1
|
Li AN, Zhou ZL, Wang XL, Wen XM, Tu YL, Meng LH. Development and application of a sex-linked marker for Herpetospermum pedunculosum based on whole-genome resequencing. Genes Genet Syst 2025; 100:n/a. [PMID: 40010712 DOI: 10.1266/ggs.24-00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Sex-specific DNA markers are effective tools for sex identification and sex-controlled breeding of dioecious organisms. The seeds of the dioecious Herpetospermum pedunculosum are utilized in traditional Chinese medicine, and the development of sex-linked markers for seedlings is crucial for enhancing the number of female plants. In this study, we screened sex-specific markers based on whole-genome resequencing of 20 male and 24 female H. pedunculosum individuals, and validated a male-specific DNA fragment of 505 bp among 80 individuals from four populations using simple PCR. The findings provide a reliable male-specific marker for the sex identification of H. pedunculosum seedlings.
Collapse
Affiliation(s)
- An-Ning Li
- School of Life Sciences, Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University
- Yunnan Key Laboratory of Crop Wild Relatives Omics, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Zhi-Li Zhou
- Yunnan Key Laboratory of Crop Wild Relatives Omics, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Xi-Long Wang
- Department of Plant Resources, Institute of Plateau Biology of Xizang Autonomous Region
| | - Xue-Mei Wen
- Department of Plant Resources, Institute of Plateau Biology of Xizang Autonomous Region
| | - Yan-Li Tu
- Department of Plant Resources, Institute of Plateau Biology of Xizang Autonomous Region
| | - Li-Hua Meng
- School of Life Sciences, Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University
| |
Collapse
|
2
|
Hibbins MS, Rifkin JL, Choudhury BI, Voznesenska O, Sacchi B, Yuan M, Gong Y, Barrett SCH, Wright SI. Phylogenomics resolves key relationships in Rumex and uncovers a dynamic history of independently evolving sex chromosomes. Evol Lett 2025; 9:221-235. [PMID: 40191415 PMCID: PMC11968192 DOI: 10.1093/evlett/qrae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/13/2024] [Accepted: 10/22/2024] [Indexed: 04/09/2025] Open
Abstract
Sex chromosomes have evolved independently many times across eukaryotes. Despite a considerable body of literature on sex chromosome evolution, the causes and consequences of variation in their formation, degeneration, and turnover remain poorly understood. Chromosomal rearrangements are thought to play an important role in these processes by promoting or extending the suppression of recombination on sex chromosomes. Sex chromosome variation may also contribute to barriers to gene flow, limiting introgression among species. Comparative approaches in groups with sexual system variation can be valuable for understanding these questions. Rumex is a diverse genus of flowering plants harboring significant sexual system and karyotypic variation, including hermaphroditic and dioecious clades with XY (and XYY) sex chromosomes. Previous disagreement in the phylogenetic relationships among key species has rendered the history of sex chromosome evolution uncertain. Resolving this history is important for investigating the interplay of chromosomal rearrangements, introgression, and sex chromosome evolution in the genus. Here, we use new transcriptome assemblies from 11 species representing major clades in the genus, along with a whole-genome assembly generated for a key hermaphroditic species. Using phylogenomic approaches, we find evidence for the independent evolution of sex chromosomes across two major clades, and introgression from unsampled lineages likely predating the formation of sex chromosomes in the genus. Comparative genomic approaches revealed high rates of chromosomal rearrangement, especially in dioecious species, with evidence for a complex origin of the sex chromosomes through multiple chromosomal fusions. However, we found no evidence of elevated rates of fusion on the sex chromosomes in comparison with autosomes, providing no support for an adaptive hypothesis of sex chromosome expansion due to sexually antagonistic selection. Overall, our results highlight a complex history of karyotypic evolution in Rumex, raising questions about the role that chromosomal rearrangements might play in the evolution of large heteromorphic sex chromosomes.
Collapse
Affiliation(s)
- Mark S Hibbins
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Joanna L Rifkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Baharul I Choudhury
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Olena Voznesenska
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Bianca Sacchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Meng Yuan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Yunchen Gong
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
3
|
Sassi FDMC, Garrido-Ramos MA, Utsunomia R, Dos Santos RZ, Ezaz T, Deon GA, Porto-Foresti F, Liehr T, Cioffi MDB. Independent evolution of satellite DNA sequences in homologous sex chromosomes of Neotropical armored catfish (Harttia). Commun Biol 2025; 8:524. [PMID: 40159539 PMCID: PMC11955569 DOI: 10.1038/s42003-025-07891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
The Neotropical armored catfish Harttia is a valuable model for studying sex chromosome evolution, featuring two independently evolved male-heterogametic systems. This study examined satellitomes-sets of satellite DNAs-from four Amazonian species: H. duriventris (X1X2Y), H. rondoni (XY), H. punctata (X1X2Y), and H. villasboas (X1X2Y). These species share homologous sex chromosomes, with their satellitomes showing a high number of homologous satellite DNAs (satDNAs), primarily located on centromeres or telomeres, and varying by species. Each species revealed a distinct satDNA profile, with independent amplification and homogenization events occurring, suggesting an important role of these repetitive sequences in sex chromosome differentiation in a short evolutionary time, especially in recently originated sex chromosomes. Whole chromosome painting and bioinformatics revealed that in Harttia species without heteromorphic sex chromosomes, a specific satDNA (HviSat08-4011) is amplified in the same linkage group associated with sex chromosomes, suggesting an ancestral system. Such sequence (HviSat08-4011) has partial homology with the ZP4 gene responsible for the formation of the egg envelope, in which its role is discussed. This study indicates that these homologous sex chromosomes have diverged rapidly, recently, and independently in their satDNA content, with transposable elements playing a minor role when compared their roles on autosomal chromosome evolution.
Collapse
Affiliation(s)
- Francisco de M C Sassi
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| | - Geize A Deon
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | - Thomas Liehr
- Universitätsklinikum Jena, Friedrich-Schiller Universität, Institut für Humangenetik, Jena, Thüringen, 07747, Germany.
| | - Marcelo de B Cioffi
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
4
|
Zhu Y, Ahmad Z, Lv Y, Zhang Y, Chen G. Insight into the Characterization of Two Female Suppressor Gene Families: SOFF and SyGI in Plants. Genes (Basel) 2025; 16:280. [PMID: 40149432 PMCID: PMC11941796 DOI: 10.3390/genes16030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The Suppressor of Female Function (SOFF) and Shy Girl (SyGI) gene families play vital roles in sex determination in dioecious plants. However, their evolutionary dynamics and functional characteristics remain largely unexplored. METHODS Through this study, a systematic bioinformatics analysis of SOFF and SyGI families was performed in plants to explore their evolutionary relationships, gene structures, motif synteny and functional predictions. RESULTS Phylogenetic analysis showed that the SOFF family expanded over time and was divided into two subfamilies and seven groups, while SyGI was a smaller family made of compact molecules with three groups. Synteny analysis revealed that 125 duplicated gene pairs were identified in Kiwifruit where WGD/segmental duplication played a major role in duplicating these events. Structural analysis predicted that SOFF genes have a DUF 247 domain with a transmembrane region, while SyGI sequences have an REC-like conserved domain, with a "barrel-shaped" structure consisting of five α-helices and five β-strands. Promoter region analysis highlighted their probable regulatory roles in plant development, hormone signaling and stress responses. Protein interaction analysis exhibited only four SOFF genes with a close interaction with other genes, while SyGI genes had extensive interactions, particularly with cytokinin signal transduction pathways. CONCLUSIONS The current study offers a crucial understanding of the molecular evolution and functional characteristics of SOFF and SyGI gene families, providing a foundation for future functional validation and genetic studies on developmental regulation and sex determination in dioecious plants. Also, this research enhances our insight into plant reproductive biology and offers possible targets for breeding and genetic engineering approaches.
Collapse
Affiliation(s)
- Yanrui Zhu
- Department of Agronomy, College of Agriculture, Tarim University, Alar 843300, China;
- Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corps, Tarim University, Alar 843300, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Zeeshan Ahmad
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Youjun Lv
- Anyang Institute of Technology, Anyang 455000, China;
| | - Yongshan Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Guodong Chen
- Department of Agronomy, College of Agriculture, Tarim University, Alar 843300, China;
- Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corps, Tarim University, Alar 843300, China
| |
Collapse
|
5
|
Xiang T, Zhu Y, Wang Y, Chen X, Zhang Z, Lai J, Zhou P, Ming R, Yue J. The dynamic regulatory network of stamens and pistils in papaya. BMC PLANT BIOLOGY 2025; 25:254. [PMID: 39994552 PMCID: PMC11853724 DOI: 10.1186/s12870-025-06242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Papaya exhibits three sex types: female (XX), male (XY), and hermaphrodite (XYh), making it an unusual trioecious model for studying sex determination. A critical aspect of papaya sex determination is the pistil abortion in male flowers. However, the regulatory networks that control the development of pistils and stamens in papaya remain incompletely understood. RESULTS In this study, we identified three organ-specific clusters involved in papaya pistils and stamens development. We found that pistil development is primarily characterized by the significant expression of auxin-related genes, while the pistil abortion genes in males is mainly associated with cytokinin, gibberellin, and auxin pathways. Additionally, we constructed expression regulatory networks for the development of female pistils, aborted pistils and stamens in male flowers, revealing key regulatory genes and signaling pathways involved in papaya organ development. Furthermore, we systematically identified 65 members of the MADS-box gene family and 10 ABCDE subfamily MADS-box genes in papaya. By constructing a phylogenetic tree of the ABCDE subfamily, we uncovered gene contraction and expansion in papaya, providing an improved understanding of the developmental mechanisms and evolutionary history of papaya floral organs. CONCLUSIONS These findings provide a robust framework for identifying candidate sex-determining genes and constructing the sex determination regulatory network in papaya, providing insights and genomic resources for papaya breeding.
Collapse
Affiliation(s)
- Tao Xiang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yating Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xi Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhibin Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juan Lai
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ping Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Yue
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Akagi T, Fujita N, Shirasawa K, Tanaka H, Nagaki K, Masuda K, Horiuchi A, Kuwada E, Kawai K, Kunou R, Nakamura K, Ikeda Y, Toyoda A, Itoh T, Ushijima K, Charlesworth D. Rapid and dynamic evolution of a giant Y chromosome in Silene latifolia. Science 2025; 387:637-643. [PMID: 39913598 DOI: 10.1126/science.adk9074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/08/2024] [Accepted: 08/13/2024] [Indexed: 04/23/2025]
Abstract
Some plants have massive sex-linked regions. To test hypotheses about their evolution, we sequenced the genome of Silene latifolia, in which giant heteromorphic sex chromosomes were first discovered in 1923. It has long been known that the Y chromosome consists mainly of a male-specific region that does not recombine with the X chromosome and carries the sex-determining genes and genes with other male functions. However, only with a whole Y chromosome assembly can candidate genes be validated experimentally and their locations determined and related to the suppression of recombination. We describe the genomic changes as the ancestral chromosome evolved into the current XY pair, testing ideas about the evolution of large nonrecombining regions and the mechanisms that created the present recombination pattern.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Naoko Fujita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- National Museum of Nature and Science, Tsukuba-shi, Ibaraki, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, Chiba, Japan
| | - Hiroyuki Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Ayano Horiuchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Eriko Kuwada
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kanta Kawai
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Riko Kunou
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koki Nakamura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | |
Collapse
|
7
|
Moraga C, Branco C, Rougemont Q, Jedlička P, Mendoza-Galindo E, Veltsos P, Hanique M, de la Vega RCR, Tannier E, Liu X, Lemaitre C, Fields PD, Cruaud C, Labadie K, Belser C, Briolay J, Santoni S, Cegan R, Linheiro R, Adam G, Filali AE, Mossion V, Boualem A, Tavares R, Chebbi A, Cordaux R, Fruchard C, Prentout D, Velt A, Spataro B, Delmotte S, Weingartner L, Toegelová H, Tulpová Z, Cápal P, Šimková H, Štorchová H, Krüger M, Abeyawardana OAJ, Taylor DR, Olson MS, Sloan DB, Karrenberg S, Delph LF, Charlesworth D, Muyle A, Giraud T, Bendahmane A, Di Genova A, Madoui MA, Hobza R, Marais GAB. The Silene latifolia genome and its giant Y chromosome. Science 2025; 387:630-636. [PMID: 39913565 PMCID: PMC11890086 DOI: 10.1126/science.adj7430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/22/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
In many species with sex chromosomes, the Y is a tiny chromosome. However, the dioecious plant Silene latifolia has a giant ~550-megabase Y chromosome, which has remained unsequenced so far. We used a long- and short-read hybrid approach to obtain a high-quality male genome. Comparative analysis of the sex chromosomes with their homologs in outgroups showed that the Y is highly rearranged and degenerated. Recombination suppression between X and Y extended in several steps and triggered a massive accumulation of repeats on the Y as well as in the nonrecombining pericentromeric region of the X, leading to giant sex chromosomes. Using sex phenotype mutants, we identified candidate sex-determining genes on the Y in locations consistent with their favoring recombination suppression events 11 and 5 million years ago.
