1
|
Walker MW, Akematsu T, Aslan E, Villano DJ, Fried HS, Lan H, Sternberg SH, Landweber LF. Relaxed DNA substrate specificity of transposases involved in programmed genome rearrangement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643836. [PMID: 40166331 PMCID: PMC11956929 DOI: 10.1101/2025.03.17.643836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
During post-zygotic development, the ciliate Oxytricha trifallax undergoes massive programmed genome rearrangement that involves over 225,000 DNA cleavage and joining events. An Oxytricha family of Tc1/mariner transposons, known as Telomere-Bearing Elements (TBEs), encodes a transposase that has been implicated in rearrangement, but its high copy number (>34,000 paralogs) has precluded genetic strategies to investigate its DNA recognition properties directly in Oxytricha. Here, we developed a heterologous strategy to assay TBE transposase expression and activity in E. coli, revealing highly promiscuous DNA cleavage properties. Systematic ChIP-seq experiments allowed us to define the DNA binding specificities of multiple distinct transposase subfamilies, which exhibited a binding and cleavage preference for short, degenerate sequence motifs that resemble features present within the TBE transposon ends. The relaxed sequence preference is striking for autonomous transposases, which typically recognize their end sequences with strict specificity to avoid compromising host fitness. Finally, we developed a custom antibody to investigate TBE transposases in their native environment and found that they precisely localize to the developing nucleus exclusively during the rearrangement process. Collectively, this work establishes a robust heterologous workflow for the biochemical investigation of enzymes that have been repurposed for large-scale genome rearrangements.
Collapse
Affiliation(s)
- Matt W.G. Walker
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Takahiko Akematsu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Department of Biology, Faculty of Science, Kanagawa University, Yokohama, Kanagawa, 221-8686, Japan
| | - Erhan Aslan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Danylo J. Villano
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Harrison S. Fried
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Hui Lan
- Department of Biology, Barnard College, Columbia University, New York, NY, 10027, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Howard Hughes Medical institute, Columbia University, New York, NY, 10032, USA
| | - Laura F. Landweber
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
2
|
Kim S, Kim J. Units containing telomeric repeats are prevalent in subtelomeric regions of a Mesorhabditis isolate collected from the Republic of Korea. Genes Genomics 2024; 46:1461-1472. [PMID: 39367283 DOI: 10.1007/s13258-024-01576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Mesorhabditis is known for its somatic genome being only a small portion of the germline genome due to programmed DNA elimination. This phenotype may be associated with the maintenance of telomeres at the ends of fragmented somatic chromosomes. OBJECTIVE To comprehensively investigate the telomeric regions of Mesorhabditis nematodes at the sequence level, we endeavored to collect a Mesorhabditis nematode in the Republic of Korea and acquire its highly contiguous genome sequences. METHODS We isolated a Mesorhabditis nematode and assembled its 108-Mb draft genome using both 6.3 Gb (53 ×) of short-read and 3.0 Gb (25 × , N50 = 5.7 kb) of nanopore-based long-read sequencing data. Our genome assembly exhibits comparable quality to the public genome of Mesorhabditis belari in terms of contiguity and evolutionary conserved genes. RESULTS Unexpectedly, our Mesorhabditis genome has many more interstitial telomeric sequences (ITSs), specifically subtelomeric ones, compared to the genomes of Caenorhabditis elegans and M. belari. Moreover, several subtelomeric sequences containing ITSs had 4-26 homologous sequences, implying they are highly repetitive. Based on this highly repetitive nature, we hypothesize that subtelomeric ITSs might have accumulated through the action of transposable elements containing ITSs. CONCLUSIONS It still remains elusive whether these ITS-containing units are associated with programmed DNA elimination, but they may facilitate new telomere formation after DNA elimination. Our genomic resources for Mesorhabditis can aid in understanding how its distinct phenotypes have evolved.
Collapse
Affiliation(s)
- Seoyeon Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jun Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Matveevsky S. The Germline-Restricted Chromosome of Male Zebra Finches in Meiotic Prophase I: A Proteinaceous Scaffold and Chromatin Modifications. Animals (Basel) 2024; 14:3246. [PMID: 39595299 PMCID: PMC11591414 DOI: 10.3390/ani14223246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Among eukaryotes, there are many examples of partial genome elimination during ontogenesis. A striking example of this phenomenon is the loss of entire avian chromosomes during meiosis, called a germline-restricted chromosome (GRC). The GRC is absent in somatic tissues but present in germ cells. It has been established that a prophase I male GRC is usually represented by a univalent surrounded by heterochromatin. In the present study, an immunocytochemical analysis of zebra finch spermatocytes was performed to focus on some details of this chromosome's organization. For the first time, it was shown that a prophase I GRC contains the HORMAD1 protein, which participates in the formation of a full axial element. This GRC axial element has signs of a delay of core protein loading, probably owing to peculiarities of meiotic silencing of chromatin. The presence of repressive marks (H3K9me3 and H3K27me3) and the lack of RNA polymerase II, typically associated with active transcription, indicate transcriptional inactivation in the GRC body, despite the known activity of some genes of the GRC. Nevertheless, RPA and RAD51 proteins were found at some GRC sites, indicating the formation and repair of double-strand breaks on this chromosome. Our results provide new insights into the meiotic behavior and structure of a GRC.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
4
|
Dedukh D, Majtánová Z, Ráb P, Ezaz T, Unmack PJ. Gradual chromosomal lagging drive programmed genome elimination in hemiclonal fishes from the genus Hypseleotris. Sci Rep 2024; 14:26866. [PMID: 39501046 PMCID: PMC11538498 DOI: 10.1038/s41598-024-78278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Most eukaryotes maintain the stability of their cellular genome sizes to ensure genome transmission to offspring through sexual reproduction. However, some alter their genome size by selectively eliminating parts or increasing ploidy at specific developmental stages. This phenomenon of genome elimination or whole genome duplication occurs in animal hybrids reproducing asexually. Such genome alterations occur during gonocyte development ensuring successful reproduction of these hybrids. Although multiple examples of genome alterations are known, the underlying molecular and cellular processes involved in selective genome elimination and duplication remain largely unknown. Here, we uncovered the process of selective genome elimination and genome endoreplication in hemiclonal fish hybrids from the genus Hypseleotris. Specifically, we examined parental sexual species H. bucephala and hybrid H. bucephala × H. gymnocephala (HB × HX). We observed micronuclei in the cytoplasm of gonial cells in the gonads of hybrids, but not in the parental sexual species. We also observed misaligned chromosomes during mitosis which were unable to attach to the spindle. Moreover, we found that misaligned chromosomes lag during anaphase and subsequently enclose in the micronuclei. Using whole mount immunofluorescent staining, we showed that chromatid segregation has failed in lagging chromosomes. We also performed three-dimensional comparative genomic hybridization (3D-CGH) using species-specific probes to determine the role of micronuclei in selective genome elimination. We repeatedly observed that misaligned chromosomes of the H. bucephala genome were preferentially enclosed in micronuclei of hybrids. In addition, we detected mitotic cells without a mitotic spindle as a potential cause of genome duplication. We conclude that selective genome elimination in the gonads of hybrids occurs through gradual elimination of individual chromosomes of one parental genome. Such chromosomes, unable to attach to the spindle, lag and become enclosed in micronuclei.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
| | - Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Tariq Ezaz
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
5
|
Mochizuki K. Programmed DNA elimination. Curr Biol 2024; 34:R843-R847. [PMID: 39317150 DOI: 10.1016/j.cub.2024.07.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
In most multicellular organisms, cells within an individual have essentially identical genomes. This principle underlies the ability to reprogram fibroblasts into induced pluripotent stem cells using defined transcription factors, clone a frog by transferring a nucleus from a tadpole somatic cell into an enucleated egg, and form totipotent callus cells by wounding plants. However, an exception to this one-body-one-genome principle exists in our blood cells. In developing lymphocytes in vertebrates, a process termed V(D)J recombination shuffles the antigen-binding regions of immunoglobulins and T-cell receptors.
