1
|
Zhao L, Guo J, Xu S, Duan M, Liu B, Zhao H, Wang Y, Liu H, Yang Z, Yuan H, Jiang X, Jiang X. Abnormal changes in metabolites caused by m 6A methylation modification: The leading factors that induce the formation of immunosuppressive tumor microenvironment and their promising potential for clinical application. J Adv Res 2025; 70:159-186. [PMID: 38677545 PMCID: PMC11976433 DOI: 10.1016/j.jare.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation modifications have been widely implicated in the metabolic reprogramming of various cell types within the tumor microenvironment (TME) and are essential for meeting the demands of cellular growth and maintaining tissue homeostasis, enabling cells to adapt to the specific conditions of the TME. An increasing number of research studies have focused on the role of m6A modifications in glucose, amino acid and lipid metabolism, revealing their capacity to induce aberrant changes in metabolite levels. These changes may in turn trigger oncogenic signaling pathways, leading to substantial alterations within the TME. Notably, certain metabolites, including lactate, succinate, fumarate, 2-hydroxyglutarate (2-HG), glutamate, glutamine, methionine, S-adenosylmethionine, fatty acids and cholesterol, exhibit pronounced deviations from normal levels. These deviations not only foster tumorigenesis, proliferation and angiogenesis but also give rise to an immunosuppressive TME, thereby facilitating immune evasion by the tumor. AIM OF REVIEW The primary objective of this review is to comprehensively discuss the regulatory role of m6A modifications in the aforementioned metabolites and their potential impact on the development of an immunosuppressive TME through metabolic alterations. KEY SCIENTIFIC CONCEPTS OF REVIEW This review aims to elaborate on the intricate networks governed by the m6A-metabolite-TME axis and underscores its pivotal role in tumor progression. Furthermore, we delve into the potential implications of the m6A-metabolite-TME axis for the development of novel and targeted therapeutic strategies in cancer research.
Collapse
Affiliation(s)
- Liang Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Junchen Guo
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Hexue Yuan
- Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110020, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
2
|
Dutta H, Jain N. Degrading mutant IDH1 employing a PROTAC-based approach impairs STAT3 activation. Arch Biochem Biophys 2025; 765:110281. [PMID: 39828078 DOI: 10.1016/j.abb.2024.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Heterozygous mutations in IDH1 (isocitrate dehydrogenase 1) are found in most grade II and III brain tumors. A slew of mutant IDH1 inhibitors were identified soon after the discovery of IDH1 mutations in brain tumors. But recent reports show that mutant IDH1 inhibitors reverse therapeutic vulnerabilities and activate the oncogenic transcription factor STAT3 in mutant IDH1-expressing cells. Thus, inhibiting mutant IDH1 using mutant IDH1-specific inhibitors can result in drug resistance. Therefore, to block mutant IDH1, it is imperative to identify alternative modes of therapy. In these lines, recent findings show that PROteolysis TArgeting Chimera (PROTAC) molecules can be designed to degrade target proteins in cancer cells. However, it is unknown whether degrading mutant IDH1 leads to STAT3 activation. Therefore, in this study, we asked if degrading mutant IDH1 by employing a PROTAC-based approach leads to STAT3 activation. To answer the question, we adopted the dTAG system, where we fused FKBP12F36V to mutant IDH1 proteins and used the FKBP12F36V-specific PROTAC, dTAG-13, to degrade mutant IDH1-FKBP12F36V. We assessed STAT3 activation in dTAG-13-treated cells expressing mutant IDH1-FKBP12F36V. We found that fusing FKBP12F36V-HA to mutant IDH1 phenocopies mutant IDH1 with similar expression levels, enzyme activity, and cellular localization. We observed that dTAG-13 degrades mutant IDH1-FKBP12F36V-HA in a dose- and time-responsive manner. Unlike inhibiting, degrading mutant IDH1-FKBP12F36V-HA did not lead to pSTAT3-Y705 activation. We conclude that degrading mutant IDH1 by employing a PROTAC-based approach impairs STAT3 activation. Based on these observations, we suggest that mutant IDH1-specific PROTACs can be developed to degrade mutant IDH1 in gliomas.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Gai C, Zeng H, Xu H, Chai X, Zou Y, Zhuang C, Ge G, Zhao Q. Comprehensive exploration of isocitrate dehydrogenase (IDH) mutations: Tumorigenesis, drug discovery, and covalent inhibitor advances. Eur J Med Chem 2025; 282:117041. [PMID: 39591851 DOI: 10.1016/j.ejmech.2024.117041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Isocitrate dehydrogenase (IDH) is an enzyme that catalyses the oxidative decarboxylation of isocitrate, producing α-ketoglutarate (α-KG) relative to the hydroxylation of substrates. However, IDH mutants can further reduce α-KG to 2-hydroxyglutarate (2-HG) which competitively inhibits α-KG dependent enzymes, leading to the downregulation of normal hydroxylation pathways. Good IDH mutant inhibitors can effectively reduce the level of 2-HG and therefore disturb cellular malignant transformation. In this review, we introduce the biological functions of IDH, describe the tumorigenesis mechanisms of IDH variants, and review the structure-based drug discovery of clinical inhibitors during 2012-2024. We also find successful applications of covalent strategy in the development of irreversible IDH inhibitors. Biological screening methods are also collected in this paper, which may help researchers to rapidly construct workflows for drug discovery and development.
Collapse
Affiliation(s)
- Conghao Gai
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Hairong Zeng
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Haoming Xu
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Xiaoyun Chai
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yan Zou
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Chunlin Zhuang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| | - Guangbo Ge
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Qingjie Zhao
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
4
|
Evans L, Trinder S, Dodgshun A, Eisenstat DD, Whittle JR, Hansford JR, Valvi S. IDH-mutant gliomas in children and adolescents - from biology to clinical trials. Front Oncol 2025; 14:1515538. [PMID: 39876890 PMCID: PMC11773619 DOI: 10.3389/fonc.2024.1515538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
Gliomas account for nearly 30% of all primary central nervous system (CNS) tumors in children and adolescents and young adults (AYA), contributing to significant morbidity and mortality. The updated molecular classification of gliomas defines molecularly diverse subtypes with a spectrum of tumors associated with age-distinct incidence. In adults, gliomas are characterized by the presence or absence of mutations in isocitrate dehydrogenase (IDH), with mutated IDH (mIDH) gliomas providing favorable outcomes and avenues for targeted therapy with the emergence of mIDH inhibitors. Despite their rarity, IDH mutations have been reported in 5-15% of pediatric glioma cases. Those with primary mismatch-repair deficient mIDH astrocytomas (PMMRDIA) have a particularly poor prognosis. Here, we describe the biology of mIDH gliomas and review the literature regarding the emergence of mIDH inhibitors, including clinical trials in adults. Given the paucity of clinical trial data from pediatric patients with mIDH glioma, we propose guidelines for the inclusion of pediatric and AYA patients with gliomas onto prospective trials and expanded access programs as well as the potential of combined mIDH inhibition and immunotherapy in the treatment of patients with PMMRDIA at high risk of progression.
Collapse
Affiliation(s)
- Louise Evans
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Sarah Trinder
- Kids Cancer Centre, Sydney Children’s Hospital, Sydney, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Andrew Dodgshun
- Department of Pediatrics, University of Otago, Christchurch, New Zealand
- Children’s Hematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Stem Cell Medicine, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - James R. Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Personalized Oncology Division, Walter and Eliza Hall Institute (WEHI), Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jordan R. Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Pediatric Neuro-Oncology, Precision Cancer Medicine, South Australia Health and Medical Reseach Institute, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Pediatric and Adolescent Oncology/Hematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumor Research Program, Telethon Kids Institute, Nedlands, WA, Australia
- School of Medicine, Division of Pediatrics, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
5
|
Wang Q, Ma C, Yang B, Zheng W, Liu X, Jian G. Dysregulation of DNA methylation in colorectal cancer: biomarker, immune regulation, and therapeutic potential. Int Immunopharmacol 2025; 145:113766. [PMID: 39644791 DOI: 10.1016/j.intimp.2024.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/16/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide, with morbidity and mortality ranking third and second among all cancers, respectively. As a result of a sequence of genetic and DNA methylation alterations that gradually accumulate in the healthy colonic epithelium, colorectal adenomas and invasive adenocarcinomas eventually give rise to CRC. Global hypomethylation and promoter-specific DNA methylation are characteristics of CRC. The pathophysiological role of aberrant DNA methylation in malignant tumors has garnered significant interest in the last few decades. In addition, DNA methylation has been shown to play a critical role in influencing immune cell function and tumor immune evasion. This review summarizes the most recent research on DNA methylation changes in CRC, including the role of DNA methylation-related enzymes in CRC tumorigenesis and biomarkers for diagnosis, predictive and prognostic. Besides, we focus on the emerging potential of epigenetic interventions to enhance antitumor immune responses and improve the CRC clinical practice.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, China; Department of Pathology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Bin Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenxin Zheng
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Xinya Liu
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Gu Jian
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
6
|
Gough R, Treffy RW, Krucoff MO, Desai R. Advances in Glioblastoma Diagnosis: Integrating Genetics, Noninvasive Sampling, and Advanced Imaging. Cancers (Basel) 2025; 17:124. [PMID: 39796751 PMCID: PMC11720166 DOI: 10.3390/cancers17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma is the most common primary brain tumor in adult patients, and despite standard-of-care treatment, median survival has remained less than two years. Advances in our understanding of molecular mutations have led to changes in the diagnostic criteria of glioblastoma, with the WHO classification integrating important mutations into the grading system in 2021. We sought to review the basics of the important genetic mutations associated with glioblastoma, including known mechanisms and roles in disease pathogenesis/treatment. We also examined new advances in image processing as well as less invasive and noninvasive diagnostic tools that can aid in the diagnosis and surveillance of those undergoing treatment for glioblastoma. Our review is intended to serve as an overview of the current state-of-the-art in the diagnosis and management of glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Rupen Desai
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.G.); (R.W.T.); (M.O.K.)
| |
Collapse
|
7
|
Li Y, Yu J, Zhang Y, Peng C, Song Y, Liu S. Advances in targeted therapy of cholangiocarcinoma. Ann Med 2024; 56:2310196. [PMID: 38359439 PMCID: PMC10877652 DOI: 10.1080/07853890.2024.2310196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/20/2024] [Indexed: 02/17/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating in the bile duct and its branching epithelium. Due to its high heterogeneity, there are no specific clinical indications at the early stage, the diagnosis is often in advanced CCA. With surgical resection, the 5-year postoperative survival rate (long-term survival rate) is very poor. The regimen of gemcitabine combined with platinum has been used as the first-line chemotherapy for advanced patients. In recent years, targeted therapy for a variety of malignant tumors has made great progress, showing good efficacy and safety in advanced CCA. However, the current targeted therapy of CCA still has many challenges, such as adverse reactions, drug resistance, and individual differences. Therefore, the researches need to further explore the targeted therapy mechanism of CCA malignancies in depth, develop more effective and safe drugs, and accurately formulate plans based on patient characteristics to further improve patient prognosis in the future. This article reviews the recent progress of targeted therapy for CCA, aiming to provide a strategy for the research and clinical work of targeted therapy for CCA.