Collapse
Affiliation(s)
- Carol Moraga
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Centro UOH de Bioingenieria (CUBI), Universidad de O’Higgins, Rancagua, Chile
| | - Catarina Branco
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Quentin Rougemont
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eddy Mendoza-Galindo
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Paris Veltsos
- Ecology, Evolution and Genetics Research Group, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Melissa Hanique
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Ricardo C. Rodríguez de la Vega
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Eric Tannier
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Inria Lyon Research Center, Villeurbanne, France
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Claire Lemaitre
- Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes, Inria, CNRS, Rennes, France
| | - Peter D. Fields
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Jerome Briolay
- Développement de Techniques et Analyse Moléculaire de la Biodiversité (DTAMB), Université Claude Bernard Lyon 1, Campus de la Doua, Villeurbanne, France
| | - Sylvain Santoni
- Genomic Platform, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), Université de Montpellier, CIRAD, INRAE, Montpellier, France
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Raquel Linheiro
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Gabriele Adam
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Adil El Filali
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Vinciane Mossion
- Department of Ecology and Genetics, Division of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Raquel Tavares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Amine Chebbi
- Efor, Grosspeter Tower (Spaces), Basel, Switzerland
| | - Richard Cordaux
- Évolution Génomes Comportement Écologie, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| | - Cécile Fruchard
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Amandine Velt
- Santé de la Vigne et Qualité du Vin (SVQV), INRAE, Colmar, France
| | - Bruno Spataro
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Stephane Delmotte
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laura Weingartner
- University of Louisville School of Medicine, Undergraduate Medical Education, Louisville, KY, USA
| | - Helena Toegelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Oushadee A. J. Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Douglas R. Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Matthew S. Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Division of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Lynda F. Delph
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| | - Aline Muyle
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Alex Di Genova
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Centro UOH de Bioingenieria (CUBI), Universidad de O’Higgins, Rancagua, Chile
- Center for Mathematical Modeling, UMI-CNRS 2807, Santiago, Chile
| | - Mohammed-Amin Madoui
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Gabriel A. B. Marais
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- GreenUPorto–Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
8
|
Li Z, Zong H, Liu X, Wang X, Liu S, Jiao X, Chen X, Wu H, Liu Z, Wang Z, Wang Y, Liu Y, Zhou B, Li Z, Du Q, Li J, Cheng J, Bai J, Zhu X, Yang Y, Liu G, Zhang L, Jiang H, Wang W. Phased high-quality genome of the gymnosperm Himalayan Yew assists in paclitaxel pathway exploration. Gigascience 2025; 14:giaf026. [PMID: 40184434 PMCID: PMC11970372 DOI: 10.1093/gigascience/giaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/23/2024] [Accepted: 02/26/2025] [Indexed: 04/06/2025] Open
Abstract
BACKGROUND Taxus wallichiana is an important species for paclitaxel production. Previous genome versions for Taxus spp. have been limited by extensive gaps, hindering the complete annotation and mining of paclitaxel (known as Taxol commercially) synthesis pathway-related genes. RESULTS Here, we present the first phased high-quality reference genome of T. wallichiana, which significantly improves assembly quality and corrects large-scale assembly errors present in previous versions. The 2 haplotypes are 9.87 Gb and 9.98 Gb in length, respectively, and all 24 chromosomes were assembled with telomeres at both ends. Based on this high-quality genome (TWv1), we inferred that the candidate sex chromosome of T. wallichiana is chr12, and its sex determination system may follow a ZW model. Particularly, we identified and experimentally validated a batch of 2-oxoglutarate/Fe(II)-dependent dioxygenases (ODDs), which may be key C4β-C20 epoxidases in the paclitaxel synthesis pathway. CONCLUSIONS This study not only provides a valuable data resource for gene mining in the biosynthetic pathways of secondary metabolites, such as paclitaxel, but also offers the highest-quality reference genome of gymnosperms to date for the identification of sex chromosomes, facilitating comparative genomic studies among gymnosperms.
Collapse
Affiliation(s)
- Zhenzhu Li
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Hang Zong
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiao Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China
| | - Shimeng Liu
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China
| | - Xi Jiao
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China
| | - Xianqing Chen
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China
| | - Hao Wu
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China
| | - Zhuoya Liu
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Zhongkai Wang
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | | | - Yi Liu
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Botong Zhou
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Zihe Li
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Qiuhui Du
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China
| | - Jing Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jie Bai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaoxi Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yue Yang
- College of Traditional Chinese Medicine of Jinggangshan University, Ji’an 343009, China
| | - Guichun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Li Zhang
- Chinese Institute for Brain Research (CIBR), Beijing 102206, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wen Wang
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| |
Collapse
|
9
|
Pérez-Llorca M, Hewett A, de la Peña Pita A, Hailer F, Sánchez Vilas J. Sexual dimorphism at different life stages: early life sexual differences in root growth in Silene latifolia. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1175-1184. [PMID: 39395160 DOI: 10.1111/plb.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/05/2024] [Indexed: 10/14/2024]
Abstract
Male and female dioecious plants often show sexual dimorphism, differing in morphological, physiological and life-history traits. Most previous studies have focused on differences between males and females during or after reproduction, paying little attention to the pre-reproductive stages of the individuals. Here we assessed the response of male and female individuals of the dioecious plant Silene latifolia to abiotic stress at different life stages, including pre-reproductive (i.e. seedlings and young plants) and reproductive individuals. We measured growth, resource allocation and discrimination against 13C under nutrient deficiency, water stress, as well as their interaction. We observed sexual dimorphism in root growth, with female seedlings having longer main roots than male plants. Pre-reproductive male and female plants also responded differently, in terms of root allocation, to nutrient and water availability. At reproduction, females grew more roots than males when water was not limiting. These differences could help explain the female-skewed sex ratios found in natural populations of S. latifolia. We found no evidence of sexual dimorphism in aboveground dry mass, although females had longer leaves than males at the seedling stage. We conclude that sexual dimorphism in S. latifolia may occur not as a consequence of reproduction, but well before it.
Collapse
Affiliation(s)
- M Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - A Hewett
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of BioInformatics, University of Lausanne, Lausanne, Switzerland
| | - A de la Peña Pita
- Organisms and Environment, School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff, UK
| | - F Hailer
- Organisms and Environment, School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff, UK
| | - J Sánchez Vilas
- Organisms and Environment, School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff, UK
- Área de Ecología, Facultad de Biología, Avda. Lope Gómez de Marzoa s/n, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
10
|
Wang Y, Zhang RG, Hörandl E, Zhang ZX, Charlesworth D, He L. Evolution of Sex-linked Genes and the Role of Pericentromeric Regions in Sex Chromosomes: Insights from Diploid Willows. Mol Biol Evol 2024; 41:msae235. [PMID: 39530333 PMCID: PMC11580687 DOI: 10.1093/molbev/msae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The evolution of sex chromosomes can involve recombination suppression sometimes involving structural changes, such as inversions, allowing subsequent rearrangements, including inversions and gene transpositions. In the two major genus Salix clades, Salix and Vetrix, almost all species are dioecious, and sex-linked regions have evolved on chromosome 7 and 15, with either male or female heterogamety. We used chromosome conformation capture (Hi-C) and PacBio HiFi (high-fidelity) reads to assemble chromosome-level, gap-free X and Y chromosomes from both clades, S. triandra (15XY system), a basal species in the Vetrix clade, and the Salix clade species S. mesnyi (7XY system). Combining these with other available genome assemblies, we found inversions within the sex-linked regions, which are likely to be pericentromeric and probably recombined rarely in the ancestral species, before sex-linkage evolved. The Y-linked regions in all 15XY and 7XY species include partial duplicates containing exon 1 of an ARR17-like gene similar to male-determining factors in other Salicaceae species. We also found duplicates of a Y-specific gene, which we named MSF. The derived Salix clade 7XY chromosome systems appear to have evolved when these two genes transposed from the 15Y to the 7Y. Additionally, the 7Y chromosomes in S. dunnii and S. chaenomeloides probably evolved from the ancestral 7X of the Salix clade, involving a similar transposition, and loss of the ancestral 7Y. We suggest that pericentromeric regions that recombine infrequently may facilitate the evolution of sex linkage.
Collapse
Affiliation(s)
- Yi Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100091, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen 37073, Germany
| | - Zhi-Xiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100091, China
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Li He
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
11
|
Akagi T, Sugano SS. Random epigenetic inactivation of the X-chromosomal HaMSter gene causes sex ratio distortion in persimmon. NATURE PLANTS 2024; 10:1643-1651. [PMID: 39333352 DOI: 10.1038/s41477-024-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024]
Abstract
In contrast to the recent progress in the genome sequencing of plant sex chromosomes, the functional contribution of the genes in sex chromosomes remains little known1. They were classically thought to be related to sexual dimorphism, which is beneficial to male or female functions, including segregation ratios. Here we focused on the functional evolution of the sex ratio distortion-related locus Half Male Sterile/Inviable (HaMSter), which is located in the short sex-linked region in diploid persimmon (Diospyros lotus). The expression of HaMSter, encoding a plant1589-like undefined protein, is necessary for production of viable seeds. Notably, only X-allelic HaMSter is substantially expressed and half of the maternal X alleles of HaMSter is randomly inactivated, which results in sex ratio distortion in seeds. Genome-wide DNA methylome analyses revealed endosperm-specific DNA hypermethylation, especially in the X-linked region. The maintenance/release of this hypermethylation is linked to inactivation/activation of HaMSter expression, respectively, which determines the sex ratio distortion pattern.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Saitama, Japan.
| | - Shigeo S Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
12
|
Lesaffre T, Pannell JR, Mullon C. An explanation for the prevalence of XY over ZW sex determination in species derived from hermaphroditism. Proc Natl Acad Sci U S A 2024; 121:e2406305121. [PMID: 39316051 PMCID: PMC11459199 DOI: 10.1073/pnas.2406305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
The many independent transitions from hermaphroditism to separate sexes (dioecy) in flowering plants and some animal clades must often have involved the emergence of a heterogametic sex-determining locus, the basis of XY and ZW sex determination (i.e., male and female heterogamety). Current estimates indicate that XY sex determination is much more frequent than ZW, but the reasons for this asymmetry are unclear. One proposition is that separate sexes evolve through the invasion of sterility mutations at closely linked loci, in which case XY sex determination evolves if the initial male sterility mutation is fully recessive. Alternatively, dioecy may evolve via the gradual divergence of male and female phenotypes, but the genetic basis of such divergence and its connection to XY and ZW systems remain poorly understood. Using mathematical modeling, we show how dioecy with XY or ZW sex determination can emerge from the joint evolution of resource allocation to male and female function with its genetic architecture. Our model reveals that whether XY or ZW sex determination evolves depends on the trade-off between allocation to male and female function, and on the mating system of the ancestral hermaphrodites, with selection for female specialization or inbreeding avoidance both favoring XY sex determination. Together, our results cast light on an important but poorly understood path from hermaphroditism to dioecy, and provide an adaptive hypothesis for the preponderance of XY systems. Beyond sex and sex determination, our model shows how ecology can influence the way selection shapes the genetic architecture of polymorphic traits.