Collapse
Affiliation(s)
- Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS and University of Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Estrem B, Davis R, Wang J. End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination. Nucleic Acids Res 2024; 52:8913-8929. [PMID: 38953168 PMCID: PMC11347171 DOI: 10.1093/nar/gkae579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the human and pig parasitic nematode Ascaris to characterize the DSBs. Using END-seq, we demonstrate that DSBs are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3'-overhangs before the addition of neotelomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends may be due to the sequestration of the eliminated DNA into micronuclei, preventing neotelomere formation at their ends. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for PDE. Overall, our data indicate that telomere healing of DSBs is specific to the break sites responsible for nematode PDE.
Collapse
Affiliation(s)
- Brandon Estrem
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
7
|
Caporale LH. Evolutionary feedback from the environment shapes mechanisms that generate genome variation. J Physiol 2024; 602:2601-2614. [PMID: 38194279 DOI: 10.1113/jp284411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Darwin recognized that 'a grand and almost untrodden field of inquiry will be opened, on the causes and laws of variation.' However, because the Modern Synthesis assumes that the intrinsic probability of any individual mutation is unrelated to that mutation's potential adaptive value, attention has been focused on selection rather than on the intrinsic generation of variation. Yet many examples illustrate that the term 'random' mutation, as widely understood, is inaccurate. The probabilities of distinct classes of variation are neither evenly distributed across a genome nor invariant over time, nor unrelated to their potential adaptive value. Because selection acts upon variation, multiple biochemical mechanisms can and have evolved that increase the relative probability of adaptive mutations. In effect, the generation of heritable variation is in a feedback loop with selection, such that those mechanisms that tend to generate variants that survive recurring challenges in the environment would be captured by this survival and thus inherited and accumulated within lineages of genomes. Moreover, because genome variation is affected by a wide range of biochemical processes, genome variation can be regulated. Biochemical mechanisms that sense stress, from lack of nutrients to DNA damage, can increase the probability of specific classes of variation. A deeper understanding of evolution involves attention to the evolution of, and environmental influences upon, the intrinsic variation generated in gametes, in other words upon the biochemical mechanisms that generate variation across generations. These concepts have profound implications for the types of questions that can and should be asked, as omics databases become more comprehensive, detection methods more sensitive, and computation and experimental analyses even more high throughput and thus capable of revealing the intrinsic generation of variation in individual gametes. These concepts also have profound implications for evolutionary theory, which, upon reflection it will be argued, predicts that selection would increase the probability of generating adaptive mutations, in other words, predicts that the ability to evolve itself evolves.
Collapse
|
8
|
Simmons JR, Estrem B, Zagoskin MV, Oldridge R, Zadegan SB, Wang J. Chromosome fusion and programmed DNA elimination shape karyotypes of nematodes. Curr Biol 2024; 34:2147-2161.e5. [PMID: 38688284 PMCID: PMC11111355 DOI: 10.1016/j.cub.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
An increasing number of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and increased numbers of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the nematode Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among other nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these nematodes, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes. These karyotype changes may lead to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms are dynamic and may play a role during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.
Collapse
Affiliation(s)
- James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maxim V Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ryan Oldridge
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
9
|
Estrem B, Davis RE, Wang J. End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585292. [PMID: 38559121 PMCID: PMC10980081 DOI: 10.1101/2024.03.15.585292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well-characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the nematode Ascaris to study the timing of PDE breaks and examine the DSBs and their end processing. Using END-seq, we characterize the DSB ends and demonstrate that DNA breaks are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3' overhangs before the addition of telomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends in Ascaris may be due to the sequestration of the eliminated DNA into micronuclei, preventing their ends from telomere healing. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for nematode PDE.
Collapse
Affiliation(s)
- Brandon Estrem
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard E. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
10
|
Angeloni A, Fissette S, Kaya D, Hammond JM, Gamaarachchi H, Deveson IW, Klose RJ, Li W, Zhang X, Bogdanovic O. Extensive DNA methylome rearrangement during early lamprey embryogenesis. Nat Commun 2024; 15:1977. [PMID: 38438347 PMCID: PMC10912607 DOI: 10.1038/s41467-024-46085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
DNA methylation (5mC) is a repressive gene regulatory mark widespread in vertebrate genomes, yet the developmental dynamics in which 5mC patterns are established vary across species. While mammals undergo two rounds of global 5mC erasure, teleosts, for example, exhibit localized maternal-to-paternal 5mC remodeling. Here, we studied 5mC dynamics during the embryonic development of sea lamprey, a jawless vertebrate which occupies a critical phylogenetic position as the sister group of the jawed vertebrates. We employed 5mC quantification in lamprey embryos and tissues, and discovered large-scale maternal-to-paternal epigenome remodeling that affects ~30% of the embryonic genome and is predominantly associated with partially methylated domains. We further demonstrate that sequences eliminated during programmed genome rearrangement (PGR), are hypermethylated in sperm prior to the onset of PGR. Our study thus unveils important insights into the evolutionary origins of vertebrate 5mC reprogramming, and how this process might participate in diverse developmental strategies.