Collapse
Affiliation(s)
- Yuhang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Jianfeng Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Yujing Zhang
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Hunan Provincial Key Laboratory of Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Yinghui Song
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
- Hunan Provincial Key Laboratory of Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Cai R, Lin H, Cheng Q, Mao Q, Zhang C, Tan Y. Construction of a novel lipid drop-mitochondria-associated genetic profile for predicting the survival and prognosis of lung adenocarcinoma. Discov Oncol 2024; 15:668. [PMID: 39551861 PMCID: PMC11570572 DOI: 10.1007/s12672-024-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most common malignant tumors. Although several treatments have been proposed, the long-term prognosis of this cancer is poor. Lipid droplets and mitochondria are important organelles that regulate energy metabolism in cells and are postulated to promote the occurrence and progression of tumors. However, few risk prediction models have been constructed based on lipid drop-mitochondria-related genes (LMRGs). METHODS In this study, we constructed a lipid drop-mitochondrial (LD-M) risk score model based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Biological functions and clinical benefits associated with the various risk scores were analyzed using R software, GraphPad Prism 9, and the online database system. RESULTS An LD-M risk score model comprising ABLIM3, AK4, CAV2, CPS1, CYP24A1, DLGAP5, FGR, and SH3BP5, was developed and its predictive power was validated. The risk score was closely associated with the cell cycle. Immunophenoscore (IPS) and Tumor immune dysfunction and exclusion (TIDE) results demonstrated that the low-risk group was more sensitive to immunotherapy. Drug sensitivity analysis indicated that BMS-754807, ZM447439, SB216763, and other drugs had lower IC50 values in the low-risk group. CONCLUSION Our results suggest that the LD-M risk score is an effective prognostic indicator for individualized treatment of LUAD.
Collapse
Affiliation(s)
- Ruijuan Cai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongsheng Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | | | - Qiyuan Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuchu Zhang
- Institute of Chinese Medicine Information, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Tan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Liu S, Zhou Y, Chen Y, Qiao Y, Bai L, Zhang S, Men D, Zhang H, Pan F, Gao Y, Wang J, Wang Y. Isocitrate dehydrogenases 2-mediated dysfunctional metabolic reprogramming promotes intestinal cancer progression via regulating HIF-1A signaling pathway. Int Immunopharmacol 2024; 140:112828. [PMID: 39094359 DOI: 10.1016/j.intimp.2024.112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Changes in isocitrate dehydrogenases (IDH) lead to the production of the cancer-causing metabolite 2-hydroxyglutarate, making them a cause of cancer. However, the specific role of IDH in the progression of colon cancer is still not well understood. Our current study provides evidence that IDH2 is significantly increased in colorectal cancer (CRC) cells and actively promotes cell growth in vitro and the development of tumors in vivo. Inhibiting the activity of IDH2, either through genetic silencing or pharmacological inhibition, results in a significant increase in α-ketoglutarate (α-KG), indicating a decrease in the reductive citric acid cycle. The excessive accumulation of α-KG caused by the inactivation of IDH2 obstructs the generation of ATP in mitochondria and promotes the downregulation of HIF-1A, eventually inhibiting glycolysis. This dual metabolic impact results in a reduction in ATP levels and the suppression of tumor growth. Our study reveals a metabolic trait of colorectal cancer cells, which involves the active utilization of glutamine through reductive citric acid cycle metabolism. The data suggests that IDH2 plays a crucial role in this metabolic process and has the potential to be a valuable target for the advancement of treatments for colorectal cancer.
Collapse
Affiliation(s)
- Shixiong Liu
- Department of Geriatrics, The First Hospital of Lanzhou University, Lanzhou 730000, China; Center of Hyperbaric Oxygen Therapy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yun Zhou
- Department of Geriatrics, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yarong Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yuqin Qiao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Lumucao Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Shenhua Zhang
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Dongfang Men
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Haibu Zhang
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Fen Pan
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Yongshen Gao
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Jijing Wang
- Center of R&D for New Drug Discovery and Innovation, Nanjing BioMed Institute, Nanjing 25000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Garcia I, Cornely K, Peterson CN, Berkmen MB. Roles of the oncometabolite enantiomers of 2-hydroxyglutarate and their metabolism by diverse dehydrogenases. Essays Biochem 2024; 68:161-171. [PMID: 38919140 DOI: 10.1042/ebc20230077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
2-Hydroxyglutarate (2HG) is an oncometabolite that can contribute to tumor progression. Two enantiomer forms, L-2HG and D-2HG, arise from independent pathways starting from the precursor α-ketoglutarate (αKG). L-2HG production occurs through the promiscuous activities of malate dehydrogenase (MDH) and lactate dehydrogenase (LDH) under acidic and/or hypoxic conditions. D-2HG frequently accumulates by gain-of-function mutations in the genes encoding two isoforms of isocitrate dehydrogenase (IDH1 and IDH2). Cognate metabolite repair enzymes, L- and D-2-hydroxyglutarate dehydrogenases, oxidize the enantiomers and cause abnormally high 2HG accumulation and disease when mutated. Elevated levels of either oncometabolite affect redox homeostasis, metabolism, and immune system functioning. Moreover, the oncometabolites inhibit several α-ketoglutarate-dependent dioxygenases resulting in epigenetic changes such as DNA and histone hypermethylation as well as deficiencies in DNA repair. L-2HG, and D-2HG in some cases, inhibit degradation of hypoxia-inducible factor (HIF1α), a transcription factor that alters gene expression to adapt to hypoxic conditions, favoring tumorigenesis. Patients with the rare disease 2-hydroxyglutaric aciduria (2HGA) have exceedingly high levels of 2HG, which is neurotoxic, causing developmental delays and brain abnormalities. D-2HG also has specific effects on collagen production and NADPH pools. Recently, D-2HG has been targeted in new chemotherapies aimed at disrupting the gain-of-function IDH1 and IDH2 mutants, resulting in successful clinical trials for several cancers.
Collapse
Affiliation(s)
- Ivelitza Garcia
- Department of Chemistry, Allegheny College, Meadville, PA, U.S.A
| | - Kathleen Cornely
- Department of Chemistry and Biochemistry, Providence College, Providence, RI, U.S.A
| | | | - Melanie B Berkmen
- Department of Biochemistry, Chemistry, Environment, and Physics, Suffolk University, Boston, MA, U.S.A
| |
Collapse
|
11
|
Huang F, He Y. Epigenetic control of gene expression by cellular metabolisms in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102572. [PMID: 38875845 DOI: 10.1016/j.pbi.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Covalent modifications on DNA and histones can regulate eukaryotic gene expression and are often referred to as epigenetic modifications. These chemical reactions require various metabolites as donors or co-substrates, such as acetyl coenzyme A, S-adenosyl-l-methionine, and α-ketoglutarate. Metabolic processes that take place in the cytoplasm, nucleus, or other cellular compartments may impact epigenetic modifications in the nucleus. Here, we review recent advances on metabolic control of chromatin modifications and thus gene expression in plants, with a focus on the functions of nuclear compartmentalization of metabolic processes and enzymes in DNA and histone modifications. Furthermore, we discuss the functions of cellular metabolisms in fine-tuning gene expression to facilitate the responses or adaptation to environmental changes in plants.
Collapse
Affiliation(s)
- Fei Huang
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
12
|
Fujii J. Redox remodeling of central metabolism as a driving force for cellular protection, proliferation, differentiation, and dysfunction. Free Radic Res 2024; 58:606-629. [PMID: 39316831 DOI: 10.1080/10715762.2024.2407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The production of reactive oxygen species (ROS) is elevated via metabolic hyperactivation in response to a variety of stimuli such as growth factors and inflammation. Tolerable amounts of ROS moderately inactivate enzymes via oxidative modification, which can be reversed back to the native form in a redox-dependent manner. The excessive production of ROS, however, causes cell dysfunction and death. Redox-reactive enzymes are present in primary metabolic pathways such as glycolysis and the tricarboxylic acid cycle, and these act as floodgates for carbon flux. Oxidation of a specific form of cysteine inhibits glyceraldehyde-3-phosphate dehydrogenase, which is reversible, and causes an accumulation of upstream intermediary compounds that increases the flux of glucose-6-phosphate to the pentose phosphate pathway. These reactions increase the NADPH and ribose-5-phosphate that are available for reductive reactions and nucleotide synthesis, respectively. On the other hand, oxidative inactivation of mitochondrial aconitase increases citrate, which is then recruited to synthesize fatty acids in the cytoplasm. Decreases in the use of carbohydrate for ATP production can be compensated via amino acid catabolism, and this metabolic change makes nitrogen available for nucleic acid synthesis. Coupling of the urea cycle also converts nitrogen to urea and polyamine, the latter of which supports cell growth. This metabolic remodeling stimulates the proliferation of tumor cells and fibrosis in oxidatively damaged tissues. Oxidative modification of these enzymes is generally reversible in the early stages of oxidizing reactions, which suggests that early treatment with appropriate antioxidants promotes the maintenance of natural metabolism.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
13
|
Xu N, Wu K, La T, Cao B. Isolation and whole genomic analysis of mesophilic bacterium Pseudoglutamicibacter cumminsii in epithelial mesothelioma. Heliyon 2024; 10:e35617. [PMID: 39170262 PMCID: PMC11336841 DOI: 10.1016/j.heliyon.2024.e35617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The relationship between bacteria and tumors has been the hot spot of clinical research in recent years. Pseudoglutamicibacter cumminsii is an aerobic Gram-positive bacterium commonly found in soil. Recent studies have identified P. cumminsii in patients with cutaneous and urinary tract infections. However, little is known on its pathogenesis as well as involvement in other clinical symptoms. In this study, we first report the isolation of P. cumminsii in blood of an epithelial mesothelioma patient. The clinical and laboratory characteristics of P. cumminsii were first described and evaluated. The pure colony of P. cumminsii was then identified using automated microorganism identification system and mass spectrum. The whole genome of the newly identified strain was sequenced with third generation sequencing (TGS). The assembled genome was further annotated and analyzed. Whole genomic and comparative genomic analysis revealed that the isolated P. cumminsii strain in this study had a genome size of 2,179,930 bp and had considerable unique genes compared with strains reported in previous findings. Further phylogenetic analysis showed that this strain had divergent phylogenetic relationship with other P. cumminsii strains. Based on these results, the newly found P. cumminsii strain was named P. cumminsii XJ001 (PC1). Virulence analysis identified a total of 71 pathogenic genes with potential roles in adherence, immune modulation, nutrition/metabolism, and regulation in PC1. Functional analysis demonstrated that the annotated genes in PC1 were mainly clustered into amino acid metabolism (168 genes), carbohydrate metabolism (107 genes), cofactor and vitamin metabolisms (98 genes), and energy metabolism (68 genes). Specifically, six genes including yodJ, idh, katA, pyk, sodA, and glsA were identified within cancer pathways, and their corresponding homologous genes have been documented with precise roles in human cancer. Collectively, the above results first identified P. cumminsii in the blood of tumor patients and further provide whole genomic landscape of the newly identified PC1 strain, shedding light on future studies of bacteria in tumorigenesis.