Collapse
Affiliation(s)
- Thomas Lesaffre
- Department of Ecology and Evolution, University of Lausanne, 1015Lausanne, Switzerland
| | - John R. Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015Lausanne, Switzerland
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, 1015Lausanne, Switzerland
| |
Collapse
|
13
|
Hobza R, Bačovský V, Čegan R, Horáková L, Hubinský M, Janíček T, Janoušek B, Jedlička P, Kružlicová J, Kubát Z, Rodríguez Lorenzo JL, Novotná P, Hudzieczek V. Sexy ways: approaches to studying plant sex chromosomes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5204-5219. [PMID: 38652048 PMCID: PMC11389836 DOI: 10.1093/jxb/erae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Sex chromosomes have evolved in many plant species with separate sexes. Current plant research is shifting from examining the structure of sex chromosomes to exploring their functional aspects. New studies are progressively unveiling the specific genetic and epigenetic mechanisms responsible for shaping distinct sexes in plants. While the fundamental methods of molecular biology and genomics are generally employed for the analysis of sex chromosomes, it is often necessary to modify classical procedures not only to simplify and expedite analyses but sometimes to make them possible at all. In this review, we demonstrate how, at the level of structural and functional genetics, cytogenetics, and bioinformatics, it is essential to adapt established procedures for sex chromosome analysis.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Lucie Horáková
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marcel Hubinský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Janíček
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Bohuslav Janoušek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Jana Kružlicová
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeněk Kubát
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - José Luis Rodríguez Lorenzo
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavla Novotná
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| |
Collapse
|
14
|
He L, Wang Y, Wang Y, Zhang RG, Wang Y, Hörandl E, Ma T, Mao YF, Mank JE, Ming R. Allopolyploidization from two dioecious ancestors leads to recurrent evolution of sex chromosomes. Nat Commun 2024; 15:6893. [PMID: 39134553 PMCID: PMC11319354 DOI: 10.1038/s41467-024-51158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Polyploidization presents an unusual challenge for species with sex chromosomes, as it can lead to complex combinations of sex chromosomes that disrupt reproductive development. This is particularly true for allopolyploidization between species with different sex chromosome systems. Here, we assemble haplotype-resolved chromosome-level genomes of a female allotetraploid weeping willow (Salix babylonica) and a male diploid S. dunnii. We show that weeping willow arose from crosses between a female ancestor from the Salix-clade, which has XY sex chromosomes on chromosome 7, and a male ancestor from the Vetrix-clade, which has ancestral XY sex chromosomes on chromosome 15. We find that weeping willow has one pair of sex chromosomes, ZW on chromosome 15, that derived from the ancestral XY sex chromosomes in the male ancestor of the Vetrix-clade. Moreover, the ancestral 7X chromosomes from the female ancestor of the Salix-clade have reverted to autosomal inheritance. Duplicated intact ARR17-like genes on the four homologous chromosomes 19 likely have contributed to the maintenance of dioecy during polyploidization and sex chromosome turnover. Taken together, our results suggest the rapid evolution and reversion of sex chromosomes following allopolyploidization in weeping willow.
Collapse
Affiliation(s)
- Li He
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Yuàn Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yi Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yuán Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen, Germany
| | - Tao Ma
- Key Laboratory for Bio‑Resource and Eco‑Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yan-Fei Mao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Ray Ming
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
15
|
Li H, Chen L, Liu R, Cao S, Lu Z. Comparative Proteomic Analysis of Floral Buds before and after Opening in Walnut ( Juglans regia L.). Int J Mol Sci 2024; 25:7878. [PMID: 39063121 PMCID: PMC11276623 DOI: 10.3390/ijms25147878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The walnut (Juglans regia L.) is a typical and an economically important tree species for nut production with heterodichogamy. The absence of female and male flowering periods seriously affects both the pollination and fruit setting rates of walnuts, thereby affecting the yield and quality. Therefore, studying the characteristics and processes of flower bud differentiation helps in gaining a deeper understanding of the regularity of the mechanism of heterodichogamy in walnuts. In this study, a total of 3540 proteins were detected in walnut and 885 unique differentially expressed proteins (DEPs) were identified using the isobaric tags for the relative and absolute quantitation (iTRAQ)-labeling method. Among all DEPs, 12 common proteins were detected in all four of the obtained contrasts. GO and KEGG analyses of 12 common DEPs showed that their functions are distributed in the cytoplasm metabolic pathways, photosynthesis, glyoxylate and dicarboxylate metabolism, and the biosynthesis of secondary metabolites, which are involved in energy production and conversion, synthesis, and the breakdown of proteomes. In addition, a function analysis was performed, whereby the DEPs were classified as involved in photosynthesis, morphogenesis, metabolism, or the stress response. A total of eight proteins were identified as associated with the morphogenesis of stamen development, such as stamen-specific protein FIL1-like (XP_018830780.1), putative leucine-rich repeat receptor-like serine/threonine-protein kinase At2g24130 (XP_018822513.1), cytochrome P450 704B1-like isoform X2 (XP_018845266.1), ervatamin-B-like (XP_018824181.1), probable glucan endo-1,3-beta-glucosidase A6 (XP_018844051.1), pathogenesis-related protein 5-like (XP_018835774.1), GDSL esterase/lipase At5g22810-like (XP_018833146.1), and fatty acyl-CoA reductase 2 (XP_018848853.1). Our results predict several crucial proteins and deepen the understanding of the biochemical mechanism that regulates the formation of male and female flower buds in walnuts.
Collapse
Affiliation(s)
- Haoxian Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Nanfan Research Institute, Sanya 572000, China
| | - Lina Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Ruitao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Shangyin Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Nanfan Research Institute, Sanya 572000, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou 450000, China
| |
Collapse
|
16
|
Scott MF, Immler S. One-factor sex determination evolves without linkage between feminizing and masculinizing mutations. Proc Biol Sci 2024; 291:20240693. [PMID: 38981518 PMCID: PMC11335001 DOI: 10.1098/rspb.2024.0693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
The evolution of separate sexes from cosexuality requires at least two mutations: a feminizing allele to cause female development and a masculinizing allele to cause male development. Classically, the double mutant is assumed to be sterile, which leads to two-factor sex determination where male and female sex chromosomes differ at two loci. However, several species appear to have one-factor sex determination where sexual development depends on variation at a single locus. We show that one-factor sex determination evolves when the double mutant develops as a male or a female. The feminizing allele fixes when the double mutant is male, and the masculinizing allele fixes when the double mutant is female. The other locus then gives XY or ZW sex determination based on dominance: for example, a dominant masculinizer becomes a Y chromosome. Although the resulting sex determination system differs, the conditions required for feminizers and masculinizers to spread are the same as in classical models, with the important difference that the two alleles do not need to be linked. Thus, we reveal alternative pathways for the evolution of sex determination and discuss how they can be distinguished using new data on the genetics of sex determination.
Collapse
Affiliation(s)
- Michael F. Scott
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, UK
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, UK
| |
Collapse
|
17
|
Dornela AF, Soares FAF, Silva JC, Sattler MC, Clarindo WR. Carica papaya L. sex chromosome review and physical mapping of the serk 2, svp-like and mdar 4 sequences. Sci Rep 2024; 14:14830. [PMID: 38937542 PMCID: PMC11211501 DOI: 10.1038/s41598-024-65880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Physical mapping evidences the chromosome organization and structure. Despite the data about plant cytogenomics, physical mapping has been conducted from single-copy and/or low-copy genes for few species. Carica papaya cytogenomics has been accomplished from BAC-FISH and repeatome sequences. We aimed to map the serk 2, svp-like and mdar 4 sequences in C. papaya. The sequences were amplified and the amplicons sequenced, showing similarity in relation to serk 2, svp-like and mdar 4 genes. Carica papaya diploidy was confirmed and the mitotic chromosomes characterized. The chromosome 1 exhibited the secondary constriction pericentromeric to the centromere of the long arm. So, we concluded that it is the sex chromosomes. serk 2 was mapped in the long arm interstitial portion of the sex chromosomes, and the interphase nuclei showed two fluorescence signals. Considering these results and the sequencing data from the C. papaya sex chromosomes, svp-like and mdar 4 genes were mapped in the interstitial region of the sex chromosome long arm. Both sequences showed only one fluorescence signal in the interphase nuclei. The procedure adopted here can be reproduced for other single-copy and/or low-copy genes, allowing the construction of cytogenetic maps. In addition, we revisited the cytogenomics data about C. papaya sex chromosomes, presenting a revised point of view about the structure and evolution to these chromosomes.
Collapse
Affiliation(s)
- Adeilson Frias Dornela
- Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, ES, 29.500-000, Brazil
| | - Fernanda Aparecida Ferrari Soares
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil
| | - Jéssica Coutinho Silva
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil
| | - Mariana Cansian Sattler
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil
| | - Wellington Ronildo Clarindo
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil.
| |
Collapse
|
18
|
Lu XM, Yu XF, Li GQ, Qu MH, Wang H, Liu C, Man YP, Jiang XH, Li MZ, Wang J, Chen QQ, Lei R, Zhao CC, Zhou YQ, Jiang ZW, Li ZZ, Zheng S, Dong C, Wang BL, Sun YX, Zhang HQ, Li JW, Mo QH, Zhang Y, Lou X, Peng HX, Yi YT, Wang HX, Zhang XJ, Wang YB, Wang D, Li L, Zhang Q, Wang WX, Liu Y, Gao L, Wu JH, Wang YC. Genome assembly of autotetraploid Actinidia arguta highlights adaptive evolution and enables dissection of important economic traits. PLANT COMMUNICATIONS 2024; 5:100856. [PMID: 38431772 PMCID: PMC11211551 DOI: 10.1016/j.xplc.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/07/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Actinidia arguta, the most widely distributed Actinidia species and the second cultivated species in the genus, can be distinguished from the currently cultivated Actinidia chinensis on the basis of its small and smooth fruit, rapid softening, and excellent cold tolerance. Adaptive evolution of tetraploid Actinidia species and the genetic basis of their important agronomic traits are still unclear. Here, we generated a chromosome-scale genome assembly of an autotetraploid male A. arguta accession. The genome assembly was 2.77 Gb in length with a contig N50 of 9.97 Mb and was anchored onto 116 pseudo-chromosomes. Resequencing and clustering of 101 geographically representative accessions showed that they could be divided into two geographic groups, Southern and Northern, which first diverged 12.9 million years ago. A. arguta underwent two prominent expansions and one demographic bottleneck from the mid-Pleistocene climate transition to the late Pleistocene. Population genomics studies using paleoclimate data enabled us to discern the evolution of the species' adaptation to different historical environments. Three genes (AaCEL1, AaPME1, and AaDOF1) related to flesh softening were identified by multi-omics analysis, and their ability to accelerate flesh softening was verified through transient expression assays. A set of genes that characteristically regulate sexual dimorphism located on the sex chromosome (Chr3) or autosomal chromosomes showed biased expression during stamen or carpel development. This chromosome-level assembly of the autotetraploid A. arguta genome and the genes related to important agronomic traits will facilitate future functional genomics research and improvement of A. arguta.