Collapse
Affiliation(s)
- Allegra Angeloni
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Skye Fissette
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Deniz Kaya
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jillian M Hammond
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
| | - Hasindu Gamaarachchi
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ira W Deveson
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Xiaotian Zhang
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, USA
- University of Texas Health Science Center, Houston, TX, USA
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
| |
Collapse
|
11
|
Marlétaz F, Timoshevskaya N, Timoshevskiy VA, Parey E, Simakov O, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith JJ, Rokhsar DS. The hagfish genome and the evolution of vertebrates. Nature 2024; 627:811-820. [PMID: 38262590 PMCID: PMC10972751 DOI: 10.1038/s41586-024-07070-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | | | | | - Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- UK Dementia Research Institute, University College London, London, UK
| | - Masakazu Suzuki
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kaoru Kubokawa
- Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Sydney Brenner
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA.
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
12
|
Policarpo M, Baldwin MW, Casane D, Salzburger W. Diversity and evolution of the vertebrate chemoreceptor gene repertoire. Nat Commun 2024; 15:1421. [PMID: 38360851 PMCID: PMC10869828 DOI: 10.1038/s41467-024-45500-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Chemoreception - the ability to smell and taste - is an essential sensory modality of most animals. The number and type of chemical stimuli that animals can perceive depends primarily on the diversity of chemoreceptors they possess and express. In vertebrates, six families of G protein-coupled receptors form the core of their chemosensory system, the olfactory/pheromone receptor gene families OR, TAAR, V1R and V2R, and the taste receptors T1R and T2R. Here, we study the vertebrate chemoreceptor gene repertoire and its evolutionary history. Through the examination of 1,527 vertebrate genomes, we uncover substantial differences in the number and composition of chemoreceptors across vertebrates. We show that the chemoreceptor gene families are co-evolving, highly dynamic, and characterized by lineage-specific expansions (for example, OR in tetrapods; TAAR, T1R in teleosts; V1R in mammals; V2R, T2R in amphibians) and losses. Overall, amphibians, followed by mammals, are the vertebrate clades with the largest chemoreceptor repertoires. While marine tetrapods feature a convergent reduction of chemoreceptor numbers, the number of OR genes correlates with habitat in mammals and birds and with migratory behavior in birds, and the taste receptor repertoire correlates with diet in mammals and with aquatic environment in fish.
Collapse
Affiliation(s)
- Maxime Policarpo
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
- Université Paris Cité, UFR Sciences du Vivant, Paris, France
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Simmons JR, Estrem B, Zagoskin MV, Oldridge R, Zadegan SB, Wang J. Chromosome fusion and programmed DNA elimination shape karyotypes of parasitic nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572835. [PMID: 38187595 PMCID: PMC10769430 DOI: 10.1101/2023.12.21.572835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A growing list of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and an increased number of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the horse parasite Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among ascarid nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these parasites, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes, leading to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms play a dynamic role in the Parascaris germline chromosome during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.
Collapse
Affiliation(s)
- James R. Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Maxim V. Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Ryan Oldridge
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Lead Contact
| |
Collapse
|
14
|
Vontzou N, Pei Y, Mueller JC, Reifová R, Ruiz-Ruano FJ, Schlebusch SA, Suh A. Songbird germline-restricted chromosome as a potential arena of genetic conflicts. Curr Opin Genet Dev 2023; 83:102113. [PMID: 37734346 DOI: 10.1016/j.gde.2023.102113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
Genetic conflicts can arise between components of the genome with different inheritance strategies. The germline-restricted chromosome (GRC) of songbirds shows unusual mitotic and meiotic transmission compared with the rest of the genome. It is excluded from somatic cells and maintained only in the germline. It is usually present in one copy in the male germline and eliminated during spermatogenesis, while in the female germline, it usually occurs in two copies and behaves as a regular chromosome. Here, we review what is known about the GRC's evolutionary history, genetic content, and expression and discuss how it may be involved in different types of genetic conflicts. Finally, we interrogate the potential role of the GRC in songbird germline development, highlighting several unsolved mysteries.
Collapse
Affiliation(s)
- Niki Vontzou
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany; School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Yifan Pei
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany; Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany; Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Jakob C Mueller
- Department of Ornithology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Francisco J Ruiz-Ruano
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany; Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany. https://twitter.com/@fjruizruano
| | - Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alexander Suh
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany; Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany; Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Borodin PM. Germline-restricted chromosomes of the songbirds. Vavilovskii Zhurnal Genet Selektsii 2023; 27:641-650. [PMID: 38023808 PMCID: PMC10643108 DOI: 10.18699/vjgb-23-75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 12/01/2023] Open
Abstract
Germline-restricted chromosomes (GRCs) are present in the genomes of germline cells and absent from somatic cells. A GRC is found in all species of the songbirds (Passeri) and in none of the other bird orders studied to date. This indicates that GRC originated in the common ancestor of the songbirds. The germline-restricted chromosome is permanently absent from somatic cells of the songbird, while female germline cells usually contain two copies of GRC and male ones have one copy. In females, GRCs undergo synapsis and restricted recombination in their terminal regions during meiotic prophase. In males, it is almost always eliminated from spermatocytes. Thus, GRC is inherited almost exclusively through the maternal lineage. The germline-restricted chromosome is a necessary genomic element in the germline cells of songbirds. To date, the GRC genetic composition has been studied in four species only. Some GRC genes are actively expressed in female and male gonads, controlling the development of germline cells and synthesis of the proteins involved in the organization of meiotic chromosomes. Songbird species vary in GRC size and genetic composition. The GRC of each bird species consists of amplified and modified copies of genes from the basic genome of that species. The level of homology between GRCs of different species is relatively low, indicating a high rate of genetic evolution of this chromosome. Transmission through the maternal lineage and suppression of the recombination contribute significantly to the accelerated evolution of GRCs. One may suggest that the rapid coordinated evolution between the GRC genes and the genes of the basic genome in the songbirds might be responsible for the explosive speciation and adaptive radiation of this most species-rich and diverse infraorder of birds.