Collapse
Affiliation(s)
- Nan Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ting La
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bo Cao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| |
Collapse
|
14
|
Pierangeli S, Donnini S, Ciaurro V, Milano F, Cardinali V, Sciabolacci S, Cimino G, Gionfriddo I, Ranieri R, Cipriani S, Padiglioni E, Iacucci Ostini R, Zei T, Pierini A, Martelli MP. The Leukemic Isocitrate Dehydrogenase (IDH) 1/2 Mutations Impair Myeloid and Erythroid Cell Differentiation of Primary Human Hematopoietic Stem and Progenitor Cells (HSPCs). Cancers (Basel) 2024; 16:2675. [PMID: 39123404 PMCID: PMC11312189 DOI: 10.3390/cancers16152675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
How hematopoietic stem and progenitor cell (HSPC) fate decisions are affected by genetic alterations acquired during AML leukemogenesis is poorly understood and mainly explored in animal models. Here, we study isocitrate dehydrogenase (IDH) gene mutations in the human model of HSPC and discuss the available literature on this topic. IDH1/2 mutations occur in ~20% of AML cases, are recognized among the mutations earliest acquired during leukemogenesis, and are targets of specific inhibitors (ivosidenib and enasidenib, respectively). In order to investigate the direct effects of these mutations on HSPCs, we expressed IDH1-R132H or IDH2-R140Q mutants into human CD34+ healthy donor cells via lentiviral transduction and analyzed the colony-forming unit (CFU) ability. CFU ability was dramatically compromised with a complete trilineage block of differentiation. Strikingly, the block was reversed by specific inhibitors, confirming that it was a specific effect induced by the mutants. In line with this observation, the CD34+ leukemic precursors isolated from a patient with IDH2-mutated AML at baseline and during enasidenib treatment showed progressive and marked improvements in their fitness over time, in terms of CFU ability and propensity to differentiate. They attained clonal trilinear reconstitution of hematopoiesis and complete hematological remission.
Collapse
Affiliation(s)
- Sara Pierangeli
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Serena Donnini
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Valerio Ciaurro
- MD Anderson Cancer Center, University of Texas, TX 78712, USA;
| | - Francesca Milano
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Valeria Cardinali
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Sofia Sciabolacci
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Gaetano Cimino
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Ilaria Gionfriddo
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Roberta Ranieri
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Sabrina Cipriani
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Eleonora Padiglioni
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Roberta Iacucci Ostini
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Tiziana Zei
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Antonio Pierini
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Maria Paola Martelli
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| |
Collapse
|
15
|
Wu MJ, Kondo H, Kammula AV, Shi L, Xiao Y, Dhiab S, Xu Q, Slater CJ, Avila OI, Merritt J, Kato H, Kattel P, Sussman J, Gritti I, Eccleston J, Sun Y, Cho HM, Olander K, Katsuda T, Shi DD, Savani MR, Smith BC, Cleary JM, Mostoslavsky R, Vijay V, Kitagawa Y, Wakimoto H, Jenkins RW, Yates KB, Paik J, Tassinari A, Saatcioglu DH, Tron AE, Haas W, Cahill D, McBrayer SK, Manguso RT, Bardeesy N. Mutant IDH1 inhibition induces dsDNA sensing to activate tumor immunity. Science 2024; 385:eadl6173. [PMID: 38991060 PMCID: PMC11602233 DOI: 10.1126/science.adl6173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/09/2024] [Indexed: 07/13/2024]
Abstract
Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated metabolic gene across human cancers. Mutant IDH1 (mIDH1) generates the oncometabolite (R)-2-hydroxyglutarate, disrupting enzymes involved in epigenetics and other processes. A hallmark of IDH1-mutant solid tumors is T cell exclusion, whereas mIDH1 inhibition in preclinical models restores antitumor immunity. Here, we define a cell-autonomous mechanism of mIDH1-driven immune evasion. IDH1-mutant solid tumors show selective hypermethylation and silencing of the cytoplasmic double-stranded DNA (dsDNA) sensor CGAS, compromising innate immune signaling. mIDH1 inhibition restores DNA demethylation, derepressing CGAS and transposable element (TE) subclasses. dsDNA produced by TE-reverse transcriptase (TE-RT) activates cGAS, triggering viral mimicry and stimulating antitumor immunity. In summary, we demonstrate that mIDH1 epigenetically suppresses innate immunity and link endogenous RT activity to the mechanism of action of a US Food and Drug Administration-approved oncology drug.
Collapse
Affiliation(s)
- Meng-Ju Wu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hiroshi Kondo
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Ashwin V. Kammula
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Lei Shi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yi Xiao
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sofiene Dhiab
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Qin Xu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Chloe J. Slater
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Universite Paris-Saclay, Institut Gustave Roussy, INSERM U1015, Villejuif, France
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Omar I. Avila
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Joshua Merritt
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hiroyuki Kato
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Prabhat Kattel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jonathan Sussman
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ilaria Gritti
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jason Eccleston
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Sun
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
| | - Hyo Min Cho
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kira Olander
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Takeshi Katsuda
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diana D. Shi
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Milan R. Savani
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bailey C. Smith
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James M Cleary
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Raul Mostoslavsky
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Vindhya Vijay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russell W. Jenkins
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
| | - Kathleen B. Yates
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | - Wilhelm Haas
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Daniel Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert T. Manguso
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| |
Collapse
|
16
|
Palominos C, Fuentes-Retamal S, Salazar JP, Guzmán-Rivera D, Correa P, Mellado M, Araya-Maturana R, Urra FA. Mitochondrial bioenergetics as a cell fate rheostat for responsive to Bcl-2 drugs: New cues for cancer chemotherapy. Cancer Lett 2024; 594:216965. [PMID: 38788967 DOI: 10.1016/j.canlet.2024.216965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Pro-survival BCL-2 proteins prevent the initiation of intrinsic apoptosis (mitochondria-dependent pathway) by inhibiting the pro-apoptotic proteins BAX and BAK, while BH3-only proteins promote apoptosis by blocking pro-survival BCL-2 proteins. Disruptions in this delicate balance contribute to cancer cell survival and chemoresistance. Recent advances in cancer therapeutics involve a new generation of drugs known as BH3-mimetics, which are small molecules designed to mimic the action of BH3-only proteins. Promising effects have been observed in patients with hematological and solid tumors undergoing treatment with these agents. However, the rapid emergence of mitochondria-dependent resistance to BH3-mimetics has been reported. This resistance involves increased mitochondrial respiration, altered mitophagy, and mitochondria with higher and tighter cristae. Conversely, mutations in isocitrate dehydrogenase 1 and 2, catalyzing R-2-hydroxyglutarate production, promote sensitivity to venetoclax. This evidence underscores the urgency for comprehensive studies on bioenergetics-based adaptive responses in both BH3 mimetics-sensitive and -resistant cancer cells. Ongoing clinical trials are evaluating BH3-mimetics in combination with standard chemotherapeutics. In this article, we discuss the role of mitochondrial bioenergetics in response to BH3-mimetics and explore potential therapeutic opportunities through metabolism-targeting strategies.
Collapse
Affiliation(s)
- Charlotte Palominos
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Sebastián Fuentes-Retamal
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Juan Pablo Salazar
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Daniela Guzmán-Rivera
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Pablo Correa
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Mathias Mellado
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3460000, Chile
| | - Félix A Urra
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Interuniversity Center for Healthy Aging (CIES), Consortium of Universities of the State of Chile (CUECH), Santiago, 8320216, Chile.
| |
Collapse
|
17
|
Lee CL, O'Kane GM, Mason WP, Zhang WJ, Spiliopoulou P, Hansen AR, Grant RC, Knox JJ, Stockley TL, Zadeh G, Chen EX. Circulating Oncometabolite 2-hydroxyglutarate as a Potential Biomarker for Isocitrate Dehydrogenase (IDH1/2) Mutant Cholangiocarcinoma. Mol Cancer Ther 2024; 23:394-399. [PMID: 38015561 PMCID: PMC10911702 DOI: 10.1158/1535-7163.mct-23-0460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Isocitrate dehydrogenase (IDH) enzymes catalyze the decarboxylation of isocitrate to alpha-ketoglutarate (αKG). IDH1/2 mutations preferentially convert αKG to R-2-hydroxyglutarate (R2HG), resulting in R2HG accumulation in tumor tissues. We investigated circulating 2-hydroxyglutate (2HG) as potential biomarkers for patients with IDH-mutant (IDHmt) cholangiocarcinoma (CCA). R2HG and S-2-hydroxyglutarate (S2HG) levels in blood and tumor tissues were analyzed in a discovery cohort of patients with IDHmt glioma and CCA. Results were validated in cohorts of patients with CCA and clear-cell renal cell carcinoma. The R2HG/S2HG ratio (rRS) was significantly elevated in tumor tissues, but not in blood for patients with IDHmt glioma, while circulating rRS was elevated in patients with IDHmt CCA. There were overlap distributions of circulating R2HG and total 2HG in patients with both IDHmt and wild-type (IDHwt) CCA, while there was minimal overlap in rRS values between patients with IDHmt and IDHwt CCA. Using the rRS cut-off value of 1.5, the sensitivity of rRS was 90% and specificity was 96.8%. Circulating rRS is significantly increased in patients with IDHmt CCA compare with patients with IDHwt CCA. Circulating rRS is a sensitive and specific surrogate biomarker for IDH1/2 mutations in CCA. It can potentially be used as a tool for monitoring IDH-targeted therapy.