Collapse
Affiliation(s)
- Xue-Mei Lu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Fen Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Guo-Qiang Li
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Hao Qu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, Hubei, China
| | - Chuang Liu
- Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yu-Ping Man
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Han Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Zi Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qi-Qi Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Rui Lei
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Cheng-Cheng Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yun-Qiu Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Wang Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zuo-Zhou Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shang Zheng
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, Hubei, China
| | - Chang Dong
- College of Agricultural Sciences, Xichang University, Xichang, Sichuan, China
| | - Bai-Lin Wang
- Department of Horticulture, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yan-Xiang Sun
- College of Life Sciences, Langfang Normal University, Langfang, Hebei, China
| | - Hui-Qin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jie-Wei Li
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, Guangxi, China
| | - Quan-Hui Mo
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, Guangxi, China
| | - Ying Zhang
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xin Lou
- Institute of Modern Agricultural Research, Dalian University, Dalian, Liaoning, China
| | - Hai-Xu Peng
- Bioinformatics Center, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ya-Ting Yi
- Bioinformatics Center, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - He-Xin Wang
- Institute of Modern Agricultural Research, Dalian University, Dalian, Liaoning, China
| | - Xiu-Jun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yi-Bo Wang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Wang
- College of Agriculture, Eastern Liaoning University, Dandong, Liaoning, China
| | - Li Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiong Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wen-Xia Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| | - Jin-Hu Wu
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.
| | - Yan-Chang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Huang HY, Zhang S, Choucha FA, Verdenaud M, Tan FQ, Pichot C, Parsa HS, Slavkovic F, Chen Q, Troadec C, Marcel F, Dogimont C, Quadrana L, Boualem A, Bendahmane A. Harbinger transposon insertion in ethylene signaling gene leads to emergence of new sexual forms in cucurbits. Nat Commun 2024; 15:4877. [PMID: 38849342 PMCID: PMC11161486 DOI: 10.1038/s41467-024-49250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
In flowering plants, the predominant sexual morph is hermaphroditism, and the emergence of unisexuality is poorly understood. Using Cucumis melo (melon) as a model system, we explore the mechanisms driving sexual forms. We identify a spontaneous mutant exhibiting a transition from bisexual to unisexual male flower, and identify the causal mutation as a Harbinger transposon impairing the expression of Ethylene Insensitive 2 (CmEIN2) gene. Genetics and transcriptomic analysis reveal a dual role of CmEIN2 in both sex determination and fruit shape formation. Upon expression of CmACS11, EIN2 is recruited to repress the expression of the carpel inhibitor, CmWIP1. Subsequently, EIN2 is recruited to mediate stamina inhibition. Following the sex determination phase, EIN2 promotes fruit shape elongation. Genome-wide analysis reveals that Harbinger transposon mobilization is triggered by environmental cues, and integrates preferentially in active chromatin, particularly within promoter regions. Characterization of a large collection of melon germplasm points to active transpositions in the wild, compared to cultivated accessions. Our study underscores the association between chromatin dynamics and the temporal aspects of mobile genetic element insertions, providing valuable insights into plant adaptation and crop genome evolution.
Collapse
Affiliation(s)
- Hsin-Ya Huang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Siqi Zhang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Fadi Abou Choucha
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Marion Verdenaud
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Feng-Quan Tan
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Clement Pichot
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Hadi Shirazi Parsa
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Filip Slavkovic
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Qinghe Chen
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Fabien Marcel
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Catherine Dogimont
- INRAE, Génétique et Amélioration des Fruits et Légumes (GAFL), 84143, Montfavet, France
| | - Leandro Quadrana
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France.
| |
Collapse
|
20
|
Hewett AM, Sánchez Vilas J, Hailer F. Two novel PCR-based assays for sexing of Silene latifolia and Silene dioica plants. MethodsX 2024; 12:102708. [PMID: 38651001 PMCID: PMC11033195 DOI: 10.1016/j.mex.2024.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Silene latifolia and S. dioica are model systems in studies of plant reproduction, chromosome evolution and sexual dimorphism, but sexing of plants based on morphology is only possible from flowering stage onwards. Both species show homogametic females (XX) and heterogametic males (XY).•Here we developed two assays (primer pairs ss816 and ss441) for molecular sexing of S. latifolia and S. dioica, targeting length polymorphisms between the X and Y-linked copies of the spermidine synthase gene.The two assays were successful in identifying known (flowering-stage) males and females from UK and Spanish populations, with an error rate of 3.1% (ss816; successful for both species) and 0% (ss441, only successful for S. latifolia). Our assays therefore represent novel tools for rapid, robust and simple determination of the genotypic sex of S. latifolia and S. dioica.
Collapse
Affiliation(s)
- Anna M. Hewett
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff CF10 3AX, UK
- Department of Ecology and Evolution, University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Julia Sánchez Vilas
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff CF10 3AX, UK
- Departamento de Bioloxía Funcional (Área de Ecoloxía) Facultade de Bioloxía, Universidade de Santiago de Compostelac/ Lope Gómez de Marzoa, s/n15782 Santiago de Compostela, Spain
| | - Frank Hailer
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff CF10 3AX, UK
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Beijing, China
| |
Collapse
|
21
|
Wang Y, Gong GN, Wang Y, Zhang RG, Hörandl E, Zhang ZX, Charlesworth D, He L. Gap-free X and Y chromosome assemblies of Salix arbutifolia reveal an evolutionary change from male to female heterogamety in willows, without a change in the position of the sex-determining locus. THE NEW PHYTOLOGIST 2024; 242:2872-2887. [PMID: 38581199 DOI: 10.1111/nph.19744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
In the Vetrix clade of Salix, a genus of woody flowering plants, sex determination involves chromosome 15, but an XY system has changed to a ZW system. We studied the detailed genetic changes involved. We used genome sequencing, with chromosome conformation capture (Hi-C) and PacBio HiFi reads to assemble chromosome level gap-free X and Y of Salix arbutifolia, and distinguished the haplotypes in the 15X- and 15Y-linked regions, to study the evolutionary history of the sex-linked regions (SLRs). Our sequencing revealed heteromorphism of the X and Y haplotypes of the SLR, with the X-linked region being considerably larger than the corresponding Y region, mainly due to accumulated repetitive sequences and gene duplications. The phylogenies of single-copy orthogroups within the SLRs indicate that S. arbutifolia and Salix purpurea share an ancestral SLR within a repeat-rich region near the chromosome 15 centromere. During the change in heterogamety, the X-linked region changed to a W-linked one, while the Z was derived from the Y.
Collapse
Affiliation(s)
- Yi Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100091, China
| | - Guang-Nan Gong
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuan Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073, Göttingen, Germany
| | - Zhi-Xiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100091, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Li He
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
22
|
Ma Y, Fu W, Wan S, Li Y, Mao H, Khalid E, Zhang W, Ming R. Gene Regulatory Network Controlling Flower Development in Spinach ( Spinacia oleracea L.). Int J Mol Sci 2024; 25:6127. [PMID: 38892313 PMCID: PMC11173220 DOI: 10.3390/ijms25116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Spinach (Spinacia oleracea L.) is a dioecious, diploid, wind-pollinated crop cultivated worldwide. Sex determination plays an important role in spinach breeding. Hence, this study aimed to understand the differences in sexual differentiation and floral organ development of dioecious flowers, as well as the differences in the regulatory mechanisms of floral organ development of dioecious and monoecious flowers. We compared transcriptional-level differences between different genders and identified differentially expressed genes (DEGs) related to spinach floral development, as well as sex-biased genes to investigate the flower development mechanisms in spinach. In this study, 9189 DEGs were identified among the different genders. DEG analysis showed the participation of four main transcription factor families, MIKC_MADS, MYB, NAC, and bHLH, in spinach flower development. In our key findings, abscisic acid (ABA) and gibberellic acid (GA) signal transduction pathways play major roles in male flower development, while auxin regulates both male and female flower development. By constructing a gene regulatory network (GRN) for floral organ development, core transcription factors (TFs) controlling organ initiation and growth were discovered. This analysis of the development of female, male, and monoecious flowers in spinach provides new insights into the molecular mechanisms of floral organ development and sexual differentiation in dioecious and monoecious plants in spinach.
Collapse
Affiliation(s)
- Yaying Ma
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.M.); (W.F.)
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Wenhui Fu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.M.); (W.F.)
| | - Suyan Wan
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Yikai Li
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Haoming Mao
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Ehsan Khalid
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Wenping Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Ray Ming
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| |
Collapse
|
23
|
Zhang YL, Wang LY, Yang Y, Zhao X, Zhu HW, You C, Chen N, Wei SJ, Li SF, Gao WJ. Gibberellins regulate masculinization through the SpGAI-SpSTM module in dioecious spinach. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1907-1921. [PMID: 38491869 DOI: 10.1111/tpj.16717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
The sex of dioecious plants is mainly determined by genetic factors, but it can also be converted by environmental cues such as exogenous phytohormones. Gibberellic acids (GAs) are well-known inducers of flowering and sexual development, yet the pathway of gibberellin-induced sex conversion in dioecious spinach (Spinacia oleracea L.) remains elusive. Based on sex detection before and after GA3 application using T11A and SSR19 molecular markers, we confirmed and elevated the masculinization effect of GA on a single female plant through exogenous applications of GA3, showing complete conversion and functional stamens. Silencing of GIBBERELLIC ACID INSENSITIVE (SpGAI), a single DELLA family protein that is a central GA signaling repressor, results in similar masculinization. We also show that SpGAI can physically interact with the spinach KNOX transcription factor SHOOT MERISTEMLESS (SpSTM), which is a homolog of the flower meristem identity regulator STM in Arabidopsis. The silencing of SpSTM also masculinized female flowers in spinach. Furthermore, SpSTM could directly bind the intron of SpPI to repress SpPI expression in developing female flowers. Overall, our results suggest that GA induces a female masculinization process through the SpGAI-SpSTM-SpPI regulatory module in spinach. These insights may help to clarify the molecular mechanism underlying the sex conversion system in dioecious plants while also elucidating the physiological basis for the generation of unisexual flowers so as to establish dioecy in plants.
Collapse
Affiliation(s)
- Yu-Lan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Li-Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yi Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Xu Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hong-Wei Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chen You
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ning Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shuai-Jie Wei
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
24
|
Charlesworth D, Harkess A. Why should we study plant sex chromosomes? THE PLANT CELL 2024; 36:1242-1256. [PMID: 38163640 PMCID: PMC11062472 DOI: 10.1093/plcell/koad278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024]
Abstract
Understanding plant sex chromosomes involves studying interactions between developmental and physiological genetics, genome evolution, and evolutionary ecology. We focus on areas of overlap between these. Ideas about how species with separate sexes (dioecious species, in plant terminology) can evolve are even more relevant to plants than to most animal taxa because dioecy has evolved many times from ancestral functionally hermaphroditic populations, often recently. One aim of studying plant sex chromosomes is to discover how separate males and females evolved from ancestors with no such genetic sex-determining polymorphism, and the diversity in the genetic control of maleness vs femaleness. Different systems share some interesting features, and their differences help to understand why completely sex-linked regions may evolve. In some dioecious plants, the sex-determining genome regions are physically small. In others, regions without crossing over have evolved sometimes extensive regions with properties very similar to those of the familiar animal sex chromosomes. The differences also affect the evolutionary changes possible when the environment (or pollination environment, for angiosperms) changes, as dioecy is an ecologically risky strategy for sessile organisms. Dioecious plants have repeatedly reverted to cosexuality, and hermaphroditic strains of fruit crops such as papaya and grapes are desired by plant breeders. Sex-linked regions are predicted to become enriched in genes with sex differences in expression, especially when higher expression benefits one sex function but harms the other. Such trade-offs may be important for understanding other plant developmental and physiological processes and have direct applications in plant breeding.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
25
|
Mertten D, McKenzie CM, Souleyre EJF, Amadeu RR, Lenhard M, Baldwin S, Datson PM. Molecular breeding of flower load related traits in dioecious autotetraploid Actinidia arguta. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:36. [PMID: 38745882 PMCID: PMC11091038 DOI: 10.1007/s11032-024-01476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Flowering plants exhibit a wide range of sexual reproduction systems, with the majority being hermaphroditic. However, some plants, such as Actinidia arguta (kiwiberry), have evolved into dioecious species with distinct female and male vines. In this study, we investigated the flower load and growth habits of female kiwiberry genotypes to identify the genetic basis of high yield with low maintenance requirements. Owing to the different selection approaches between female and male genotypes, we further extended our study to male kiwiberry genotypes. By combining both investigations, we present a novel breeding tool for dioecious crops. A population of A. arguta seedlings was phenotyped for flower load traits, in particular the proportion of non-floral shoots, proportion of floral shoots, and average number of flowers per floral shoot. Quantitative trait locus (QTL) mapping was used to analyse the genetic basis of these traits. We identified putative QTLs on chromosome 3 associated with flower-load traits. A pleiotropic effect of the male-specific region of the Y chromosome (MSY) on chromosome 3 affecting flower load-related traits between female and male vines was observed in an A. arguta breeding population. Furthermore, we utilized Genomic Best Linear Unbiased Prediction (GBLUP) to predict breeding values for the quantitative traits by leveraging genomic data. This approach allowed us to identify and select superior genotypes. Our findings contribute to the understanding of flowering and fruiting dynamics in Actinidia species, providing insights for kiwiberry breeding programs aiming to improve yield through the utilization of genomic methods and trait mapping. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01476-7.