Collapse
Affiliation(s)
- P M Borodin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
16
|
Schlebusch SA, Rídl J, Poignet M, Ruiz-Ruano FJ, Reif J, Pajer P, Pačes J, Albrecht T, Suh A, Reifová R. Rapid gene content turnover on the germline-restricted chromosome in songbirds. Nat Commun 2023; 14:4579. [PMID: 37516764 PMCID: PMC10387091 DOI: 10.1038/s41467-023-40308-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
The germline-restricted chromosome (GRC) of songbirds represents a taxonomically widespread example of programmed DNA elimination. Despite its apparent indispensability, we still know very little about the GRC's genetic composition, function, and evolutionary significance. Here we assemble the GRC in two closely related species, the common and thrush nightingale. In total we identify 192 genes across the two GRCs, with many of them present in multiple copies. Interestingly, the GRC appears to be under little selective pressure, with the genetic content differing dramatically between the two species and many GRC genes appearing to be pseudogenized fragments. Only one gene, cpeb1, has a complete coding region in all examined individuals of the two species and shows no copy number variation. The acquisition of this gene by the GRC corresponds with the earliest estimates of the GRC origin, making it a good candidate for the functional indispensability of the GRC in songbirds.
Collapse
Affiliation(s)
- Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Jakub Rídl
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Manon Poignet
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Francisco J Ruiz-Ruano
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Zoology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01, Prague 6, San Antonio, Czech Republic
| | - Jan Pačes
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
17
|
Papathanasiou S, Mynhier NA, Liu S, Brunette G, Stokasimov E, Jacob E, Li L, Comenho C, van Steensel B, Buenrostro JD, Zhang CZ, Pellman D. Heritable transcriptional defects from aberrations of nuclear architecture. Nature 2023; 619:184-192. [PMID: 37286600 PMCID: PMC10322708 DOI: 10.1038/s41586-023-06157-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Transcriptional heterogeneity due to plasticity of the epigenetic state of chromatin contributes to tumour evolution, metastasis and drug resistance1-3. However, the mechanisms that cause this epigenetic variation are incompletely understood. Here we identify micronuclei and chromosome bridges, aberrations in the nucleus common in cancer4,5, as sources of heritable transcriptional suppression. Using a combination of approaches, including long-term live-cell imaging and same-cell single-cell RNA sequencing (Look-Seq2), we identified reductions in gene expression in chromosomes from micronuclei. With heterogeneous penetrance, these changes in gene expression can be heritable even after the chromosome from the micronucleus has been re-incorporated into a normal daughter cell nucleus. Concomitantly, micronuclear chromosomes acquire aberrant epigenetic chromatin marks. These defects may persist as variably reduced chromatin accessibility and reduced gene expression after clonal expansion from single cells. Persistent transcriptional repression is strongly associated with, and may be explained by, markedly long-lived DNA damage. Epigenetic alterations in transcription may therefore be inherently coupled to chromosomal instability and aberrations in nuclear architecture.
Collapse
Affiliation(s)
- Stamatis Papathanasiou
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Institute of Molecular Biology, Mainz, Germany.
| | - Nikos A Mynhier
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shiwei Liu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Gregory Brunette
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ema Stokasimov
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Etai Jacob
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- AstraZeneca, Waltham, MA, USA
| | - Lanting Li
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Caroline Comenho
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cheng-Zhong Zhang
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - David Pellman
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
18
|
Alibardi L. Regeneration or Scarring Derive from Specific Evolutionary Environmental Adaptations of the Life Cycles in Different Animals. BIOLOGY 2023; 12:biology12050733. [PMID: 37237545 DOI: 10.3390/biology12050733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The ability to heal or even regenerate large injuries in different animals derives from the evolution of their specific life cycles during geological times. The present, new hypothesis tries to explain the distribution of organ regeneration among animals. Only invertebrates and vertebrates that include larval and intense metamorphic transformations can broadly regenerate as adults. Basically, regeneration competent animals are aquatic while terrestrial species have largely or completely lost most of the regeneration ability. Although genomes of terrestrial species still contain numerous genes that in aquatic species allow a broad regeneration ("regenerative genes"), the evolution of terrestrial species has variably modified the genetic networks linking these genes to the others that evolved during land adaptation, resulting in the inhibition of regeneration. Loss of regeneration took place by the elimination of intermediate larval phases and metamorphic transformations in the life cycles of land invertebrates and vertebrates. Once the evolution along a specific lineage generated species that could no longer regenerate, this outcome could not change anymore. It is therefore likely that what we learn from regenerative species will explain their mechanisms of regeneration but cannot or only partly be applied to non-regenerative species. Attempts to introduce "regenerative genes" in non-regenerative species most likely would disorder the entire genetic networks of the latter, determining death, teratomas and cancer. This awareness indicates the difficulty to introduce regenerative genes and their activation pathways in species that evolved genetic networks suppressing organ regeneration. Organ regeneration in non-regenerating animals such as humans should move to bio-engineering interventions in addition to "localized regenerative gene therapies" in order to replace lost tissues or organs.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
19
|
Mueller JC, Schlebusch SA, Pei Y, Poignet M, Vontzou N, Ruiz-Ruano FJ, Albrecht T, Reifová R, Forstmeier W, Suh A, Kempenaers B. Micro Germline-Restricted Chromosome in Blue Tits: Evidence for Meiotic Functions. Mol Biol Evol 2023; 40:msad096. [PMID: 37116210 PMCID: PMC10172847 DOI: 10.1093/molbev/msad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
The germline-restricted chromosome (GRC) is likely present in all songbird species but differs widely in size and gene content. This extra chromosome has been described as either a microchromosome with only limited basic gene content or a macrochromosome with enriched gene functions related to female gonad and embryo development. Here, we assembled, annotated, and characterized the first micro-GRC in the blue tit (Cyanistes caeruleus) using high-fidelity long-read sequencing data. Although some genes on the blue tit GRC show signals of pseudogenization, others potentially have important functions, either currently or in the past. We highlight the GRC gene paralog BMP15, which is among the highest expressed GRC genes both in blue tits and in zebra finches (Taeniopygia guttata) and is known to play a role in oocyte and follicular maturation in other vertebrates. The GRC genes of the blue tit are further enriched for functions related to the synaptonemal complex. We found a similar functional enrichment when analyzing published data on GRC genes from two nightingale species (Luscinia spp.). We hypothesize that these genes play a role in maintaining standard maternal inheritance or in recombining maternal and paternal GRCs during potential episodes of biparental inheritance.