Collapse
Affiliation(s)
- Cha Len Lee
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Grainne M. O'Kane
- Department of Medical Oncology, Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Warren P. Mason
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
- MacFeeters Hamilton Center for Neuro-Oncology, University Health Network, Toronto, Canada
| | - Wen-Jiang Zhang
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Pavlina Spiliopoulou
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Aaron R. Hansen
- Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Robert C. Grant
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Jennifer J. Knox
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Tracy L. Stockley
- Advanced Molecular Diagnostic Laboratory, University Health Network, Toronto, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Center for Neuro-Oncology, University Health Network, Toronto, Canada
| | - Eric X. Chen
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| |
Collapse
|
18
|
Cai M, Zhao J, Ding Q, Wei J. Oncometabolite 2-hydroxyglutarate regulates anti-tumor immunity. Heliyon 2024; 10:e24454. [PMID: 38293535 PMCID: PMC10826830 DOI: 10.1016/j.heliyon.2024.e24454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.
Collapse
Affiliation(s)
- Mengyuan Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jianyi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
19
|
Rahban M, Joushi S, Bashiri H, Saso L, Sheibani V. Characterization of prevalent tyrosine kinase inhibitors and their challenges in glioblastoma treatment. Front Chem 2024; 11:1325214. [PMID: 38264122 PMCID: PMC10804459 DOI: 10.3389/fchem.2023.1325214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant primary tumor in the central nervous system. Despite extensive efforts in radiotherapy, chemotherapy, and neurosurgery, there remains an inadequate level of improvement in treatment outcomes. The development of large-scale genomic and proteomic analysis suggests that GBMs are characterized by transcriptional heterogeneity, which is responsible for therapy resistance. Hence, knowledge about the genetic and epigenetic heterogeneity of GBM is crucial for developing effective treatments for this aggressive form of brain cancer. Tyrosine kinases (TKs) can act as signal transducers, regulate important cellular processes like differentiation, proliferation, apoptosis and metabolism. Therefore, TK inhibitors (TKIs) have been developed to specifically target these kinases. TKIs are categorized into allosteric and non-allosteric inhibitors. Irreversible inhibitors form covalent bonds, which can lead to longer-lasting effects. However, this can also increase the risk of off-target effects and toxicity. The development of TKIs as therapeutics through computer-aided drug design (CADD) and bioinformatic techniques enhance the potential to improve patients' survival rates. Therefore, the continued exploration of TKIs as drug targets is expected to lead to even more effective and specific therapeutics in the future.
Collapse
Affiliation(s)
- Mahdie Rahban
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome, Italy
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Chen X, Ding J. Molecular insights into the catalysis and regulation of mammalian NAD-dependent isocitrate dehydrogenases. Curr Opin Struct Biol 2023; 82:102672. [PMID: 37542909 DOI: 10.1016/j.sbi.2023.102672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Eukaryotic NAD-dependent isocitrate dehydrogenases (NAD-IDHs) are mitochondria-localized enzymes which catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate using NAD as a cofactor. In mammals, NAD-IDHs (or IDH3) consist of three types of subunits (α, β, and γ), and exist as (α2βγ)2 heterooctamer. Mammalian NAD-IDHs are regulated allosterically and/or competitively by a diversity of metabolites including citrate, ADP, ATP, NADH, and NADPH, which are associated with cellular metabolite flux, energy demands, and redox status. Proper assembly of the component subunits is essential for the catalysis and regulation of the enzymes. Recently, crystal structures of human IDH3 have been solved in apo form and in complex with various ligands, revealing the molecular mechanisms for the assembly, catalysis, and regulation of the enzyme.
Collapse
Affiliation(s)
- Xingchen Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Zhong Road, Shanghai 201210, China.
| |
Collapse
|
21
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
22
|
Yin WJ. A bacterial enzyme may correct 2-HG accumulation in human cancers. Front Oncol 2023; 13:1235191. [PMID: 37546420 PMCID: PMC10399246 DOI: 10.3389/fonc.2023.1235191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
A significant proportion of lower-grade glioma as well as many other types of human cancers are associated with neomorphic mutations in IDH1/2 genes (mIDH1/2). These mutations lead to an aberrant accumulation of 2-hydroxyglutarate (2-HG). Interestingly, even cancers without mIDH1/2 can exhibit increased levels of 2-HG due to factors like hypoxia and extracellular acidity. Mounting evidence demonstrates that 2-HG competitively inhibits α-ketoglutarate dependent enzymes, such as JmjC-domain-containing histone demethylases (JHDMs), ten-eleven translocation enzymes (TETs), and various dioxygenases (e.g., RNA m6A demethylases and prolyl hydroxylases). Consequently, the hypermethylation of DNA, RNA, and histones, and the abnormal activities of hypoxia-inducible factors (HIFs) have profound impacts on the establishment of cancer metabolism and microenvironment, which promote tumor progression. This connection between the oncometabolite 2-HG and glioma holds crucial implications for treatments targeting this disease. Here, I hypothesize that an ectopic introduction of a bacterial 2-hydroxyglutarate synthase (2-HG synthase) enzyme into cancer cells with 2-HG accumulation could serve as a promising enzyme therapy for glioma and other types of cancers. While absent in human metabolism, 2-HG synthase in bacterial species catalyzes the conversion of 2-HG into propionyl-CoA and glyoxylate, two metabolites that potentially possess anti-tumor effects. For a broad spectrum of human cancers with 2-HG accumulation, 2-HG synthase-based enzyme therapy holds the potential to not only correct 2-HG induced cancer metabolism but also transform an oncometabolite into metabolic challenges within cancer cells.
Collapse
Affiliation(s)
- William J. Yin
- Oconee County High School, Watkinsville, GA, United States
- Bio-Imaging Research Center, The University of Georgia, Athens, GA, United States
| |
Collapse
|
23
|
Niu X, Stancliffe E, Gelman SJ, Wang L, Schwaiger-Haber M, Rowles JL, Shriver LP, Patti GJ. Cytosolic and mitochondrial NADPH fluxes are independently regulated. Nat Chem Biol 2023; 19:837-845. [PMID: 36973440 DOI: 10.1038/s41589-023-01283-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/02/2023] [Indexed: 03/29/2023]
Abstract
Although nicotinamide adenine dinucleotide phosphate (NADPH) is produced and consumed in both the cytosol and mitochondria, the relationship between NADPH fluxes in each compartment has been difficult to assess due to technological limitations. Here we introduce an approach to resolve cytosolic and mitochondrial NADPH fluxes that relies on tracing deuterium from glucose to metabolites of proline biosynthesis localized to either the cytosol or mitochondria. We introduced NADPH challenges in either the cytosol or mitochondria of cells by using isocitrate dehydrogenase mutations, administering chemotherapeutics or with genetically encoded NADPH oxidase. We found that cytosolic challenges influenced NADPH fluxes in the cytosol but not NADPH fluxes in mitochondria, and vice versa. This work highlights the value of using proline labeling as a reporter system to study compartmentalized metabolism and reveals that NADPH homeostasis in the cytosolic and mitochondrial locations of a cell are independently regulated, with no evidence for NADPH shuttle activity.
Collapse
Affiliation(s)
- Xiangfeng Niu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Washington University Center for Metabolomics and Isotope Tracing, St. Louis, MO, USA
| | - Ethan Stancliffe
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Washington University Center for Metabolomics and Isotope Tracing, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Susan J Gelman
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Washington University Center for Metabolomics and Isotope Tracing, St. Louis, MO, USA
| | - Lingjue Wang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Washington University Center for Metabolomics and Isotope Tracing, St. Louis, MO, USA
| | - Michaela Schwaiger-Haber
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Washington University Center for Metabolomics and Isotope Tracing, St. Louis, MO, USA
| | - Joe L Rowles
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Washington University Center for Metabolomics and Isotope Tracing, St. Louis, MO, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Washington University Center for Metabolomics and Isotope Tracing, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
- Washington University Center for Metabolomics and Isotope Tracing, St. Louis, MO, USA.
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
24
|
Kurimoto M, Rockenbach Y, Kato A, Natsume A. Prediction of Tumor Development and Urine-Based Liquid Biopsy for Molecule-Targeted Therapy of Gliomas. Genes (Basel) 2023; 14:1201. [PMID: 37372381 DOI: 10.3390/genes14061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The timing of the acquisition of tumor-specific gene mutations and the systems by which these gene mutations are acquired during tumorigenesis were clarified. Advances in our understanding of tumorigenesis are being made every day, and therapies targeting fundamental genetic alterations have great potential for cancer treatment. Moreover, our research team successfully estimated tumor progression using mathematical modeling and attempted early diagnosis of brain tumors. We developed a nanodevice that enables urinary genetic diagnosis in a simple and noninvasive manner. Mainly on the basis of our research and experience, this review article presents novel therapies being developed for central nervous system cancers and six molecules, which upon mutation cause tumorigenesis and tumor progression. Further understanding of the genetic characteristics of brain tumors will lead to the development of precise drugs and improve individual treatment outcomes.