Collapse
Affiliation(s)
- Daniel Mertten
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142 New Zealand
- University of Potsdam, Institute for Biochemistry and Biology, 14476 Potsdam-Golm, Germany
| | - Catherine M. McKenzie
- The New Zealand Institute for Plant and Food Research Ltd, Te Puke, 3182 New Zealand
| | - Edwige J. F. Souleyre
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142 New Zealand
| | | | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, 14476 Potsdam-Golm, Germany
| | - Samantha Baldwin
- The New Zealand Institute for Plant and Food Research Ltd, Lincoln, 7608 New Zealand
| | | |
Collapse
|
26
|
Chaves ALA, Ferreira MTM, Escudero M, Luceño M, Costa SM. Chromosomal evolution in Cryptangieae Benth. (Cyperaceae): Evidence of holocentrism and pseudomonads. PROTOPLASMA 2024; 261:527-541. [PMID: 38123818 DOI: 10.1007/s00709-023-01915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Cryptangieae has recently been revised based on morphology and molecular phylogeny, but cytogenetic data is still scarce. We conducted this study with the aim of investigating the occurrence of holocentric chromosomes and pseudomonads, as well as understanding the mode of chromosomal evolution in the tribe. We performed analyses of meiotic behavior, chromosome counts, and reconstruction of the ancestral state for the haploid number. We present novel cytogenetic data for eight potentially holocentric species: Cryptangium verticillatum, Krenakia junciforme, K. minarum, Lagenocarpus bracteosus, L. griseus, L. inversus, L. rigidus, and L. tenuifolius. Meiotic abnormalities were observed, with parallel spindles being particularly noteworthy. Intra-specific variations in chromosome number were not found, which may indicate an efficient genetic control for the elimination of abnormal nuclei. The inferred ancestral haploid number was n = 16, with dysploidy being the main evolutionary mechanism. At least five chromosomal fissions occurred in Krenakia (n = 21), followed by a further ascending dysploidy event in Lagenocarpus (n = 17). As proposed for Cyperaceae, it is possible that cladogenesis events in Cryptangieae were marked by numerical and structural chromosomal changes.
Collapse
Affiliation(s)
| | | | - Marcial Escudero
- University of Seville, Department of Plant Biology and Ecology, Seville, Spain
| | - Modesto Luceño
- University of Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, Seville, Spain
| | - Suzana Maria Costa
- Federal University of Lavras, Departament of Biology, Lavras, Minas Gerais State, Brazil
| |
Collapse
|
27
|
Pechar GS, Sánchez-Pina MA, Coronado-Parra T, Bretó P, García-Almodóvar RC, Liu L, Aranda MA, Donaire L. Developmental stages and episode-specific regulatory genes in andromonoecious melon flower development. ANNALS OF BOTANY 2024; 133:305-320. [PMID: 38041589 PMCID: PMC11005788 DOI: 10.1093/aob/mcad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/01/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND AIMS Given the lack of specific studies on floral development in melon (Cucumis melo L.), we carried out an extensive study involving morphological and transcriptomic analyses to characterize floral development in this species. METHODS Using an andromonoecious line, we analysed the development of floral buds in male and hermaphrodite flowers with both light microscopy and scanning electron microscopy. Based on flower lengths, we established a correlation between the developmental stages and four main episodes of floral development and conducted an extensive RNA sequencing analysis of these episodes. KEY RESULTS We identified 12 stages of floral development, from the appearance of the floral meristems to anthesis. The main structural differences between male and hermaphrodite flowers appeared between stages 6 and 7; later stages of development leading to the formation of organs and structures in both types of flowers were also described. We analysed the gene expression patterns of the four episodes in flower development to find the genes that were specific to each given episode. Among others, we identified genes that defined the passage from one episode to the next according to the ABCDE model of floral development. CONCLUSIONS This work combines a detailed morphological analysis and a comprehensive transcriptomic study to enable characterization of the structural and molecular mechanisms that determine the floral development of an andromonoecious genotype in melon. Taken together, our results provide a first insight into gene regulation networks in melon floral development that are crucial for flowering and pollen formation, highlighting potential targets for genetic manipulation to improve crop yield of melon in the future.
Collapse
Affiliation(s)
- Giuliano S Pechar
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - M Amelia Sánchez-Pina
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Teresa Coronado-Parra
- Microscopy Core Facility, Área Científica y Técnica de Investigación, Universidad de Murcia, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Pau Bretó
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Espinardo, Murcia, Spain
| | - Roque Carlos García-Almodóvar
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Espinardo, Murcia, Spain
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, Henan, China
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Livia Donaire
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
28
|
Zhao L, Zhou W, He J, Li DZ, Li HT. Positive selection and relaxed purifying selection contribute to rapid evolution of male-biased genes in a dioecious flowering plant. eLife 2024; 12:RP89941. [PMID: 38353667 PMCID: PMC10942601 DOI: 10.7554/elife.89941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Sex-biased genes offer insights into the evolution of sexual dimorphism. Sex-biased genes, especially those with male bias, show elevated evolutionary rates of protein sequences driven by positive selection and relaxed purifying selection in animals. Although rapid sequence evolution of sex-biased genes and evolutionary forces have been investigated in animals and brown algae, less is known about evolutionary forces in dioecious angiosperms. In this study, we separately compared the expression of sex-biased genes between female and male floral buds and between female and male flowers at anthesis in dioecious Trichosanthes pilosa (Cucurbitaceae). In floral buds, sex-biased gene expression was pervasive, and had significantly different roles in sexual dimorphism such as physiology. We observed higher rates of sequence evolution for male-biased genes in floral buds compared to female-biased and unbiased genes. Male-biased genes under positive selection were mainly associated with functions to abiotic stress and immune responses, suggesting that high evolutionary rates are driven by adaptive evolution. Additionally, relaxed purifying selection may contribute to accelerated evolution in male-biased genes generated by gene duplication. Our findings, for the first time in angiosperms, suggest evident rapid evolution of male-biased genes, advance our understanding of the patterns and forces driving the evolution of sexual dimorphism in dioecious plants.
Collapse
Affiliation(s)
- Lei Zhao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of SciencesKunming, YunnanChina
| | - Wei Zhou
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of SciencesKunming, YunnanChina
| | - Jun He
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of SciencesKunming, YunnanChina
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of SciencesKunming, YunnanChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Hong-Tao Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of SciencesKunming, YunnanChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| |
Collapse
|
29
|
Bentz PC, Liu Z, Yang JB, Zhang L, Burrows S, Burrows J, Kanno A, Mao Z, Leebens-Mack J. Young evolutionary origins of dioecy in the genus Asparagus. AMERICAN JOURNAL OF BOTANY 2024; 111:e16276. [PMID: 38297448 DOI: 10.1002/ajb2.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 02/02/2024]
Abstract
PREMISE Dioecy (separate sexes) has independently evolved numerous times across the angiosperm phylogeny and is recently derived in many lineages. However, our understanding is limited regarding the evolutionary mechanisms that drive the origins of dioecy in plants. The recent and repeated evolution of dioecy across angiosperms offers an opportunity to make strong inferences about the ecological, developmental, and molecular factors influencing the evolution of dioecy, and thus sex chromosomes. The genus Asparagus (Asparagaceae) is an emerging model taxon for studying dioecy and sex chromosome evolution, yet estimates for the age and origin of dioecy in the genus are lacking. METHODS We use plastome sequences and fossil time calibrations in phylogenetic analyses to investigate the age and origin of dioecy in the genus Asparagus. We also review the diversity of sexual systems present across the genus to address contradicting reports in the literature. RESULTS We estimate that dioecy evolved once or twice approximately 2.78-3.78 million years ago in Asparagus, of which roughly 27% of the species are dioecious and the remaining are hermaphroditic with monoclinous flowers. CONCLUSIONS Our findings support previous work implicating a young age and the possibility of two origins of dioecy in Asparagus, which appear to be associated with rapid radiations and range expansion out of Africa. Lastly, we speculate that paleoclimatic oscillations throughout northern Africa may have helped set the stage for the origin(s) of dioecy in Asparagus approximately 2.78-3.78 million years ago.
Collapse
Affiliation(s)
- Philip C Bentz
- Department of Plant Biology, University of Georgia, Athens, GA, 30605, USA
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Le Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | | | | | - Akira Kanno
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, 30605, USA
| |
Collapse
|
30
|
Unnikrishnan R, Balakrishnan S, Sumod M, Sujanapal P, Balan B, Dev SA. Gender specific SNP markers in Coscinium fenestratum (Gaertn.) Colebr. for resource augmentation. Mol Biol Rep 2024; 51:93. [PMID: 38194000 DOI: 10.1007/s11033-023-09044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Unregulated extraction of highly traded medicinal plant species results in drastic decline of the natural resources and alters viable sex ratio of populations. Conservation and long-term survival of such species, require gender specific restoration programs to ensure reproductive success. However, it is often difficult to differentiate sex of individuals before reaching reproductive maturity. C. fenestratum is one of the medicinally important and overexploited dioecious woody liana, with a reproductive maturity of 15 years. Currently, no information is available to identify sex of C. fenestratum in seedling stage while augmenting the resources. Thus, the current study envisages to utilize transcriptomics approach for gender differentiation which is imperative for undertaking viable resource augmentation programmes. METHODS AND RESULTS Gender specific SNPs with probable role in sexual reproduction/sex determination was located using comparative transcriptomics approach (sampling male and female individuals), alongside gene ontology and annotation. Nine sets of primers were synthesized from 7 transcripts (involved in sexual reproduction/other biological process) containing multiple SNP variants. Out of the nine primer pairs, only one SNP locus with no available information of its role in reproduction, showed consistent and accurate results (males-heterozygous and females-homozygous), in the analyzed 40 matured individuals of known sexes. Thus validated the efficiency of this SNP marker in differentiating male and female individuals. CONCLUSIONS The study could identify SNPs linked to the loci with apparent role in gender differentiation. This SNP marker can be used for early sexing of seedlings for in-situ conservation and resource augmentation of C. fenestratum in Kerala, India.