Collapse
Affiliation(s)
- Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | | | - Yifan Pei
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Manon Poignet
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Niki Vontzou
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Francisco J Ruiz-Ruano
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Organismal Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tomáš Albrecht
- Department of Zoology, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences, Brno, Czech Republic
| | - Radka Reifová
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Organismal Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
20
|
Marlétaz F, Timoshevskaya N, Timoshevskiy V, Simakov O, Parey E, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith J, Rokhsar DS. The hagfish genome and the evolution of vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537254. [PMID: 37131617 PMCID: PMC10153176 DOI: 10.1101/2023.04.17.537254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a critical window into early vertebrate evolution. Here, we investigate the complex history, timing, and functional role of genome-wide duplications in vertebrates in the light of a chromosome-scale genome of the brown hagfish Eptatretus atami. Using robust chromosome-scale (paralogon-based) phylogenetic methods, we confirm the monophyly of cyclostomes, document an auto-tetraploidization (1RV) that predated the origin of crown group vertebrates ~517 Mya, and establish the timing of subsequent independent duplications in the gnathostome and cyclostome lineages. Some 1RV gene duplications can be linked to key vertebrate innovations, suggesting that this early genomewide event contributed to the emergence of pan-vertebrate features such as neural crest. The hagfish karyotype is derived by numerous fusions relative to the ancestral cyclostome arrangement preserved by lampreys. These genomic changes were accompanied by the loss of genes essential for organ systems (eyes, osteoclast) that are absent in hagfish, accounting in part for the simplification of the hagfish body plan; other gene family expansions account for hagfishes' capacity to produce slime. Finally, we characterise programmed DNA elimination in somatic cells of hagfish, identifying protein-coding and repetitive elements that are deleted during development. As in lampreys, the elimination of these genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline/pluripotency functions. Reconstruction of the early genomic history of vertebrates provides a framework for further exploration of vertebrate novelties.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Present address: UK Dementia Research Institute, University College London, London, UK
| | - Masakazu Suzuki
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kaoru Kubokawa
- Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Sydney Brenner
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
- Deceased
| | - Jeramiah Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
21
|
Timoshevskaya N, Eşkut KI, Timoshevskiy VA, Robb SMC, Holt C, Hess JE, Parker HJ, Baker CF, Miller AK, Saraceno C, Yandell M, Krumlauf R, Narum SR, Lampman RT, Gemmell NJ, Mountcastle J, Haase B, Balacco JR, Formenti G, Pelan S, Sims Y, Howe K, Fedrigo O, Jarvis ED, Smith JJ. An improved germline genome assembly for the sea lamprey Petromyzon marinus illuminates the evolution of germline-specific chromosomes. Cell Rep 2023; 42:112263. [PMID: 36930644 PMCID: PMC10166183 DOI: 10.1016/j.celrep.2023.112263] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Programmed DNA loss is a gene silencing mechanism that is employed by several vertebrate and nonvertebrate lineages, including all living jawless vertebrates and songbirds. Reconstructing the evolution of somatically eliminated (germline-specific) sequences in these species has proven challenging due to a high content of repeats and gene duplications in eliminated sequences and a corresponding lack of highly accurate and contiguous assemblies for these regions. Here, we present an improved assembly of the sea lamprey (Petromyzon marinus) genome that was generated using recently standardized methods that increase the contiguity and accuracy of vertebrate genome assemblies. This assembly resolves highly contiguous, somatically retained chromosomes and at least one germline-specific chromosome, permitting new analyses that reconstruct the timing, mode, and repercussions of recruitment of genes to the germline-specific fraction. These analyses reveal major roles of interchromosomal segmental duplication, intrachromosomal duplication, and positive selection for germline functions in the long-term evolution of germline-specific chromosomes.
Collapse
Affiliation(s)
| | - Kaan I Eşkut
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Sofia M C Robb
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Carson Holt
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jon E Hess
- Columbia River Inter-Tribal Fish Commission, Portland, OR 97232, USA
| | - Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Cindy F Baker
- National Institute of Water and Atmospheric Research Limited (NIWA), Hamilton, Waikato 3261, New Zealand
| | - Allison K Miller
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Cody Saraceno
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy & Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID 83332, USA
| | - Ralph T Lampman
- Yakama Nation Fisheries Resource Management Program, Pacific Lamprey Project, Toppenish, WA 98948, USA
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago 9054, New Zealand
| | | | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer R Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Giulio Formenti
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA; Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065, USA
| | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA; Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
22
|
Colizzi ES, Hogeweg P, Vroomans RMA. Modelling the evolution of novelty: a review. Essays Biochem 2022; 66:727-735. [PMID: 36468669 PMCID: PMC9750852 DOI: 10.1042/ebc20220069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Evolution has been an inventive process since its inception, about 4 billion years ago. It has generated an astounding diversity of novel mechanisms and structures for adaptation to the environment, for competition and cooperation, and for organisation of the internal and external dynamics of the organism. How does this novelty come about? Evolution builds with the tools available, and on top of what it has already built - therefore, much novelty consists in repurposing old functions in a different context. In the process, the tools themselves evolve, allowing yet more novelty to arise. Despite evolutionary novelty being the most striking observable of evolution, it is not accounted for in classical evolutionary theory. Nevertheless, mathematical and computational models that illustrate mechanisms of evolutionary innovation have been developed. In the present review, we present and compare several examples of computational evo-devo models that capture two aspects of novelty: 'between-level novelty' and 'constructive novelty.' Novelty can evolve between predefined levels of organisation to dynamically transcode biological information across these levels - as occurs during development. Constructive novelty instead generates a level of biological organisation by exploiting the lower level as an informational scaffold to open a new space of possibilities - an example being the evolution of multicellularity. We propose that the field of computational evo-devo is well-poised to reveal many more exciting mechanisms for the evolution of novelty. A broader theory of evolutionary novelty may well be attainable in the near future.