Collapse
Affiliation(s)
- Michihiro Kurimoto
- Department of Neurosurgery, Aichi Children's Health and Medical Center, Obu 464-8710, Japan
| | - Yumi Rockenbach
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Akira Kato
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Atsushi Natsume
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
25
|
Wang QX, Zhang PY, Li QQ, Tong ZJ, Wu JZ, Yu SP, Yu YC, Ding N, Leng XJ, Chang L, Xu JG, Sun SL, Yang Y, Li NG, Shi ZH. Challenges for the development of mutant isocitrate dehydrogenases 1 inhibitors to treat glioma. Eur J Med Chem 2023; 257:115464. [PMID: 37235998 DOI: 10.1016/j.ejmech.2023.115464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Glioma is one of the most common types of brain tumors, and its high recurrence and mortality rates threaten human health. In 2008, the frequent isocitrate dehydrogenase 1 (IDH1) mutations in glioma were reported, which brought a new strategy in the treatment of this challenging disease. In this perspective, we first discuss the possible gliomagenesis after IDH1 mutations (mIDH1). Subsequently, we systematically investigate the reported mIDH1 inhibitors and present a comparative analysis of the ligand-binding pocket in mIDH1. Additionally, we also discuss the binding features and physicochemical properties of different mIDH1 inhibitors to facilitate the future development of mIDH1 inhibitors. Finally, we discuss the possible selectivity features of mIDH1 inhibitors against WT-IDH1 and IDH2 by combining protein-based and ligand-based information. We hope that this perspective can inspire the development of mIDH1 inhibitors and bring potent mIDH1 inhibitors for the treatment of glioma.
Collapse
Affiliation(s)
- Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Peng-Yu Zhang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shao-Peng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin-Guo Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
26
|
Abdelmaksoud NM, Abulsoud AI, Abdelghany TM, Elshaer SS, Rizk SM, Senousy MA. Mitochondrial remodeling in colorectal cancer initiation, progression, metastasis, and therapy: A review. Pathol Res Pract 2023; 246:154509. [PMID: 37182313 DOI: 10.1016/j.prp.2023.154509] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Colorectal cancer (CRC) is a major health concern with multifactorial pathophysiology representing intense therapeutic challenges. It is well known that deregulation of spatiotemporally-controlled signaling pathways and their metabolic reprogramming effects play a pivotal role in the development and progression of CRC. As such, the mitochondrial role in CRC initiation gained a lot of attention recently, as it is considered the powerhouse that regulates the bioenergetics in CRC. In addition, the crosstalk between microRNAs (miRNAs) and mitochondrial dysfunction has become a newfangled passion for deciphering CRC molecular mechanisms. This review sheds light on the relationship between different signaling pathways involved in metabolic reprogramming and their therapeutic targets, alterations in mitochondrial DNA content, mitochondrial biogenesis, and mitophagy, and the role of polymorphisms in mitochondrial genes as well as miRNAs regulating mitochondrial proteins in CRC initiation, progression, metastasis, and resistance to various therapies.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt.
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Sherine Maher Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| |
Collapse
|
27
|
Alshiekh Nasany R, de la Fuente MI. Therapies for IDH-Mutant Gliomas. Curr Neurol Neurosci Rep 2023; 23:225-233. [PMID: 37060388 PMCID: PMC10182950 DOI: 10.1007/s11910-023-01265-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW Isocitrate dehydrogenase (IDH) mutant gliomas are a distinct type of primary brain tumors with unique characteristics, behavior, and disease outcomes. This article provides a review of standard of care treatment options and innovative, therapeutic approaches that are currently under investigation for these tumors. RECENT FINDINGS Extensive pre-clinical data and a variety of clinical studies support targeting IDH mutations in glioma using different mechanisms, which include direct inhibition and immunotherapies that target metabolic and epigenomic vulnerabilities caused by these mutations. IDH mutations have been recognized as an oncogenic driver in gliomas for more than a decade and as a positive prognostic factor influencing the research for new therapeutic methods including IDH inhibitors, DNA repair inhibitors, and immunotherapy.
Collapse
Affiliation(s)
| | - Macarena Ines de la Fuente
- Sylvester Comprehensive Cancer Center and Department of Neurology, 1120 NW 14th Street, Miami, FL, 33136, USA.
| |
Collapse
|
28
|
Chang H, Hu X, Tang X, Tian S, Li Y, Lv X, Shang L. A Mitochondria-Targeted Fluorescent Probe for Monitoring NADPH Overproduction during Influenza Virus Infection. ACS Sens 2023; 8:829-838. [PMID: 36689687 DOI: 10.1021/acssensors.2c02458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an important cofactor in the progress of antioxidant synthesis and biosynthesis, and an abnormal NADPH level has been observed in many viral infection processes. However, efficient tools to monitor NADPH in living cells after viral infection have not been reported. In this work, we present a fluorescent probe, NAFP4, that could detect NADPH ex vivo with a low detection limit of 3.66 nM and image mitochondrial NADPH level changes in living cells. The probe exhibits excellent cell permeability, rapid reactivity, and high selectivity with minimal cytotoxicity. Using NAFP4, we reveal that the NADPH is overproduced in the host cells infected by influenza virus, which was caused by an elevated level of G6PDH during the virus infection. Moreover, there was positive association between the G6PDH level and virus replication. With the proposed probe NAFP4, our study highlights that the virus infection would influence the host metabolism in NADPH production and also suggests that G6PDH is expected to be a promising target for antiviral therapy.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiao Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiaomei Tang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Shiwei Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Yidan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xing Lv
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| |
Collapse
|
29
|
Liu Y, Xu W, Li M, Yang Y, Sun D, Chen L, Li H, Chen L. The regulatory mechanisms and inhibitors of isocitrate dehydrogenase 1 in cancer. Acta Pharm Sin B 2023; 13:1438-1466. [PMID: 37139412 PMCID: PMC10149907 DOI: 10.1016/j.apsb.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/04/2023] Open
Abstract
Reprogramming of energy metabolism is one of the basic characteristics of cancer and has been proved to be an important cancer treatment strategy. Isocitrate dehydrogenases (IDHs) are a class of key proteins in energy metabolism, including IDH1, IDH2, and IDH3, which are involved in the oxidative decarboxylation of isocitrate to yield α-ketoglutarate (α-KG). Mutants of IDH1 or IDH2 can produce d-2-hydroxyglutarate (D-2HG) with α-KG as the substrate, and then mediate the occurrence and development of cancer. At present, no IDH3 mutation has been reported. The results of pan-cancer research showed that IDH1 has a higher mutation frequency and involves more cancer types than IDH2, implying IDH1 as a promising anti-cancer target. Therefore, in this review, we summarized the regulatory mechanisms of IDH1 on cancer from four aspects: metabolic reprogramming, epigenetics, immune microenvironment, and phenotypic changes, which will provide guidance for the understanding of IDH1 and exploring leading-edge targeted treatment strategies. In addition, we also reviewed available IDH1 inhibitors so far. The detailed clinical trial results and diverse structures of preclinical candidates illustrated here will provide a deep insight into the research for the treatment of IDH1-related cancers.
Collapse
|
30
|
Liu X, Reinbold R, Liu S, Herold RA, Rabe P, Duclos S, Yadav RB, Abboud MI, Thieffine S, Armstrong FA, Brewitz L, Schofield CJ. Natural and synthetic 2-oxoglutarate derivatives are substrates for oncogenic variants of human isocitrate dehydrogenase 1 and 2. J Biol Chem 2023; 299:102873. [PMID: 36621625 PMCID: PMC9939733 DOI: 10.1016/j.jbc.2023.102873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Variants of isocitrate dehydrogenase (IDH) 1 and 2 (IDH1/2) alter metabolism in cancer cells by catalyzing the NADPH-dependent reduction of 2-oxoglutarate (2OG) to (2R)-hydroxyglutarate. However, it is unclear how derivatives of 2OG can affect cancer cell metabolism. Here, we used synthetic C3- and C4-alkylated 2OG derivatives to investigate the substrate selectivities of the most common cancer-associated IDH1 variant (R132H IDH1), of two cancer-associated IDH2 variants (R172K IDH2, R140Q IDH2), and of WT IDH1/2. Absorbance-based, NMR, and electrochemical assays were employed to monitor WT IDH1/2 and IDH1/2 variant-catalyzed 2OG derivative turnover in the presence and absence of 2OG. Our results reveal that 2OG derivatives can serve as substrates of the investigated IDH1/2 variants, but not of WT IDH1/2, and have the potential to act as 2OG-competitive inhibitors. Kinetic parameters reveal that some 2OG derivatives, including the natural product 3-methyl-2OG, are equally or even more efficient IDH1/2 variant substrates than 2OG. Furthermore, NMR and mass spectrometry studies confirmed IDH1/2 variant-catalyzed production of alcohols in the cases of the 3-methyl-, 3-butyl-, and 3-benzyl-substituted 2OG derivatives; a crystal structure of 3-butyl-2OG with an IDH1 variant (R132C/S280F IDH1) reveals active site binding. The combined results highlight the potential for (i) IDH1/2 variant-catalyzed reduction of 2-oxoacids other than 2OG in cells, (ii) modulation of IDH1/2 variant activity by 2-oxoacid natural products, including some present in common foods, (iii) inhibition of IDH1/2 variants via active site binding rather than the established allosteric mode of inhibition, and (iv) possible use of IDH1/2 variants as biocatalysts.
Collapse
Affiliation(s)
- Xiao Liu
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Raphael Reinbold
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Shuang Liu
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Ryan A Herold
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | | | | | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | | | - Fraser A Armstrong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
31
|
White K, Someya S. The roles of NADPH and isocitrate dehydrogenase in cochlear mitochondrial antioxidant defense and aging. Hear Res 2023; 427:108659. [PMID: 36493529 PMCID: PMC11446251 DOI: 10.1016/j.heares.2022.108659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Hearing loss is the third most prevalent chronic health condition affecting older adults. Age-related hearing loss affects one in three adults over 65 years of age and is caused by both extrinsic and intrinsic factors, including genetics, aging, and exposure to noise and toxins. All cells possess antioxidant defense systems that play an important role in protecting cells against these factors. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) serves as a co-factor for antioxidant enzymes such as glutathione reductase and thioredoxin reductase and is produced by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase 1 (IDH1) or malic enzyme 1 in the cytosol, while in the mitochondria, NADPH is generated from mitochondrial transhydrogenase, glutamate dehydrogenase, malic enzyme 3 or IDH2. There are three isoforms of IDH: cytosolic IDH1, and mitochondrial IDH2 and IDH3. Of these, IDH2 is thought to be the major supplier of NADPH to the mitochondrial antioxidant defense system. The NADP+/NADPH and NAD+/NADH couples are essential for maintaining a large array of biological processes, including cellular redox state, and energy metabolism, mitochondrial function. A growing body of evidence indicates that mitochondrial dysfunction contributes to age-related structural or functional changes of cochlear sensory hair cells and neurons, leading to hearing impairments. In this review, we describe the current understanding of the roles of NADPH and IDHs in cochlear mitochondrial antioxidant defense and aging.