Collapse
Affiliation(s)
- Remya Unnikrishnan
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
- Cochin University of Science & Technology, Kochi, Kerala, India
| | - Swathi Balakrishnan
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
- Cochin University of Science & Technology, Kochi, Kerala, India
| | - M Sumod
- Sustainable Forest Management Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
| | - P Sujanapal
- Sustainable Forest Management Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
| | - Bipin Balan
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze-Ed. 4, Palermo, 90128, Italy
| | - Suma Arun Dev
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India.
| |
Collapse
|
31
|
Jousson A, Naciri Y, Christe C, Marazzi B, Stauffer F. Not just females and males: Unravelling the complex sex determinism of the hemp palm, Trachycarpus fortunei. AMERICAN JOURNAL OF BOTANY 2023; 110:e16257. [PMID: 38014995 DOI: 10.1002/ajb2.16257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
PREMISE The ornamental Asian palm Trachycarpus fortunei (Arecaceae: Coryphoideae) is widely planted in temperate regions. In Europe, it has spread outside of gardens, particularly on the southern side of the Alps. Sexual expression in the species is complex, varying from dioecy to polygamy. This study investigated (1) sexual floral development and (2) genetic markers implicated in sex determinism. METHODS The morphology and anatomy of floral organs at different developmental stages were studied using SEM observations and anatomical section. Sex determinism was explored using a genome-wide association study approach, searching for correlations between 31,000 single-nucleotide polymorphisms and sex affiliation of 122 palms from 21 wild populations. RESULTS We observed that sexual differentiation appears late in floral development of T. fortunei. Morpho-anatomical characters of flowers conducive to panmixia were observed, such as well-differentiated septal nectaries that are thought to promote cross-pollination. At the molecular level, homozygous and heterozygous allelic systems with closely linked regions were found for sex determinism in individuals with female and "dominant-male" phenotypes, respectively. Through our wide sampling in the southern Alps, the closely linked genetic regions in males suggest that at least fifteen percent of wild palms are the direct offspring of "males" that can also produce fertile pistillate flowers. CONCLUSIONS Trachycarpus fortunei is a further example of unstable sexual expression found in the family Arecaceae and represents an evolutionary path towards an XY genetic system. Our structural and genetic results may explain the high species dispersal ability in the southern Alps.
Collapse
Affiliation(s)
- Antoine Jousson
- PhyloLab and MorphoLab, Conservatoire et Jardin Botaniques de Genève, Chemin de l'Impératrice 1, 1292, Chambésy, Geneva, Switzerland
- Departement of Plant Sciences, Université de Genève, Chemin de l'Impératrice 1, 1292, Chambésy, Geneva, Switzerland
| | - Yamama Naciri
- PhyloLab and MorphoLab, Conservatoire et Jardin Botaniques de Genève, Chemin de l'Impératrice 1, 1292, Chambésy, Geneva, Switzerland
- Departement of Plant Sciences, Université de Genève, Chemin de l'Impératrice 1, 1292, Chambésy, Geneva, Switzerland
| | - Camille Christe
- PhyloLab and MorphoLab, Conservatoire et Jardin Botaniques de Genève, Chemin de l'Impératrice 1, 1292, Chambésy, Geneva, Switzerland
- Departement of Plant Sciences, Université de Genève, Chemin de l'Impératrice 1, 1292, Chambésy, Geneva, Switzerland
| | - Brigitte Marazzi
- Natural History Museum of Canton Ticino, Viale C. Cattaneo 4, 6900, Lugano, Switzerland
- InfoFlora C/O Natural History Museum of Canton Ticino, Viale C. Cattaneo 4, Lugano, 6900, Switzerland
| | - Fred Stauffer
- PhyloLab and MorphoLab, Conservatoire et Jardin Botaniques de Genève, Chemin de l'Impératrice 1, 1292, Chambésy, Geneva, Switzerland
- Departement of Plant Sciences, Université de Genève, Chemin de l'Impératrice 1, 1292, Chambésy, Geneva, Switzerland
| |
Collapse
|
32
|
Li N, Zhou J, Zhang W, Liu W, Wang B, She H, Mirbahar AA, Li S, Zhang Y, Gao W, Qian W, Deng C. A rapid method for assembly of single chromosome and identification of sex determination region based on single-chromosome sequencing. THE NEW PHYTOLOGIST 2023; 240:892-903. [PMID: 37533136 DOI: 10.1111/nph.19176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/08/2023] [Indexed: 08/04/2023]
Abstract
The sex-determining-region (SDR) may offer the best prospects for studying sex-determining gene, recombination suppression, and chromosome heteromorphism. However, current progress of SDR identification and cloning showed following shortcomings: large near-isogenic lines need to be constructed, and a relatively large population is needed; the cost of whole-genome sequencing and assembly is high. Herein, the X/Y chromosomes of Spinacia oleracea L. subsp. turkestanica were successfully microdissected and assembled using single-chromosome sequencing. The assembly length of X and Y chromosome is c. 192.1 and 195.2 Mb, respectively. Three large inversions existed between X and Y chromosome. The SDR size of X and Y chromosome is c. 13.2 and 24.1 Mb, respectively. MSY region and six male-biased genes were identified. A Y-chromosome-specific marker in SDR was constructed and used to verify the chromosome assembly quality at cytological level via fluorescence in situ hybridization. Meanwhile, it was observed that the SDR located on long arm of Y chromosome and near the centromere. Overall, a technical system was successfully established for rapid cloning the SDR and it is also applicable to rapid assembly of specific chromosome in other plants. Furthermore, this study laid a foundation for studying the molecular mechanism of sex chromosome evolution in spinach.
Collapse
Affiliation(s)
- Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Jian Zhou
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wanqing Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wenjia Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Bingxin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ameer Ahmed Mirbahar
- Date Palm Research Institute, Shah Abdul Latif University, Khairpur, Sindh, 66020, Pakistan
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yulan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
33
|
Rashid D, Devani RS, Rodriguez-Granados NY, Abou-Choucha F, Troadec C, Morin H, Tan FQ, Marcel F, Huang HY, Hanique M, Zhang S, Verdenaud M, Pichot C, Rittener V, Huang Y, Benhamed M, Dogimont C, Boualem A, Bendahmane A. Ethylene produced in carpel primordia controls CmHB40 expression to inhibit stamen development. NATURE PLANTS 2023; 9:1675-1687. [PMID: 37653338 DOI: 10.1038/s41477-023-01511-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Sex determination evolved to control the development of unisexual flowers. In agriculture, it conditions how plants are cultivated and bred. We investigated how female flowers develop in monoecious cucurbits. We discovered in melon, Cucumis melo, a mechanism in which ethylene produced in the carpel is perceived in the stamen primordia through spatially differentially expressed ethylene receptors. Subsequently, the CmEIN3/CmEIL1 ethylene signalling module, in stamen primordia, activates the expression of CmHB40, a transcription factor that downregulates genes required for stamen development and upregulates genes associated with organ senescence. Investigation of melon genetic biodiversity revealed a haplotype, originating in Africa, altered in EIN3/EIL1 binding to CmHB40 promoter and associated with bisexual flower development. In contrast to other bisexual mutants in cucurbits, CmHB40 mutations do not alter fruit shape. By disentangling fruit shape and sex-determination pathways, our work opens up new avenues in plant breeding.
Collapse
Affiliation(s)
- Dali Rashid
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Ravi Sureshbhai Devani
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Natalia Yaneth Rodriguez-Granados
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Fadi Abou-Choucha
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Feng-Quan Tan
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Fabien Marcel
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Hsin-Ya Huang
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Melissa Hanique
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Siqi Zhang
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Marion Verdenaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Clement Pichot
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Vincent Rittener
- Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE, Montfavet, France
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Catherine Dogimont
- Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE, Montfavet, France
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
| |
Collapse
|
34
|
Guo D, Wang R, Fang J, Zhong Y, Qi X. Development of sex-linked markers for gender identification of Actinidia arguta. Sci Rep 2023; 13:12780. [PMID: 37550389 PMCID: PMC10406875 DOI: 10.1038/s41598-023-39561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
The fruit of the dioecious plant Actinidia arguta has become a great attraction recently. It has long been difficult to distinguish the genders of hybrid seedlings before flowering, therefore increasing the expenditures of breeding. To produce reliable molecular marker for gender identification, this research utilized whole-genome re-sequencing of 15 males and 15 females from an 8-year-old cross population to develop gender specific markers. P51 and P11 were identified as sex-linked markers after verification. Both of these markers, according to the PCR results, only amplified a single band in male samples. These two markers were tested in 97 hybrids (52 females and 45 males) and 31 wild individuals (13 females and 18 males), with an accuracy of 96.88% and 96.09%, correspondingly. This research also verified the universalities of the two markers in Actinidia chinensis samples, and it could be inferred from the PCR results that neither marker was applicable to A. chinensis samples. The BLAST results of the two markers demonstrated that the two markers were closely aligned with different parts of the Y male-specific region of A. chinensis genome, thus they were likely to be useful for the research on the mechanism of sex determination of A. arguta. The two male-linked makers, P51 and P11, have already been used in sex-identification of A. arguta seedlings.
Collapse
Affiliation(s)
- Dandan Guo
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Ran Wang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinbao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yunpeng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Xiujuan Qi
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
35
|
Kong W, Wang Y, Zhang S, Yu J, Zhang X. Recent Advances in Assembly of Complex Plant Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:427-439. [PMID: 37100237 PMCID: PMC10787022 DOI: 10.1016/j.gpb.2023.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Over the past 20 years, tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already, ranging from those of nonvascular plants to those of flowering plants. However, complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity, highly repetitive sequences, or high ploidy characteristics of complex genomes. Herein, we summarize the challenges of and advances in complex plant genome assembly, including feasible experimental strategies, upgrades to sequencing technology, existing assembly methods, and different phasing algorithms. Moreover, we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes. Finally, we expect that the accurate, gapless, telomere-to-telomere, and fully phased assembly of complex plant genomes could soon become routine.
Collapse
Affiliation(s)
- Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
36
|
Luo H, Zhang H, Wang H. Advance in sex differentiation in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1186904. [PMID: 37265638 PMCID: PMC10231686 DOI: 10.3389/fpls.2023.1186904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Cucumber belongs to the family Cucurbitaceae (melon genus) and is an annual herbaceous vegetable crop. Cucumber is an important cash crop that is grown all over the world. From morphology to cytology, from canonical genetics to molecular biology, researchers have performed much research on sex differentiation and its regulatory mechanism in cucumber, mainly in terms of cucumber sex determination genes, environmental conditions, and the effects of plant hormones, revealing its genetic basis to improve the number of female flowers in cucumber, thus greatly improving the yield of cucumber. This paper reviews the research progress of sex differentiation in cucumber in recent years, mainly focusing on sex-determining genes, environmental conditions, and the influence of phytohormones in cucumber, and provides a theoretical basis and technical support for the realization of high and stable yield cultivation and molecular breeding of cucumber crop traits.