Collapse
Affiliation(s)
- Enrico Sandro Colizzi
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, CB2 1LR, Cambridge, U.K
| | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics, Universiteit Utrecht, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Renske M A Vroomans
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, CB2 1LR, Cambridge, U.K
| |
Collapse
|
23
|
Dockendorff TC, Estrem B, Reed J, Simmons JR, Zadegan SB, Zagoskin MV, Terta V, Villalobos E, Seaberry EM, Wang J. The nematode Oscheius tipulae as a genetic model for programmed DNA elimination. Curr Biol 2022; 32:5083-5098.e6. [PMID: 36379215 PMCID: PMC9729473 DOI: 10.1016/j.cub.2022.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Programmed DNA elimination (PDE) is a notable exception to the paradigm of genome integrity. In metazoa, PDE often occurs coincident with germline to somatic cell differentiation. During PDE, portions of genomic DNA are lost, resulting in reduced somatic genomes. Prior studies have described the sequences lost, as well as chromosome behavior, during metazoan PDE. However, a system for studying the mechanisms and consequences of PDE in metazoa is lacking. Here, we present a functional and genetic model for PDE in the free-living Rhabditidae nematode Oscheius tipulae, a family that also includes Caenorhabditis elegans. O. tipulae was recently suggested to eliminate DNA. Using staged embryos and DNA FISH, we showed that O. tipulae PDE occurs during embryogenesis at the 8-16 cell stages. We identified a conserved motif, named Sequence For Elimination (SFE), for all 12 break sites on the six chromosomes at the junctions of retained and eliminated DNA. SFE mutants exhibited a "fail-to-eliminate" phenotype only at the modified sites. END-seq revealed that breaks can occur at multiple positions within the SFE, with extensive end resection followed by telomere addition to both retained and eliminated ends. We identified many functional SFEs at the chromosome ends through END-seq in the wild-type embryos, genome sequencing of SFE mutants, and comparative genomics of 23 wild isolates. We suggest that these alternative SFEs provide flexibility in the sequences eliminated and a fail-safe mechanism for PDE. These studies establish O. tipulae as a new, attractive model for studying the mechanisms and consequences of PDE in a metazoan.
Collapse
Affiliation(s)
- Thomas C Dockendorff
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jordan Reed
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maxim V Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Vincent Terta
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eduardo Villalobos
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Erin M Seaberry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
24
|
Bernardini A, Gallo A, Gnesutta N, Dolfini D, Mantovani R. Phylogeny of NF-YA trans-activation splicing isoforms in vertebrate evolution. Genomics 2022; 114:110390. [PMID: 35589059 DOI: 10.1016/j.ygeno.2022.110390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/04/2022]
Abstract
NF-Y is a trimeric pioneer Transcription Factor (TF) whose target sequence -the CCAAT box- is present in ~25% of mammalian promoters. We reconstruct the phylogenetic history of the regulatory NF-YA subunit in vertebrates. We find that in addition to the remarkable conservation of the subunits-interaction and DNA-binding parts, the Transcriptional Activation Domain (TAD) is also conserved (>90% identity among bony vertebrates). We infer the phylogeny of the alternatively spliced exon-3 and partial splicing events of exon-7 -7N and 7C- revealing independent clade-specific losses of these regions. These isoforms shape the TAD. Absence of exon-3 in basal deuterostomes, cartilaginous fishes and hagfish, but not in lampreys, suggests that the "short" isoform is primordial, with emergence of exon-3 in chordates. Exon 7N was present in the vertebrate common ancestor, while 7C is a molecular innovation of teleost fishes. RNA-seq analysis in several species confirms expression of all these isoforms. We identify 3 blocks of amino acids in the TAD shared across deuterostomes, yet structural predictions and sequence analyses suggest an evolutionary drive for maintenance of an Intrinsically Disordered Region -IDR- within the TAD. Overall, these data help reconstruct the logic for alternative splicing of this essential eukaryotic TF.
Collapse
Affiliation(s)
- Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
25
|
Pervasive male-biased expression throughout the germline-specific regions of the sea lamprey genome supports key roles in sex differentiation and spermatogenesis. Commun Biol 2022; 5:434. [PMID: 35538209 PMCID: PMC9090840 DOI: 10.1038/s42003-022-03375-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Sea lamprey undergo programmed genome rearrangement (PGR) in which ∼20% of the genome is jettisoned from somatic cells during embryogenesis. Although the role of PGR in embryonic development has been studied, the role of the germline-specific region (GSR) in gonad development is unknown. We analysed RNA-sequence data from 28 sea lamprey gonads sampled across life-history stages, generated a genome-guided de novo superTranscriptome with annotations, and identified germline-specific genes (GSGs). Overall, we identified 638 GSGs that are enriched for reproductive processes and exhibit 36x greater odds of being expressed in testes than ovaries. Next, while 55% of the GSGs have putative somatic paralogs, the somatic paralogs are not differentially expressed between sexes. Further, putative orthologs of some the male-biased GSGs have known functions in sex determination or differentiation in other vertebrates. We conclude that the GSR of sea lamprey plays an important role in testicular differentiation and potentially sex determination. RNA-sequencing of sea lamprey gonads at different life-history stage identifies germline-specific genes which are highly expressed in males during spermatogenesis. This suggests a link between male-biased germline expression and sex differentiation in the sea lamprey.
Collapse
|
26
|
Miller AK, Timoshevskaya N, Smith JJ, Gillum J, Sharif S, Clarke S, Baker C, Kitson J, Gemmell NJ, Alexander A. Population genomics of New Zealand pouched lamprey (kanakana; piharau; Geotria australis). J Hered 2022; 113:380-397. [PMID: 35439308 PMCID: PMC9308044 DOI: 10.1093/jhered/esac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/23/2022] [Indexed: 11/12/2022] Open
Abstract
Pouched lamprey (Geotria australis) or kanakana/piharau is a culturally and ecologically significant jawless fish that is distributed throughout Aotearoa New Zealand. Despite its importance, much remains unknown about historical relationships and gene flow between populations of this enigmatic species within New Zealand. To help inform management, we assembled a draft G. australis genome and completed the first comprehensive population genomics analysis of pouched lamprey within New Zealand using targeted gene sequencing (Cyt-b and COI) and restriction site-associated DNA sequencing (RADSeq) methods. Employing 16 000 genome-wide single nucleotide polymorphisms (SNPs) derived from RADSeq (n = 186) and sequence data from Cyt-b (766 bp, n = 94) and COI (589 bp, n = 20), we reveal low levels of structure across 10 sampling locations spanning the species range within New Zealand. F-statistics, outlier analyses, and STRUCTURE suggest a single panmictic population, and Mantel and EEMS tests reveal no significant isolation by distance. This implies either ongoing gene flow among populations or recent shared ancestry among New Zealand pouched lamprey. We can now use the information gained from these genetic tools to assist managers with monitoring effective population size, managing potential diseases, and conservation measures such as artificial propagation programs. We further demonstrate the general utility of these genetic tools for acquiring information about elusive species.