Collapse
Affiliation(s)
- Karessa White
- Charlie Brigade Support Medical Company, 2/1 ABCT, United States Army, Fort Riley, KS, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
32
|
High levels of TIMP1 are associated with increased extracellular matrix stiffness in isocitrate dehydrogenase 1-wild type gliomas. J Transl Med 2022; 102:1304-1313. [PMID: 35882906 DOI: 10.1038/s41374-022-00825-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Glioma progression is accompanied with increased tumor tissue stiffness, yet the underlying mechanisms are unclear. Herein, we employed atomic force microscopy analysis to show that tissue stiffness was higher in isocitrate dehydrogenase (IDH)-wild type gliomas than IDH-mutant gliomas. Bioinformatic analyses revealed that tissue inhibitor of metalloproteinase-1 (TIMP1) was one of the preferentially upregulated genes in IDH-wild type gliomas as compared to IDH-mutant gliomas, and its higher expression indicated worse prognosis of glioma patients. TIMP1 intensity determined by immunofluorescence staining on glioma tissues positively correlated with glioma tissue stiffness. Mechanistically, TIMP1 expression was positively correlated with the gene expression of two predominant extracellular matrix components, tenascin C and fibronectin, both of which were also highly expressed in IDH-wild type gliomas. By introducing IDH1-R132H-containing vectors into human IDH1-wild type glioma cells to obtain an IDH1-mutant cell line, we found that IDH1 mutation increased the TIMP1 promoter methylation through methylation-specific PCR. More importantly, IDH1-R132H mutation decreased both the expression of TIMP1, fibronectin, tenascin C, and the tumor tissue stiffness in IDH1-mutant glioma xenografts in contrast to IDH1-wild type counterparts. Moreover, TIMP1 knockdown in IDH-wild type glioma cells inhibited the expression of tenascin C and fibronectin, and decreased tissue stiffness in intracranial glioma xenografts. Conclusively, we revealed an IDH mutation status-mediated mechanism in regulating glioma tissue stiffness through modulating TIMP1 and downstream extracellular matrix components.
Collapse
|
33
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
34
|
He Q, Chen J, Xie Z, Chen Z. Wild-Type Isocitrate Dehydrogenase-Dependent Oxidative Decarboxylation and Reductive Carboxylation in Cancer and Their Clinical Significance. Cancers (Basel) 2022; 14:cancers14235779. [PMID: 36497259 PMCID: PMC9741289 DOI: 10.3390/cancers14235779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The human isocitrate dehydrogenase (IDH) gene encodes for the isoenzymes IDH1, 2, and 3, which catalyze the conversion of isocitrate and α-ketoglutarate (α-KG) and are required for normal mammalian metabolism. Isocitrate dehydrogenase 1 and 2 catalyze the reversible conversion of isocitrate to α-KG. Isocitrate dehydrogenase 3 is the key enzyme that mediates the production of α-KG from isocitrate in the tricarboxylic acid (TCA) cycle. In the TCA cycle, the decarboxylation reaction catalyzed by isocitrate dehydrogenase mediates the conversion of isocitrate to α-KG accompanied by dehydrogenation, a process commonly known as oxidative decarboxylation. The formation of 6-C isocitrate from α-KG and CO2 catalyzed by IDH is termed reductive carboxylation. This IDH-mediated reversible reaction is of great importance in tumor cells. We outline the role of the various isocitrate dehydrogenase isoforms in cancer, discuss the metabolic implications of interference with IDH, summarize therapeutic interventions targeting changes in IDH expression, and highlight areas for future research.
Collapse
|
35
|
Development and validation of an LC-MS/MS method for D- and L-2-hydroxyglutaric acid measurement in cerebrospinal fluid, urine and plasma: application to glioma. Bioanalysis 2022; 14:1271-1280. [PMID: 36453751 DOI: 10.4155/bio-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aim: IDH mutations have been identified as frequent molecular lesions in several tumor types, particularly in gliomas. As a putative marker of IDH mutations, elevated D-2-HG has been reported in glioma, acute myeloid leukemia and intrahepatic cholangiocarcinoma. Excessive production of L-2-HG has also been described in renal cell carcinoma and 2-hydroxyaciduria. Materials & methods: The authors present a fully optimized stable isotope dilution multiple reaction monitoring method for quantification of D-/L-2-HG using LC-MS/MS. This is the first method validation study performed on cerebrospinal fluid, plasma and urine demonstrating clinical applicability with samples from glioma patients. Results & conclusion: This method validation study showed high accuracy and precision with low limit of detection and limit of quantification values. The authors believe that the presented approach is highly applicable for basic and clinical research on related pathologies.
Collapse
|
36
|
Hu C, Zeng Z, Ma D, Yin Z, Zhao S, Chen T, Tang L, Zuo S. Discovery of novel IDH1-R132C inhibitors through structure-based virtual screening. Front Pharmacol 2022; 13:982375. [PMID: 36160383 PMCID: PMC9491111 DOI: 10.3389/fphar.2022.982375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) belongs to a family of enzymes involved in glycometabolism. It is found in many living organisms and is one of the most mutated metabolic enzymes. In the current study, we identified novel IDH1-R132C inhibitors using docking-based virtual screening and cellular inhibition assays. A total of 100 molecules with high docking scores were obtained from docking-based virtual screening. The cellular inhibition assay demonstrated five compounds at a concentration of 10 μM could inhibit cancer cells harboring the IDH1-R132C mutation proliferation by > 50%. The compound (T001-0657) showed the most potent effect against cancer cells harboring the IDH1-R132C mutation with a half-maximal inhibitory concentration (IC50) value of 1.311 μM. It also showed a cytotoxic effect against cancer cells with wild-type IDH1 and normal cells with IC50 values of 49.041 μM and >50 μM, respectively. Molecular dynamics simulations were performed to investigate the stability of the kinase structure binding of allosteric inhibitor compound A and the identified compound T001-0657 binds to IDH1-R132C. Root-mean-square deviation, root-mean-square fluctuation, and binding free energy calculations showed that both compounds bind tightly to IDH1-R132C. In conclusion, the compound identified in this study had high selectivity for cancer cells harboring IDH1-R132C mutation and could be considered a promising hit compound for further development of IDH1-R132C inhibitors.
Collapse
Affiliation(s)
- Chujiao Hu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R and D, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhirui Zeng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dan Ma
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R and D, Guiyang, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhixin Yin
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Shanshan Zhao
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Tengxiang Chen, ; Lei Tang, ; Shi Zuo,
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R and D, Guiyang, China
- *Correspondence: Tengxiang Chen, ; Lei Tang, ; Shi Zuo,
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Tengxiang Chen, ; Lei Tang, ; Shi Zuo,
| |
Collapse
|
37
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
38
|
Chen M, Xu J, Chen F, Zhou Q, Wang S, Han A. Validated UPLC-MS/MS method for the determination of ivosidenib in rat plasma: Application to a pharmacokinetic study. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Ivosidenib (AG-120) is an unlisted, but estimated to be valid, oral inhibitor for isocitrate dehydrogenase 1 (IDH1) in the phase Ⅰ study of IDH1-mutated acute myeloid leukemia (AML) patients. This paper presents the investigation and validation of a rapid, effective, qualitative and quantitative determination method of ivosidenib in rat plasma by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The samples were treated using acetonitrile precipitation to remove protein influence. Then, the supernatant was extracted to analyze plasma concentration traits. In the UPLC system, acetonitrile and water containing 0.1% formic acid were selected as a cosolvent mobile phase, applying a gradient elution to isolate compounds in a C18 column. Mass detections were performed on a triple quadruple mass spectrometer in positive ion mode. Electroshock characteristic fragment ionization was used for m/z 583.95→214.53 for ivosidenib for quantitative determination, m/z 583.95→186.6 for qualitative determination, and m/z 492.06→354.55 for IS. The selectivity, linearity, stability, accuracy and precision were verified by reaching the guideline criteria from European Medicine Agency (EMA) and the Food and Drug Administration (FDA). The calibration curve was linear over the concentration range of 2–2,000 ng mL−1 for ivosidenib in rat plasma with a lower limit of quantification (LLOQ) of at least 2 ng mL−1. Additionally, there was no distinct matrix effect or carry-over phenomenon. The method was successfully established and applied to separate ivosidenib from plasma, with the entire analytical process being performed within 3 min for each sample, which shows high-efficiency and convenience for further studies of ivosidenib.
Collapse
Affiliation(s)
- Minle Chen
- Department of Pharmacy, Yueqing Hospital of Traditional Chinese Medicine, Wenzhou 325600, Zhejiang, China
| | - Jia Xu
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui 323000, Zhejiang, China
| | - Feifei Chen
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui 323000, Zhejiang, China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui 323000, Zhejiang, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui 323000, Zhejiang, China
| | - Aixia Han
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui 323000, Zhejiang, China
| |
Collapse
|
39
|
Tian W, Zhang W, Wang Y, Jin R, Wang Y, Guo H, Tang Y, Yao X. Recent advances of IDH1 mutant inhibitor in cancer therapy. Front Pharmacol 2022; 13:982424. [PMID: 36091829 PMCID: PMC9449373 DOI: 10.3389/fphar.2022.982424] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) is the key metabolic enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate (α-KG). Two main types of IDH1 and IDH2 are present in humans. In recent years, mutations in IDH have been observed in several tumors, including glioma, acute myeloid leukemia, and chondrosarcoma. Among them, the frequency of IDH1 mutations is higher than IDH2. IDH1 mutations have been shown to increase the conversion of α-KG to 2-hydroxyglutarate (2-HG). IDH1 mutation-mediated accumulation of 2-HG leads to epigenetic dysregulation, altering gene expression, and impairing cell differentiation. A rapidly emerging therapeutic approach is through the development of small molecule inhibitors targeting mutant IDH1 (mIDH1), as evidenced by the recently approved of the first selective IDH1 mutant inhibitor AG-120 (ivosidenib) for the treatment of IDH1-mutated AML. This review will focus on mIDH1 as a therapeutic target and provide an update on IDH1 mutant inhibitors in development and clinical trials.
