We investigated human biodistribution and radiation dosimetry of the radioligand with two different radiolabeling positions. Seven healthy volunteers underwent dynamic 120-min whole-body PET scans (injection of 581 ± 16 MBq, n = 5 for 11C-Cimbi-36; 593 ± 14 MBq, n = 2 for 11C-Cimbi-36_5). Time-integrated activity coefficients (TIACs) from time-activity curves (TACs) of selected organs were used as input into the OLINDA/EXM software to obtain dosimetry information for both 11C-labeling positions of Cimbi-36. Results The effective dose was only slightly higher for 11C-Cimbi-36 (5.5 μSv/MBq) than for 11C-Cimbi-36_5 (5.3 μSv/MBq). Standard uptake value (SUV) curves showed higher uptake of 11C-Cimbi-36 in the pancreas, small intestines, liver, kidney, gallbladder, and urinary bladder compared with 11C-Cimbi-36_5, reflecting differences in radiometabolism for the two radioligands. Variability in uptake in excretory organs for 11C-Cimbi-36 points to inter-individual differences with regard to metabolic rate and route. Surprisingly, moderate uptake was found in brown adipose tissue (BAT) in four subjects, possibly representing specific 5-HT2A/2C receptor binding. Conclusion The low effective dose of 5.5 μSv/MBq allows for the injection of up to 1.8 GBq for healthy volunteers per study (equivalent to 3 scans if injecting 600 MBq) and still stay below the international guidelines of 10 mSv, making 11C-Cimbi-36 eligible for studies involving a series of PET scans in a single subject. The biodistribution of Cimbi-36 (and its metabolites) may also help to shed light on the toxic effects of 25B-NBOMe when used in pharmacological doses in recreational settings. Electronic supplementary material The online version of this article (10.1186/s13550-019-0527-4) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Olofsson S, Hebing L, Niedenführ S, Deisenroth MP, Misener R. GPdoemd: A Python package for design of experiments for model discrimination. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2019.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Identification of potent farnesoid X receptor (FXR) antagonist showing favorable PK profile and distribution toward target tissues: Comprehensive understanding of structure-activity relationship of FXR antagonists. Bioorg Med Chem 2019; 27:2220-2227. [PMID: 31029550 DOI: 10.1016/j.bmc.2019.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 01/22/2023]
Abstract
Antagonizing transcriptional activity of farnesoid X receptor (FXR) in the intestine has been reported as an effective means for the treatment of nonalcoholic fatty liver disease, type 2 diabetes and obesity. We describe herein that the building blocks necessary to maintain the antagonism of our chemotype were investigated in order to modulate in vivo pharmacokinetic behavior and the tissue distribution without blunting the activity against FXR. A comprehensive understanding of the structure-activity relationship led to analog 30, which is superior to 12 in terms of its pharmacokinetic profiles by oral administration and its tissue distribution toward target tissues (liver and ileum) in rats while preserving the in vitro activity of 12 against FXR. Thus, 30 should be a candidate compound to investigate the effects of inhibiting FXR activity while simultaneously improving the outcome of nonalcoholic fatty liver disease, type 2 diabetes and obesity.
Collapse
|
15
|
Abstract
Drug discovery is an extremely difficult and challenging endeavor with a very high failure rate. The task of identifying a drug that is safe, selective, and effective is a daunting proposition because disease biology is complex and highly variable across patients. Metabolomics enables the discovery of disease biomarkers, which provides insights into the molecular and metabolic basis of disease and may be used to assess treatment prognosis and outcome. In this regard, metabolomics has evolved to become an important component of the drug discovery process to resolve efficacy and toxicity issues and as a tool for precision medicine. A detailed description of an experimental protocol is presented that outlines the application of NMR metabolomics to the drug discovery pipeline. This includes (1) target identification by understanding the metabolic dysregulation in diseases, (2) predicting the mechanism of action of newly discovered or existing drug therapies, (3) and using metabolomics to screen a chemical lead to assess biological activity. Unlike other OMICS approaches, the metabolome is "fragile" and may be negatively impacted by improper sample collection, storage, and extraction procedures. Similarly, biologically irrelevant conclusions may result from incorrect data collection, preprocessing or processing procedures, or the erroneous use of univariate and multivariate statistical methods. These critical concerns are also addressed in the protocol.
Collapse
|