Collapse
Affiliation(s)
- Allison K Miller
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Nataliya Timoshevskaya
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, Kentucky, 40506-0225 USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, Kentucky, 40506-0225 USA
| | - Joanne Gillum
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Saeed Sharif
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Shannon Clarke
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Cindy Baker
- National Institute of Water and Atmospheric Research Limited, PO Box 11 115, Hamilton 3251 New Zealand
| | - Jane Kitson
- Ngāi Tahu, Kitson Consulting Ltd, Invercargill/Waihopai, 9879, New Zealand
| | - Neil J Gemmell
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Alana Alexander
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| |
Collapse
|
27
|
Borodin P, Chen A, Forstmeier W, Fouché S, Malinovskaya L, Pei Y, Reifová R, Ruiz-Ruano FJ, Schlebusch SA, Sotelo-Muñoz M, Torgasheva A, Vontzou N, Suh A. Mendelian nightmares: the germline-restricted chromosome of songbirds. Chromosome Res 2022; 30:255-272. [PMID: 35416568 PMCID: PMC9508068 DOI: 10.1007/s10577-022-09688-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 11/03/2022]
Abstract
Germline-restricted chromosomes (GRCs) are accessory chromosomes that occur only in germ cells. They are eliminated from somatic cells through programmed DNA elimination during embryo development. GRCs have been observed in several unrelated animal taxa and show peculiar modes of non-Mendelian inheritance and within-individual elimination. Recent cytogenetic and phylogenomic evidence suggests that a GRC is present across the species-rich songbirds, but absent in non-passerine birds, implying that over half of all 10,500 bird species have extensive germline/soma genome differences. Here, we review recent insights gained from genomic, transcriptomic, and cytogenetic approaches with regard to the genetic content, phylogenetic distribution, and inheritance of the songbird GRC. While many questions remain unsolved in terms of GRC inheritance, elimination, and function, we discuss plausible scenarios and future directions for understanding this widespread form of programmed DNA elimination.
Collapse
Affiliation(s)
- Pavel Borodin
- Siberian Department, Russian Academy of Sciences, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva 10, 630090, Novosibirsk, Russia
| | - Augustin Chen
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319, Seewiesen, Germany.
| | - Simone Fouché
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Lyubov Malinovskaya
- Siberian Department, Russian Academy of Sciences, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva 10, 630090, Novosibirsk, Russia
| | - Yifan Pei
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319, Seewiesen, Germany
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| | - Francisco J Ruiz-Ruano
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Manuelita Sotelo-Muñoz
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Anna Torgasheva
- Siberian Department, Russian Academy of Sciences, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva 10, 630090, Novosibirsk, Russia.
| | - Niki Vontzou
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden. .,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| |
Collapse
|
28
|
Chen J, Birchler JA, Houben A. The non-Mendelian behavior of plant B chromosomes. Chromosome Res 2022; 30:229-239. [PMID: 35412169 PMCID: PMC9508019 DOI: 10.1007/s10577-022-09687-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
B chromosomes, also known as supernumerary chromosomes, are dispensable elements in the genome of many plants, animals, and fungi. Many B chromosomes have evolved one or more drive mechanisms to transmit themselves at a higher frequency than predicted by Mendelian genetics, and these mechanisms counteract the tendency of non-essential genetic elements to be lost over time. The frequency of Bs in a population results from a balance between their effect on host fitness and their transmission rate. Here, we will summarize the findings of the drive process of plant B chromosomes, focusing on maize and rye.
Collapse
Affiliation(s)
- Jianyong Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
| |
Collapse
|
29
|
Sotelo-Muñoz M, Poignet M, Albrecht T, Kauzál O, Dedukh D, Schlebusch SA, Janko K, Reifová R. Germline-restricted chromosome shows remarkable variation in size among closely related passerine species. Chromosoma 2022; 131:77-86. [PMID: 35389062 DOI: 10.1007/s00412-022-00771-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
Passerine birds have a supernumerary chromosome in their germ cells called the germline-restricted chromosome (GRC). The GRC was first discovered more than two decades ago in zebra finch but recent studies have suggested that it is likely present in all passerines, the most species rich avian order, encompassing more than half of all modern bird species. Despite its wide taxonomic distribution, studies on this chromosome are still scarce and limited to a few species. Here, we cytogenetically analyzed the GRC in five closely related estrildid finch species of the genus Lonchura. We show that the GRC varies enormously in size, ranging from a tiny micro-chromosome to one of the largest macro-chromosomes in the cell, not only among recently diverged species but also within species and sometimes even between germ cells of a single individual. In Lonchura atricapilla, we also observed variation in GRC copy number among male germ cells of a single individual. Finally, our analysis of hybrids between two Lonchura species with noticeably different GRC size directly supported maternal inheritance of the GRC. Our results reveal the extraordinarily dynamic nature of the GRC, which might be caused by frequent gains and losses of sequences on this chromosome leading to substantial differences in genetic composition of the GRC between and even within species. Such differences might theoretically contribute to reproductive isolation between species and thus accelerate the speciation rate of passerine birds compared to other bird lineages.
Collapse
Affiliation(s)
- Manuelita Sotelo-Muñoz
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.
| | - Manon Poignet
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365, Brno, Czech Republic
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365, Brno, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| | - Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.