Collapse
Affiliation(s)
- Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
40
|
Wen Q, Zhou J, Sun X, Ma T, Liu Y, Xie Y, Wang L, Cheng J, Wen J, Wu J, Zou J, Liu S, Liu J. Urine metabolomics analysis of sleep quality in deep-underground miners: A pilot study. Front Public Health 2022; 10:969113. [PMID: 36062104 PMCID: PMC9437423 DOI: 10.3389/fpubh.2022.969113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
Background In previous questionnaire surveys of miners, sleep disorders were found among underground workers. The influence of the special deep-underground environment and its potential mechanism are still unclear. Therefore, this study intends to utilize LC-MS metabolomics to study the potential differences between different environments and different sleep qualities. Methods Twenty-seven miners working at 645-1,500 m deep wells were investigated in this study, and 12 local ground volunteers were recruited as the control group. The Pittsburgh Sleep Quality Index (PSQI) was used to examine and evaluate the sleep status of the subjects in the past month, and valuable basic information about the participants was collected. PSQI scores were obtained according to specific calculation rules, and the corresponding sleep grouping and subsequent analysis were carried out. Through liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolomics analysis, differences in metabolism were found by bioinformatics analysis in different environments. Results Between the deep-underground and ground (DUvsG) group, 316 differential metabolites were identified and 125 differential metabolites were identified in the good sleep quality vs. poor sleep quality (GSQvsPSQ) group. The metabolic pathways of Phenylalanine, tyrosine and tryptophan biosynthesis (p = 0.0102) and D-Glutamine and D-glutamate metabolism (p = 0.0241) were significantly enriched in DUvsG. For GSQvsPSQ group, Butanoate metabolism was statistically significant (p = 0.0276). L-Phenylalanine, L-Tyrosine and L-Glutamine were highly expressed in the deep-underground group. Acetoacetic acid was poorly expressed, and 2-hydroxyglutaric acid was highly expressed in good sleep quality. Conclusions The influence of the underground environment on the human body is more likely to induce specific amino acid metabolism processes, and regulate the sleep-wake state by promoting the production of excitatory neurotransmitters. The difference in sleep quality may be related to the enhancement of glycolytic metabolism, the increase in excitatory neurotransmitters and the activation of proinflammation. L-phenylalanine, L-tyrosine and L-glutamine, Acetoacetic acid and 2-hydroxyglutaric acid may be potential biomarkers correspondingly.
Collapse
Affiliation(s)
- Qiao Wen
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhou
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoru Sun
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tengfei Ma
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yilin Liu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yike Xie
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Cheng
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China,Shixi Liu
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jifeng Liu
| |
Collapse
|
41
|
Delle Donne R, Iannucci R, Rinaldi L, Roberto L, Oliva MA, Senatore E, Borzacchiello D, Lignitto L, Giurato G, Rizzo F, Sellitto A, Chiuso F, Castaldo S, Scala G, Campani V, Nele V, De Rosa G, D'Ambrosio C, Garbi C, Scaloni A, Weisz A, Ambrosino C, Arcella A, Feliciello A. Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth. Commun Biol 2022; 5:780. [PMID: 35918402 PMCID: PMC9345969 DOI: 10.1038/s42003-022-03639-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent and aggressive form of primary brain tumor in the adult population; its high recurrence rate and resistance to current therapeutics urgently demand a better therapy. Regulation of protein stability by the ubiquitin proteasome system (UPS) represents an important control mechanism of cell growth. UPS deregulation is mechanistically linked to the development and progression of a variety of human cancers, including GBM. Thus, the UPS represents a potentially valuable target for GBM treatment. Using an integrated approach that includes proteomics, transcriptomics and metabolic profiling, we identify praja2, a RING E3 ubiquitin ligase, as the key component of a signaling network that regulates GBM cell growth and metabolism. Praja2 is preferentially expressed in primary GBM lesions expressing the wild-type isocitrate dehydrogenase 1 gene (IDH1). Mechanistically, we found that praja2 ubiquitylates and degrades the kinase suppressor of Ras 2 (KSR2). As a consequence, praja2 restrains the activity of downstream AMP-dependent protein kinase in GBM cells and attenuates the oxidative metabolism. Delivery in the brain of siRNA targeting praja2 by transferrin-targeted self-assembling nanoparticles (SANPs) prevented KSR2 degradation and inhibited GBM growth, reducing the size of the tumor and prolonging the survival rate of treated mice. These data identify praja2 as an essential regulator of cancer cell metabolism, and as a potential therapeutic target to suppress GBM growth.
Collapse
Affiliation(s)
- Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Rosa Iannucci
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | | | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Luca Lignitto
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | - Giovanni Scala
- Department of Biology, University Federico II, Naples, Italy
| | | | - Valeria Nele
- Department of Pharmacy, University Federico II, Naples, Italy
| | | | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
- Genome Research Center for Health, Campus of Medicine, University of Salerno, Salerno, Italy
| | - Concetta Ambrosino
- Biogem, Ariano Irpino, Avellino, Italy
- Department of Science and Technology University of Sannio, Benevento, Italy
| | | | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.
| |
Collapse
|
42
|
Vallejo FA, Sanchez A, Cuglievan B, Walters WM, De Angulo G, Vanni S, Graham RM. NAMPT Inhibition Induces Neuroblastoma Cell Death and Blocks Tumor Growth. Front Oncol 2022; 12:883318. [PMID: 35814452 PMCID: PMC9261286 DOI: 10.3389/fonc.2022.883318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
High-risk neuroblastoma (NB) portends very poor prognoses in children. Targeting tumor metabolism has emerged as a novel therapeutic strategy. High levels of nicotinamide-adenine-dinucleotide (NAD+) are required for rapid cell proliferation. Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme for NAD+ salvage and is overexpressed in several cancers. Here, we determine the potential of NAMPT as a therapeutic target for NB treatment. NAMPT inhibition cytotoxicity was determined by trypan blue exclusion and LDH assays. Neuroblastoma stem cell self-renewal was evaluated by neurosphere assay. Protein expression was evaluated via Western blot. The effect of targeting NAMPT in vivo was determined using an NB1691-xenografted mouse model. Robust NAMPT expression was demonstrated in multiple N-MYC amplified, high-risk neuroblastoma cell lines. NAMPT inhibition with STF-118804 (STF) decreased ATP, induced apoptosis, and reduced NB stem cell neurosphere formation. STF treatment down-regulated N-MYC levels and abrogated AKT activation. AKT and glycolytic pathway inhibitors in combination with NAMPT inhibition induced robust, greater-than-additive neuroblastoma cell death. Lastly, STF treatment blocked neuroblastoma tumor growth in mouse xenograft models. NAMPT is a valid therapeutic target as inhibition promoted neuroblastoma cell death in vitro and prevented tumor growth in vivo. Further investigation is warranted to establish this therapy’s role as an adjunctive modality.
Collapse
Affiliation(s)
- Frederic A. Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anthony Sanchez
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiology and Imaging Sciences, University of Utah Hospital, Salt Lake City, UT, United States
| | - Branko Cuglievan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Pediatrics Patient Care, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Winston M. Walters
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Guillermo De Angulo
- Department of Hematology/Oncology and Immunology, Nicklaus Children’s Hospital, Miami, FL, United States
| | - Steven Vanni
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurosurgery, HCA Florida University Hospital, Davie, FL, United States
- Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL, United States
| | - Regina M. Graham
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
- *Correspondence: Regina M. Graham,
| |
Collapse
|
43
|
Natsume A, Arakawa Y, Narita Y, Sugiyama K, Hata N, Muragaki Y, Shinojima N, Kumabe T, Saito R, Motomura K, Mineharu Y, Miyakita Y, Yamasaki F, Matsushita Y, Ichimura K, Ito K, Tachibana M, Kakurai Y, Okamoto N, Asahi T, Nishijima S, Yamaguchi T, Tsubouchi H, Nakamura H, Nishikawa R. The first-in-human phase I study of a brain-penetrant mutant IDH1 inhibitor DS-1001 in patients with recurrent or progressive IDH1-mutant gliomas. Neuro Oncol 2022; 25:326-336. [PMID: 35722822 PMCID: PMC9925696 DOI: 10.1093/neuonc/noac155] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Approximately 70% of lower-grade gliomas harbor isocitrate dehydrogenase 1 (IDH1) mutations, resulting in the accumulation of oncometabolite D-2-hydroxyglutarate (D-2-HG); this leads to epigenetic dysregulation, oncogenesis, and subsequent clonal expansion. DS-1001 is an oral brain-penetrant mutant IDH1 selective inhibitor. This first-in-human study investigated the safety, pharmacokinetics, pharmacodynamics, and efficacy of DS-1001. METHODS This was a multicenter, open-label, dose-escalation, phase I study of DS-1001 for recurrent/progressive IDH1-mutant (R132) glioma (N = 47) (NCT03030066). DS-1001 was administered orally at 125-1400 mg twice daily. Dose-escalation used a modified continual reassessment method. RESULTS The maximum tolerated dose was not reached. Eight patients were continuing treatment at the data cutoff. Most adverse events (AEs) were grade 1-2. Twenty patients (42.6%) experienced at least 1 grade 3 AE. No grade 4 or 5 AEs or serious drug-related AEs were reported. Common AEs (>20%) were skin hyperpigmentation, diarrhea, pruritus, alopecia, arthralgia, nausea, headache, rash, and dry skin. The objective response rates were 17.1% for enhancing tumors and 33.3% for non-enhancing tumors. Median progression-free survival was 10.4 months (95% confidence interval [CI], 6.1 to 17.7 months) and not reached (95% CI, 24.1 to not reached) for the enhancing and non-enhancing glioma cohorts, respectively. Seven on-treatment brain tumor samples showed a significantly lower amount of D-2-HG compared with pre-study archived samples. CONCLUSIONS DS-1001 was well tolerated with a favorable brain distribution. Recurrent/progressive IDH1-mutant glioma patients responded to treatment. A study of DS-1001 in patients with chemotherapy- and radiotherapy-naïve IDH1-mutated WHO grade 2 glioma is ongoing (NCT04458272).