Collapse
Affiliation(s)
- Haiyan Luo
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Hangzhou Lin’an District Agricultural and Rural Bureau, Hangzhou, China
| | - Huanchun Zhang
- Yantai Institute of Agricultural Sciences, Yantai, China
| | - Huasen Wang
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
37
|
Kafkas S, Ma X, Zhang X, Topçu H, Navajas-Pérez R, Wai CM, Tang H, Xu X, Khodaeiaminjan M, Güney M, Paizila A, Karcı H, Zhang X, Lin J, Lin H, Herrán RDL, Rejón CR, García-Zea JA, Robles F, Muñoz CDV, Hotz-Wagenblatt A, Min XJ, Özkan H, Motalebipour EZ, Gozel H, Çoban N, Kafkas NE, Kilian A, Huang H, Lv X, Liu K, Hu Q, Jacygrad E, Palmer W, Michelmore R, Ming R. Pistachio genomes provide insights into nut tree domestication and ZW sex chromosome evolution. PLANT COMMUNICATIONS 2023; 4:100497. [PMID: 36435969 DOI: 10.1016/j.xplc.2022.100497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 05/11/2023]
Abstract
Pistachio is a nut crop domesticated in the Fertile Crescent and a dioecious species with ZW sex chromosomes. We sequenced the genomes of Pistacia vera cultivar (cv.) Siirt, the female parent, and P. vera cv. Bagyolu, the male parent. Two chromosome-level reference genomes of pistachio were generated, and Z and W chromosomes were assembled. The ZW chromosomes originated from an autosome following the first inversion, which occurred approximately 8.18 Mya. Three inversion events in the W chromosome led to the formation of a 12.7-Mb (22.8% of the W chromosome) non-recombining region. These W-specific sequences contain several genes of interest that may have played a pivotal role in sex determination and contributed to the initiation and evolution of a ZW sex chromosome system in pistachio. The W-specific genes, including defA, defA-like, DYT1, two PTEN1, and two tandem duplications of six VPS13A paralogs, are strong candidates for sex determination or differentiation. Demographic history analysis of resequenced genomes suggest that cultivated pistachio underwent severe domestication bottlenecks approximately 7640 years ago, dating the domestication event close to the archeological record of pistachio domestication in Iran. We identified 390, 211, and 290 potential selective sweeps in 3 cultivar subgroups that underlie agronomic traits such as nut development and quality, grafting success, flowering time shift, and drought tolerance. These findings have improved our understanding of the genomic basis of sex determination/differentiation and horticulturally important traits and will accelerate the improvement of pistachio cultivars and rootstocks.
Collapse
Affiliation(s)
- Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey.
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hayat Topçu
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Rafael Navajas-Pérez
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haibao Tang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuming Xu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mortaza Khodaeiaminjan
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Murat Güney
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Aibibula Paizila
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Harun Karcı
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jing Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Roberto de la Herrán
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Carmelo Ruiz Rejón
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | | | - Francisca Robles
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Coral Del Val Muñoz
- Department of Computer Science, University of Granada, Granada, Spain; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center, Omics IT and Data Management Core Facility, Heidelberg, Germany
| | - Xiangjia Jack Min
- Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555, USA
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | | | - Hatice Gozel
- Pistachio Research Institute, Şahinbey, Gaziantep 27060, Turkey
| | - Nergiz Çoban
- Pistachio Research Institute, Şahinbey, Gaziantep 27060, Turkey
| | - Nesibe Ebru Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Andrej Kilian
- Diversity Arrays Technology, University of Canberra, Canberra, ACT, Australia
| | - HuaXing Huang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanrui Lv
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kunpeng Liu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qilin Hu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ewelina Jacygrad
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - William Palmer
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Richard Michelmore
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
38
|
Lin C, Huang Q, Liu Z, Brown SE, Chen Q, Li Y, Dong Y, Wu H, Mao Z. AoSAP8-P encoding A20 and/or AN1 type zinc finger protein in asparagus officinalis L. Improving stress tolerance in transgenic Nicotiana sylvestris. Gene 2023; 862:147284. [PMID: 36781027 DOI: 10.1016/j.gene.2023.147284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
The full length CDS of an A20 and AN1 type zinc finger gene (named AoSAP8-P), located nearby the male specific Y chromosome (MSY) region of Asparagus officinalis (garden asparagus) was amplified by RT-PCR from purple passion. This gene, predicted as the stress associated protein (SAPs) gene families, encodes 172 amino acids with multiple cis elements including light, stress response box, MYB and ERF binding sites on its promoter. To analyze its function, the gene expression of different organs in different asparagus gender were analyzed and the overexpressed transgenic Nicotiana sylvestris lines were generated. The results showed the gene was highly expressed in both flower and root of male garden asparagus; the germination rate of seeds of the T2 transgenic lines (T2-5-4 and T2-7-1) under the stress conditions of 125 mM NaCl and 150 mM mannitol were significantly higher than the wild type (WT) respectively. When the potted T2-5-4, T2-7-1 lines and WT were subjected to drought stress for 24 days and the leaf discs immerged into 20 % PEG6000 and 300 mM NaCl solution for 48 h respectively, the T2-5-4 and T2-7-1 with AoSAP8-P expression showed stronger drought, salt and osmotic stress tolerance. When compared, the effects of AoSAP8-P overexpression on productive development showed that the flowering time of transgenic lines, were ∼ 9 day earlier with larger but fewer pollens than its WT counterparts. However, there were no significant differences in anthers, stigmas and pollen viability between the transgenic lines and WT. Our results suggested that, the AoSAP8-P gene plays a role in improving the stress resistance and shortening seeds generation time for perianal survival during the growth and development of garden asparagus.
Collapse
Affiliation(s)
- Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Qiuqiu Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Sylvia E Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Qing Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yuping Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yumei Dong
- Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China.
| |
Collapse
|
39
|
Masuda K, Akagi T. Evolution of sex in crops: recurrent scrap and rebuild. BREEDING SCIENCE 2023; 73:95-107. [PMID: 37404348 PMCID: PMC10316312 DOI: 10.1270/jsbbs.22082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/20/2022] [Indexed: 07/06/2023]
Abstract
Sexuality is the main strategy for maintaining genetic diversity within a species. In flowering plants (angiosperms), sexuality is derived from ancestral hermaphroditism and multiple sexualities can be expressed in an individual. The mechanisms conferring chromosomal sex determination in plants (or dioecy) have been studied for over a century by both biologists and agricultural scientists, given the importance of this field for crop cultivation and breeding. Despite extensive research, the sex determining gene(s) in plants had not been identified until recently. In this review, we dissect plant sex evolution and determining systems, with a focus on crop species. We introduced classic studies with theoretical, genetic, and cytogenic approaches, as well as more recent research using advanced molecular and genomic techniques. Plants have undergone very frequent transitions into, and out of, dioecy. Although only a few sex determinants have been identified in plants, an integrative viewpoint on their evolutionary trends suggests that recurrent neofunctionalization events are potentially common, in a "scrap and (re)build" cycle. We also discuss the potential association between crop domestication and transitions in sexual systems. We focus on the contribution of duplication events, which are particularly frequent in plant taxa, as a trigger for the creation of new sexual systems.
Collapse
Affiliation(s)
- Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
40
|
Pleiotropic effects of Shy Girl underpin kiwifruit sex chromosome evolution. NATURE PLANTS 2023; 9:381-382. [PMID: 36899135 DOI: 10.1038/s41477-023-01379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
41
|
Akagi T, Varkonyi-Gasic E, Shirasawa K, Catanach A, Henry IM, Mertten D, Datson P, Masuda K, Fujita N, Kuwada E, Ushijima K, Beppu K, Allan AC, Charlesworth D, Kataoka I. Recurrent neo-sex chromosome evolution in kiwifruit. NATURE PLANTS 2023; 9:393-402. [PMID: 36879018 DOI: 10.1038/s41477-023-01361-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 05/18/2023]
Abstract
Sex chromosome evolution is thought to be tightly associated with the acquisition and maintenance of sexual dimorphisms. Plant sex chromosomes have evolved independently in many lineages1,2 and can provide a powerful comparative framework to study this. We assembled and annotated genome sequences of three kiwifruit species (genus Actinidia) and uncovered recurrent sex chromosome turnovers in multiple lineages. Specifically, we observed structural evolution of the neo-Y chromosomes, which was driven via rapid bursts of transposable element insertions. Surprisingly, sexual dimorphisms were conserved in the different species studied, despite the fact that the partially sex-linked genes differ between them. Using gene editing in kiwifruit, we demonstrated that one of the two Y-chromosome-encoded sex-determining genes, Shy Girl, shows pleiotropic effects that can explain the conserved sexual dimorphisms. These plant sex chromosomes therefore maintain sexual dimorphisms through the conservation of a single gene, without a process involving interactions between separate sex-determining genes and genes for sexually dimorphic traits.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Japan.
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, Japan
| | - Andrew Catanach
- The New Zealand Institute for Plant and Food Research Limited (PFR), Christchurch, New Zealand
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Daniel Mertten
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Paul Datson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
- The Kiwifruit Breeding Centre, Auckland, New Zealand
| | - Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Naoko Fujita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Eriko Kuwada
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kenji Beppu
- Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Ikuo Kataoka
- Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
42
|
Wang Y, Cai X, Zhang Y, Hörandl E, Zhang Z, He L. The male-heterogametic sex determination system on chromosome 15 of Salix triandra and Salix arbutifolia reveals ancestral male heterogamety and subsequent turnover events in the genus Salix. Heredity (Edinb) 2023; 130:122-134. [PMID: 36593355 PMCID: PMC9981616 DOI: 10.1038/s41437-022-00586-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
Dioecious Salix evolved more than 45 million years ago, but have homomorphic sex chromosomes, suggesting that turnover event(s) prevented major differentiation. Sex chromosome turnover events have been inferred in the sister genus Populus. The genus Salix includes two main clades, Salix and Vetrix, with several previously studied Vetrix clade species having female-heterogametic (ZW) or male-heterogametic (XY) sex-determining systems (SDSs) on chromosome 15, while three Salix clade species have XY SDSs on chromosome 7. We here studied two basal taxa of the Vetrix clade, S. arbutifolia and S. triandra using S. purpurea as the reference genome. Analyses of whole genome resequencing data for genome-wide associations (GWAS) with the sexes and genetic differentiation between the sexes (FST values) showed that both species have male heterogamety with a sex-determining locus on chromosome 15, suggesting an early turnover event within the Vetrix clade, perhaps promoted by sexually antagonistic or (and) sex-ratio selection. Changepoint analysis based on FST values identified small sex-linked regions of ~3.33 Mb and ~2.80 Mb in S. arbutifolia and S. triandra, respectively. The SDS of S. arbutifolia was consistent with recent results that used its own genome as reference. Ancestral state reconstruction of SDS suggests that at least two turnover events occurred in Salix.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xinjie Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Zhang
- Shenyang Arboretum, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.
| | - Li He
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| |
Collapse
|
43
|
Li W, Fu W, Hou J, Yang Y, Yin T. Evolution of plant sex and molecular mechanisms underlying plants sex separation. FORESTRY RESEARCH 2023; 3:1. [PMID: 39526260 PMCID: PMC11524252 DOI: 10.48130/fr-2023-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/20/2022] [Indexed: 11/16/2024]
Abstract
Unlike animals, plants exhibit more complexity of sexual morphs. The genetic mechanism underlying plant sex is a hot research topic in plant biology. In recent decades, advanced theories have been put forth on plant sex determination, but experimental proof is scarce. In recent years, vast achievements have been made to reveal the genetic mechanisms underlying sex separation of plants at the molecular level. Although the sex determination mechanisms have been clarified only in a limited number of plant species thus far, the discoveries offer us an opportunity to understand the genetic mechanisms triggering the separation of plant sexes. This paper reviewed the different aspects of the advanced studies on plant sex evolution and the molecular mechanisms underlying plant sex separation.