| |
Collapse
|
30
|
Kloc M, Kubiak JZ, Ghobrial RM. Natural genetic engineering: A programmed chromosome/DNA elimination. Dev Biol 2022; 486:15-25. [DOI: 10.1016/j.ydbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
|
31
|
Drotos KH, Zagoskin MV, Kess T, Gregory TR, Wyngaard GA. Throwing away DNA: programmed downsizing in somatic nuclei. Trends Genet 2022; 38:483-500. [DOI: 10.1016/j.tig.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
|
32
|
Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:195-216. [PMID: 34542224 PMCID: PMC9292451 DOI: 10.1111/brv.12796] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids. During programmed DNA elimination, individual chromosomal fragments, whole chromosomes, and even entire parental genomes can be selectively removed. Programmed DNA elimination occurs independently in different organisms, ranging from ciliate protozoa to mammals. Depending on the sequences destined for exclusion, programmed DNA elimination may serve as a radical mechanism of dosage compensation and inactivation of unnecessary or dangerous genetic entities. In hybrids, genome elimination results from competition between parental genomes. Despite the different consequences of DNA elimination, all genetic material destined for elimination must be first recognised, epigenetically marked, separated, and then removed and degraded.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| | - Alla Krasikova
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| |
Collapse
|
33
|
Pei Y, Forstmeier W, Ruiz-Ruano FJ, Mueller JC, Cabrero J, Camacho JPM, Alché JD, Franke A, Hoeppner M, Börno S, Gessara I, Hertel M, Teltscher K, Knief U, Suh A, Kempenaers B. Occasional paternal inheritance of the germline-restricted chromosome in songbirds. Proc Natl Acad Sci U S A 2022; 119:e2103960119. [PMID: 35058355 PMCID: PMC8794876 DOI: 10.1073/pnas.2103960119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022] Open
Abstract
Songbirds have one special accessory chromosome, the so-called germline-restricted chromosome (GRC), which is only present in germline cells and absent from all somatic tissues. Earlier work on the zebra finch (Taeniopygia guttata castanotis) showed that the GRC is inherited only through the female line-like the mitochondria-and is eliminated from the sperm during spermatogenesis. Here, we show that the GRC has the potential to be paternally inherited. Confocal microscopy using GRC-specific fluorescent in situ hybridization probes indicated that a considerable fraction of sperm heads (1 to 19%) in zebra finch ejaculates still contained the GRC. In line with these cytogenetic data, sequencing of ejaculates revealed that individual males from two families differed strongly and consistently in the number of GRCs in their ejaculates. Examining a captive-bred male hybrid of the two zebra finch subspecies (T. g. guttata and T. g. castanotis) revealed that the mitochondria originated from a castanotis mother, whereas the GRC came from a guttata father. Moreover, analyzing GRC haplotypes across nine castanotis matrilines, estimated to have diverged for up to 250,000 y, showed surprisingly little variability among GRCs. This suggests that a single GRC haplotype has spread relatively recently across all examined matrilines. A few diagnostic GRC mutations that arose since this inferred spreading suggest that the GRC has continued to jump across matriline boundaries. Our findings raise the possibility that certain GRC haplotypes could selfishly spread through the population via occasional paternal transmission, thereby outcompeting other GRC haplotypes that were limited to strict maternal inheritance, even if this was partly detrimental to organismal fitness.
Collapse
Affiliation(s)
- Yifan Pei
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology 82319 Seewiesen, Germany;
| | - Wolfgang Forstmeier
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology 82319 Seewiesen, Germany;
| | - Francisco J Ruiz-Ruano
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, United Kingdom;
- Department of Organismal Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University SE-752 36 Uppsala, Sweden
| | - Jakob C Mueller
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology 82319 Seewiesen, Germany
| | - Josefa Cabrero
- Department of Genetics, University of Granada E-18071 Granada, Spain
| | | | - Juan D Alché
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council E-18008 Granada, Spain
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel 24118 Kiel, Germany
| | - Marc Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel 24118 Kiel, Germany
| | - Stefan Börno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics 14195 Berlin, Germany
| | - Ivana Gessara
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology 82319 Seewiesen, Germany
| | - Moritz Hertel
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology 82319 Seewiesen, Germany
| | - Kim Teltscher
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology 82319 Seewiesen, Germany
| | - Ulrich Knief
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich D-82152 Planegg-Martinsried, Germany
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, United Kingdom;
- Department of Organismal Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University SE-752 36 Uppsala, Sweden
| | - Bart Kempenaers
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology 82319 Seewiesen, Germany
| |
Collapse
|
34
|
Programmed DNA elimination: silencing genes and repetitive sequences in somatic cells. Biochem Soc Trans 2021; 49:1891-1903. [PMID: 34665225 DOI: 10.1042/bst20190951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
In a multicellular organism, the genomes of all cells are in general the same. Programmed DNA elimination is a notable exception to this genome constancy rule. DNA elimination removes genes and repetitive elements in the germline genome to form a reduced somatic genome in various organisms. The process of DNA elimination within an organism is highly accurate and reproducible; it typically occurs during early embryogenesis, coincident with germline-soma differentiation. DNA elimination provides a mechanism to silence selected genes and repeats in somatic cells. Recent studies in nematodes suggest that DNA elimination removes all chromosome ends, resolves sex chromosome fusions, and may also promote the birth of novel genes. Programmed DNA elimination processes are diverse among species, suggesting DNA elimination likely has evolved multiple times in different taxa. The growing list of organisms that undergo DNA elimination indicates that DNA elimination may be more widespread than previously appreciated. These various organisms will serve as complementary and comparative models to study the function, mechanism, and evolution of programmed DNA elimination in metazoans.
Collapse
|
35
|
Abstract
Female meiotic drive is the phenomenon where a selfish genetic element alters chromosome segregation during female meiosis to segregate to the egg and transmit to the next generation more frequently than Mendelian expectation. While several examples of female meiotic drive have been known for many decades, a molecular understanding of the underlying mechanisms has been elusive. Recent advances in this area in several model species prompts a comparative re-examination of these drive systems. In this review, we compare female meiotic drive of several animal and plant species, highlighting pertinent similarities.
Collapse
Affiliation(s)
- Frances E. Clark
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Stöck M, Kratochvíl L, Kuhl H, Rovatsos M, Evans BJ, Suh A, Valenzuela N, Veyrunes F, Zhou Q, Gamble T, Capel B, Schartl M, Guiguen Y. A brief review of vertebrate sex evolution with a pledge for integrative research: towards ' sexomics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200426. [PMID: 34247497 PMCID: PMC8293304 DOI: 10.1098/rstb.2020.0426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
| | - Michail Rovatsos
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ben J. Evans
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université de Montpellier/IRD/EPHE), Montpellier, France
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Neuroscience and Developmental Biology, University of Vienna, A-1090 Vienna, Austria
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
37
|
Suh A, Dion-Côté AM. New Perspectives on the Evolution of Within-Individual Genome Variation and Germline/Soma Distinction. Genome Biol Evol 2021; 13:evab095. [PMID: 33963843 PMCID: PMC8245192 DOI: 10.1093/gbe/evab095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
Genomes can vary significantly even within the same individual. The underlying mechanisms are manifold, ranging from somatic mutation and recombination, development-associated ploidy changes and genetic bottlenecks, over to programmed DNA elimination during germline/soma differentiation. In this perspective piece, we briefly review recent developments in the study of within-individual genome variation in eukaryotes and prokaryotes. We highlight a Society for Molecular Biology and Evolution 2020 virtual symposium entitled "Within-individual genome variation and germline/soma distinction" and the present Special Section of the same name in Genome Biology and Evolution, together fostering cross-taxon synergies in the field to identify and tackle key open questions in the understanding of within-individual genome variation.
Collapse
Affiliation(s)
- Alexander Suh
- School of Biological Sciences—Organisms and the Environment, University of East Anglia, Norwich, United Kingdom
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Sweden
| | | |
Collapse
|