Collapse
Affiliation(s)
- Atsushi Natsume
- Corresponding Author: Atsushi Natsume, MD, PhD, The Institute of Innovation for Future Society, Nagoya University, NIC Room 803, Furo-Cho, Chikusa-Ku, Nagoya 464-8601, Japan ()
| | | | | | | | - Nobuhiro Hata
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Muragaki
- Graduate School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | | | | | - Ryuta Saito
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yohei Mineharu
- Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | - Hideo Nakamura
- Department of Neurosurgery, Kurume University School of Medicine, Fukuoka, Japan
| | - Ryo Nishikawa
- Saitama Medical University International Medical Center, Hidaka, Japan
| |
Collapse
|
44
|
Raimondi V, Ciotti G, Gottardi M, Ciccarese F. 2-Hydroxyglutarate in Acute Myeloid Leukemia: A Journey from Pathogenesis to Therapies. Biomedicines 2022; 10:biomedicines10061359. [PMID: 35740380 PMCID: PMC9220225 DOI: 10.3390/biomedicines10061359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022] Open
Abstract
The oncometabolite 2-hydroxyglutarate (2-HG) plays a key role in differentiation blockade and metabolic reprogramming of cancer cells. Approximatively 20–30% of acute myeloid leukemia (AML) cases carry mutations in the isocitrate dehydrogenase (IDH) enzymes, leading to a reduction in the Krebs cycle intermediate α-ketoglutarate (α-KG) to 2-HG. Relapse and chemoresistance of AML blasts following initial good response to standard therapy account for the very poor outcome of this pathology, which represents a great challenge for hematologists. The decrease of 2-HG levels through pharmacological inhibition of mutated IDH enzymes induces the differentiation of AML blasts and sensitizes leukemic cells to several anticancer drugs. In this review, we provide an overview of the main genetic mutations in AML, with a focus on IDH mutants and the role of 2-HG in AML pathogenesis. Moreover, we discuss the impact of high levels of 2-HG on the response of AML cells to antileukemic therapies and recent evidence for highly efficient combinations of mutant IDH inhibitors with other drugs for the management of relapsed/refractory (R/R) AML.
Collapse
Affiliation(s)
- Vittoria Raimondi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
- Correspondence:
| | - Giulia Ciotti
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, 31033 Castelfranco Veneto, Italy; (G.C.); (M.G.)
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, 31033 Castelfranco Veneto, Italy; (G.C.); (M.G.)
| | - Francesco Ciccarese
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy;
| |
Collapse
|
45
|
Altman RA, Brai A, Golden J, La Regina G, Li Z, Moore TW, Pomerantz WCK, Rajapaksa NS, Adams AM. An Innovation 10 Years in the Making: The Stories in the Pages of ACS Medicinal Chemistry Letters. ACS Med Chem Lett 2022; 13:540-545. [PMID: 35450346 PMCID: PMC9014514 DOI: 10.1021/acsmedchemlett.1c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022] Open
Abstract
Innovation in medicinal chemistry has been at the heart of ACS Medicinal Chemistry Letters since the journal's founding 10 years ago. In his inaugural editorial, Editor-in-Chief Dennis Liotta laid out a vision for the journal to become the "premier international journal for rapid communication of cutting-edge studies," and, after 10 years, it has become exactly that. The great hope of drug discovery scientists is that their innovations will lead to new therapeutics to treat unmet medical needs. In the spirit of innovation and in celebration of the recent 10th anniversary of ACS Med. Chem. Lett., we highlight five therapeutics that were first reported or first comprehensively characterized within ACS Med. Chem. Lett.. This overview also serves to introduce the expansion of the scope of the Innovations article type to include Topical Innovations. With this extension, the journal hopes to provide a forum to showcase concise (rather than comprehensive) reviews of topics that are both timely and of great interest to the medicinal chemistry community. Moreover, these articles will emphasize the next steps to move the field toward new areas of interest in medicinal chemistry. Appropriate topics might include case studies of clinical candidates or approved drugs, new assay technologies in drug discovery, novel target classes, and innovative new approaches towards modulation of human physiology. Since its founding 10 years ago, ACS Med. Chem. Lett. has established itself as a venue for the rapid communication of studies in medicinal chemistry and drug discovery. There have been several drugs and clinical candidates that were first reported or first comprehensively characterized in ACS Med. Chem. Lett. In celebration of the 10th anniversary of ACS Med. Chem. Lett. this Topical Innovations article highlights five of these compounds: Ivosidenib, Siponimod, Glasdegib, Parsaclisib, and Dabrafenib.
Collapse
Affiliation(s)
- Ryan A. Altman
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Annalaura Brai
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Jennifer Golden
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Giuseppe La Regina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome 00185, Italy
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Terry W. Moore
- Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Naomi S. Rajapaksa
- Medicinal Chemistry, Interline Therapeutics, 620 Utah Ave, South San Francisco, California 94080, United States
| | - Ashley M. Adams
- Medicine Science and Technology, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
46
|
Zhou J, Duan M, Wang X, Zhang F, Zhou H, Ma T, Yin Q, Zhang J, Tian F, Wang G, Yang C. A feedback loop engaging propionate catabolism intermediates controls mitochondrial morphology. Nat Cell Biol 2022; 24:526-537. [PMID: 35418624 DOI: 10.1038/s41556-022-00883-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
D-2-Hydroxyglutarate (D-2HG) is an α-ketoglutarate-derived mitochondrial metabolite that causes D-2-hydroxyglutaric aciduria, a devastating developmental disorder. How D-2HG adversely affects mitochondria is largely unknown. Here, we report that in Caenorhabditis elegans, loss of the D-2HG dehydrogenase DHGD-1 causes D-2HG accumulation and mitochondrial damage. The excess D-2HG leads to a build-up of 3-hydroxypropionate (3-HP), a toxic metabolite in mitochondrial propionate oxidation, by inhibiting the 3-HP dehydrogenase HPHD-1. We demonstrate that 3-HP binds the MICOS subunit MIC60 (encoded by immt-1) and inhibits its membrane-binding and membrane-shaping activities. We further reveal that dietary and gut bacteria affect mitochondrial health by modulating the host production of 3-HP. These findings identify a feedback loop that links the toxic effects of D-2HG and 3-HP on mitochondria, thus providing important mechanistic insights into human diseases related to D-2HG and 3-HP.
Collapse
Affiliation(s)
- Junxiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Duan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Xin Wang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hejiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Tengfei Ma
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiuyuan Yin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jie Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fei Tian
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
47
|
Zhao M, Yao P, Mao Y, Wu J, Wang W, Geng C, Cheng J, Du W, Jiang P. Malic enzyme 2 maintains protein stability of mutant p53 through 2-hydroxyglutarate. Nat Metab 2022; 4:225-238. [PMID: 35228743 DOI: 10.1038/s42255-022-00532-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/17/2022] [Indexed: 12/18/2022]
Abstract
Many types of cancer feature TP53 mutations with oncogenic properties. However, whether the oncogenic activity of mutant p53 is affected by the cellular metabolic state is unknown. Here we show that cancer-associated mutant p53 protein is stabilized by 2-hydroxyglutarate generated by malic enzyme 2. Mechanistically, malic enzyme 2 promotes the production of 2-hydroxyglutarate by adjusting glutaminolysis, as well as through a reaction that requires pyruvate and NADPH. Malic enzyme 2 depletion decreases cellular 2-hydroxyglutarate levels in vitro and in vivo, whereas elevated malic enzyme 2 expression increases 2-hydroxyglutarate production. We further show that 2-hydroxyglutarate binds directly to mutant p53, which reduces Mdm2-mediated mutant p53 ubiquitination and degradation. 2-Hydroxyglutarate supplementation is sufficient for maintaining mutant p53 protein stability in malic enzyme 2-depleted cells, and restores tumour growth of malic enzyme 2-ablated cells, but not of cells that lack mutant p53. Our findings reveal the previously unrecognized versatility of malic enzyme 2 catalytic functions, and uncover a role for mutant p53 in sensing cellular 2-hydroxyglutarate levels, which contribute to the stabilization of mutant p53 and tumour growth.
Collapse
Affiliation(s)
- Mengjia Zhao
- School of Life Science, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Pengbo Yao
- School of Life Science, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Youxiang Mao
- School of Life Science, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jinjun Wu
- School of Life Science, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weihua Wang
- Center of Pharmaceutical Technology, Tsinghua University, Beijing, China
| | - Chenhui Geng
- School of Life Science, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jie Cheng
- School of Life Science, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Peng Jiang
- School of Life Science, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
48
|
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov 2022; 12:31-46. [PMID: 35022204 DOI: 10.1158/2159-8290.cd-21-1059] [Citation(s) in RCA: 4564] [Impact Index Per Article: 1521.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023]
Abstract
The hallmarks of cancer conceptualization is a heuristic tool for distilling the vast complexity of cancer phenotypes and genotypes into a provisional set of underlying principles. As knowledge of cancer mechanisms has progressed, other facets of the disease have emerged as potential refinements. Herein, the prospect is raised that phenotypic plasticity and disrupted differentiation is a discrete hallmark capability, and that nonmutational epigenetic reprogramming and polymorphic microbiomes both constitute distinctive enabling characteristics that facilitate the acquisition of hallmark capabilities. Additionally, senescent cells, of varying origins, may be added to the roster of functionally important cell types in the tumor microenvironment. SIGNIFICANCE: Cancer is daunting in the breadth and scope of its diversity, spanning genetics, cell and tissue biology, pathology, and response to therapy. Ever more powerful experimental and computational tools and technologies are providing an avalanche of "big data" about the myriad manifestations of the diseases that cancer encompasses. The integrative concept embodied in the hallmarks of cancer is helping to distill this complexity into an increasingly logical science, and the provisional new dimensions presented in this perspective may add value to that endeavor, to more fully understand mechanisms of cancer development and malignant progression, and apply that knowledge to cancer medicine.
Collapse
Affiliation(s)
- Douglas Hanahan
- Ludwig Institute for Cancer Research - Lausanne Branch, Lausanne, Switzerland. The Swiss Institute for Experimental Cancer Research (ISREC) within the School of Life Sciences at the Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland. The Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
49
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain‐containing proteins*. Immunol Rev 2022. [DOI: 10.1111/imr.13056
expr 964170082 + 969516512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Atsushi Onodera
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- Institute for Global Prominent Research Chiba University Chiba Japan
| | - Masahiro Kiuchi
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Kota Kokubo
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Toshinori Nakayama
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- AMED‐CREST, AMED Chiba Japan
| |
Collapse
|
50
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|