Collapse
Affiliation(s)
- Wei Li
- College of Landscape and Horticulture, Yangzhou Polytechnic College, Yangzhou 225009, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225012, China
| | - Wei Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Hou
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
44
|
Ngo Ngwe F, Siljak-Yakovlev S. Sex Determination in Dioscorea dumetorum: Evidence of Heteromorphic Sex Chromosomes and Sex-Linked NORs. PLANTS (BASEL, SWITZERLAND) 2023; 12:228. [PMID: 36678940 PMCID: PMC9861523 DOI: 10.3390/plants12020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Yams (Dioscorea spp.) are a pantropical genus located worldwide that constitute an important source of nutrients and pharmaceutical substances. Some Dioscorea crop species are widely grown in West Africa. One species that is mainly cultivated in Cameroon is Dioscorea dumetorum. This is a dioecious root crop whose sex-determining system was unknown until now. To address the possible presence of sex chromosomes in D. dumetorum, we performed a karyotype characterization of male and female individuals using classical and molecular cytogenetic approaches. It was determined that 2n = 40 was the most common number of chromosomes in all of the investigated samples. One chromosome pair was longer than the others in the chromosome set and was a heteromorph in male and homomorph in female individuals. This pair corresponded to sex chromosomes, and we also confirmed this with molecular cytogenetic experiments. The results of chromomycin banding revealed the presence of strong positive signals on this chromosome pair. The signals, corresponding to GC-rich DNA regions, were similar in size on the chromosomes of the female individuals, whereas they were different in size in the male individuals. This size difference in the GC-rich heterochromatin regions was also apparent in the interphase nuclei as one small and one large fluorescent spot. The results of the in situ hybridization experiment showed that these chromomycin positive signals on the sex chromosomes also corresponded to the 35S rDNA cluster. The mean 2C DNA value (genome size) obtained for D. dumentorum was 0.71 pg (±0.012), which represents a small genome size. We found no difference in the genome size between the male and female individuals. The results of this study contribute to increasing our knowledge of sex determination in D. dumetorum (standard sex-determining XX/XY system) and may have some agronomic applications.
Collapse
Affiliation(s)
- Florence Ngo Ngwe
- Biodiversity Division, Institute of Agricultural Research for Development, Yaoundé 2123, Cameroon
| | - Sonja Siljak-Yakovlev
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-sur-Yvette, France
| |
Collapse
|
45
|
Razumova OV, Divashuk MG, Alexandrov OS, Karlov GI. GISH painting of the Y chromosomes suggests advanced phases of sex chromosome evolution in three dioecious Cannabaceae species (Humulus lupulus, H. japonicus, and Cannabis sativa). PROTOPLASMA 2023; 260:249-256. [PMID: 35595927 DOI: 10.1007/s00709-022-01774-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
In plants, dioecy is relatively rare, and it involves sex chromosome systems that often developed independently over time. These characteristics make dioecious plants an attractive model to study sex chromosome evolution. To clarify the patterns of plant sex chromosome evolution, studies should be performed on a wide range of dioecious species. It is interesting to study the sex chromosomes in related species that evolved during a long period of independent sex chromosome evolution. The Cannabaceae family includes three dioecious species with heteromorphic sex chromosomes. Cannabis sativa and Humulus lupulus use the XX/XY chromosome system, whereas Humulus japonicus contains multiple sex chromosomes (XX/XY1Y2). To better understand sex chromosome evolution and the level of genomic divergence of these three related species, we undertook self-GISH and comparative GISH analyses. The self-GISH allowed visualization of the Y chromosomes of C. sativa, H. lupulus, and H. japonicus. The self-GISH signal was distributed along the entire Y chromosome, excluding the pseudo-autosomal region (PAR). Our results indicate that the male-specific region of the Y chromosome (MSY) spans the overwhelming majority of the Y chromosomes of all three species studied. The self-GISH results reveal the accumulation of repetitive DNA sequences in the Y chromosomes of all three species studied. This sequences presented in autosomes and/or chromosome X at a lower copy number than in Y. In comparative GISH experiments where the probe DNA of one species was applied to another species, a weak signal was exclusively detected on 45S rDNA sites, indicating a high level of genomic differentiation of the species used in this study. We demonstrate small PAR size and opposing large MSY and its positions on Y chromosomes. We also found that these genomes are highly differentiated. Furthermore, the data obtained in this study indicate a long period of independent and advanced sex chromosome evolution. Our study provides a valuable basis for future genomic studies of sex and suggests that the Cannabaceae family offers a promising model to study sex chromosome evolution.
Collapse
Affiliation(s)
- Olga V Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Mikhail G Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Oleg S Alexandrov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Gennady I Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia.
| |
Collapse
|
46
|
Ma W, Rovatsos M. Sex chromosome evolution: The remarkable diversity in the evolutionary rates and mechanisms. J Evol Biol 2022; 35:1581-1588. [DOI: 10.1111/jeb.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Wen‐Juan Ma
- Department of Molecular Biosciences University of Kansas Lawrence Kansas USA
| | | |
Collapse
|
47
|
Barbot E, Dufaÿ M, Tonnabel J, Godé C, De Cauwer I. On the function of flower number: disentangling fertility from pollinator-mediated selection. Proc Biol Sci 2022; 289:20221987. [PMID: 36448279 PMCID: PMC9709571 DOI: 10.1098/rspb.2022.1987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
In animal-pollinated angiosperms, the 'male-function' hypothesis claims that male reproductive success (RS) should benefit from large floral displays, through pollinator attraction, while female RS is expected to be mainly limited by resource availability. As appealing as this theory might be, studies comparing selection strength on flower number in both sexes rarely document the expected asymmetry. This discrepancy could arise because flower number impacts both pollinator attraction and overall gamete number. In this study, we artificially manipulate floral displays to disentangle the fertility versus pollinator attraction components of selection, both in terms of mating and RS. In females, flower number was under strong fertility selection, as predicted in the absence of pollen limitation. By contrast, in males, flower number was mainly under sexual selection, which in turn increased male RS. However, these selection patterns were not different in males with artificially increased floral displays. This suggests that sexual selection acting on flower number in males does not occur because flower number increases pollinator attraction, but rather because more pollen is available to disperse on more mates. Our study illustrates the power of disentangling various components of selection with potentially sex-specific effects for understanding the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Estelle Barbot
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Mathilde Dufaÿ
- CEFE, Univ. Montpellier, CNRS, Univ. Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Jeanne Tonnabel
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, France
- CEFE, Univ. Montpellier, CNRS, Univ. Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
48
|
Zhang S, Wu Z, Ma D, Zhai J, Han X, Jiang Z, Liu S, Xu J, Jiao P, Li Z. Chromosome-scale assemblies of the male and female Populus euphratica genomes reveal the molecular basis of sex determination and sexual dimorphism. Commun Biol 2022; 5:1186. [PMCID: PMC9636151 DOI: 10.1038/s42003-022-04145-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Reference-quality genomes of both sexes are essential for studying sex determination and sex-chromosome evolution, as their gene contents and expression profiles differ. Here, we present independent chromosome-level genome assemblies for the female (XX) and male (XY) genomes of desert poplar (Populus euphratica), resolving a 22.7-Mb X and 24.8-Mb Y chromosome. We also identified a relatively complete 761-kb sex-linked region (SLR) in the peritelomeric region on chromosome 14 (Y). Within the SLR, recombination around the partial repeats for the feminizing factor ARR17 (ARABIDOPSIS RESPONSE REGULATOR 17) was potentially suppressed by flanking palindromic arms and the dense accumulation of retrotransposons. The inverted small segments S1 and S2 of ARR17 exhibited relaxed selective pressure and triggered sex determination by generating 24-nt small interfering RNAs that induce male-specific hyper-methylation at the promoter of the autosomal targeted ARR17. We also detected two male-specific fusion genes encoding proteins with NB-ARC domains at the breakpoint region of an inversion in the SLR that may be responsible for the observed sexual dimorphism in immune responses. Our results show that the SLR appears to follow proposed evolutionary dynamics for sex chromosomes and advance our understanding of sex determination and the evolution of sex chromosomes in Populus. Reference-quality genomes of both sexes of the dioecious tree species, Populus euphratica, provide further insight into the evolution of Populus sex chromosomes and highlight male-specific fusion genes that may contribute to sexual dimorphism.
Collapse
Affiliation(s)
- Shanhe Zhang
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhihua Wu
- grid.453534.00000 0001 2219 2654College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - De Ma
- grid.410753.4Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Juntuan Zhai
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Xiaoli Han
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhenbo Jiang
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074 China
| | - Jingdong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074 China
| | - Peipei Jiao
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhijun Li
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| |
Collapse
|
49
|
Torres A, Pauli C, Givens R, Argyris J, Allen K, Monfort A, Gaudino RJ. High-throughput methods to identify male Cannabis sativa using various genotyping methods. J Cannabis Res 2022; 4:57. [PMID: 36324130 PMCID: PMC9628020 DOI: 10.1186/s42238-022-00164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background Cannabis sativa is a primarily dioecious angiosperm that exhibits sexual developmental plasticity. Developmental genes for staminate male flowers have yet to be elucidated; however, there are regions of male-associated DNA from Cannabis (MADC) that correlate with the formation of pollen producing staminate flowers. MADC2 is an example of a PCR-based genetic marker that has been shown to produce a 390-bp amplicon that correlates with the expression of male phenotypes. We demonstrate applications of a cost-effective high-throughput male genotyping assay and other genotyping applications of male identification in Cannabis sativa. Methods In this study, we assessed data from 8200 leaf samples analyzed for real-time quantitative polymerase chain reaction (qPCR) detection of MADC2 in a commercial testing application offered through Steep Hill Laboratories. Through validation, collaborative research projects, and follow-up retest analysis, we observed a > 98.5% accuracy of detection of MADC2 by qPCR. We also carried out assay development for high-resolution melting analysis (HRM), loop-mediated isothermal amplification (LAMP), and TwistDx recombinase amplification (RPA) assays using MADC2 for male identification. Results We demonstrate a robust high-throughput duplex TaqMan qPCR assay for identification of male-specific genomic signatures using a novel MADC2 qPCR probe. The qPCR cycle quotient (Cq) value representative of MADC2 detection in 3156 males and the detection of tissue control cannabinoid synthesis for 8200 samples and the absence of MADC2 detection in 5047 non-males demonstrate a robust high-throughput real-time genotyping assay for Cannabis. Furthermore, we also demonstrated the viability of using nearby regions to MADC2 with novel primers as alternative assays. Finally, we also show proof of concept of several additional commercially viable sex determination methodologies for Cannabis sativa. Discussion In industrial applications, males are desirable for their more rapid growth and higher quality fiber quality, as well as their ability to pollinate female plants and produce grain. In medicinal applications, female cultivars are more desirable for their ability to produce large amounts of secondary metabolites, specifically the cannabinoids, terpenes, and flavonoids that have various medicinal and recreational properties. In previous studies, traditional PCR and non-high-throughput methods have been reported for the detection of male cannabis, and in our study, we present multiple methodologies that can be carried out in high-throughput commercial cannabis testing. Conclusion With these markers developed for high-throughput testing assays, the Cannabis industry will be able to easily screen and select for the desired sex of a given cultivar depending on the application. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-022-00164-7.
Collapse
Affiliation(s)
| | | | | | - Jason Argyris
- Centre for Agriculture and Genomics Research, Barcelona, Spain
| | | | - Amparo Monfort
- Centre for Agriculture and Genomics Research, Barcelona, Spain
| | | |
Collapse
|
50
|
Yang J, Ling C, Zhang H, Hussain Q, Lyu S, Zheng G, Liu Y. A Comparative Genomics Approach for Analysis of Complete Mitogenomes of Five Actinidiaceae Plants. Genes (Basel) 2022; 13:genes13101827. [PMID: 36292711 PMCID: PMC9601400 DOI: 10.3390/genes13101827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022] Open
Abstract
Actinidiaceae, an economically important plant family, includes the Actinidia, Clematoclethra and Saurauia genus. Kiwifruit, with remarkably high vitamin C content, is an endemic species widely distributed in China with high economic value. Although many Actinidiaceae chloroplast genomes have been reported, few complete mitogenomes of Actinidiaceae have been studied. Here, complete circular mitogenomes of the four kiwifruit species and Saurauia tristyla were assembled. Codon usage, sequence repeats, RNA editing, gene transfers, selective pressure, and phylogenetic relationships in the four kiwifruit species and S. tristyla were comparatively analyzed. This research will contribute to the study of phylogenetic relationships within Actiniaceae and molecular barcoding in kiwifruit.
Collapse
Affiliation(s)
- Jun Yang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Chengcheng Ling
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Huamin Zhang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Guohua Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (G.Z.); (Y.L.)
| | - Yongsheng Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (G.Z.); (Y.L.)
| |
Collapse
|