1
|
Rajendran A, Castañeda CA. Protein quality control machinery: regulators of condensate architecture and functionality. Trends Biochem Sci 2025; 50:106-120. [PMID: 39755440 PMCID: PMC11805624 DOI: 10.1016/j.tibs.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates. Here, we discuss how the PQC machinery can form their own condensates and also be recruited to known condensates under physiological or stress-induced conditions. We present molecular insights into how the multivalent architecture of polyUb chains, Ub-binding adaptor proteins, and other PQC machinery contribute to condensate assembly, leading to the regulation of downstream PQC outcomes and therapeutic potential.
Collapse
Affiliation(s)
- Anitha Rajendran
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Carlos A Castañeda
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
2
|
Brunello L, Polanowska J, Le Tareau L, Maghames C, Georget V, Guette C, Chaoui K, Balor S, O'Donohue MF, Bousquet MP, Gleizes PE, Xirodimas DP. A nuclear protein quality control system for elimination of nucleolus-related inclusions. EMBO J 2025; 44:801-823. [PMID: 39690241 PMCID: PMC11791210 DOI: 10.1038/s44318-024-00333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
The identification of pathways that control elimination of protein inclusions is essential to understand the cellular response to proteotoxicity, particularly in the nuclear compartment, for which our knowledge is limited. We report that stress-induced nuclear inclusions related to the nucleolus are eliminated upon stress alleviation during the recovery period. This process is independent of autophagy/lysosome and CRM1-mediated nuclear export pathways, but strictly depends on the ubiquitin-activating E1 enzyme, UBA1, and on nuclear proteasomes that are recruited into the formed inclusions. UBA1 activity is essential only for the recovery process but dispensable for nuclear inclusion formation. Furthermore, the E3 ligase HUWE1 and HSP70 are components of the ubiquitin/chaperone systems that promote inclusion elimination. The recovery process also requires RNA Pol I-dependent production of the lncRNA IGS42 during stress. IGS42 localises within the formed inclusions and promotes their elimination by preserving the mobility of resident proteins. These findings reveal a protein quality control system that operates within the nucleus for the elimination of stress-induced nucleolus-related inclusions.
Collapse
Affiliation(s)
| | | | | | | | - Virginie Georget
- CRBM, Univ. Montpellier, CNRS, Montpellier, France
- MRI, BioCampus, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Charlotte Guette
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, 31000, France
| | - Stéphanie Balor
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Marie-Françoise O'Donohue
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, 31000, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | | |
Collapse
|
3
|
Telusma B, Farre JC, Cui DS, Subramani S, Davis JH. Bulk and selective autophagy cooperate to remodel a fungal proteome in response to changing nutrient availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614842. [PMID: 39386609 PMCID: PMC11463512 DOI: 10.1101/2024.09.24.614842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cells remodel their proteomes in response to changing environments by coordinating changes in protein synthesis and degradation. In yeast, such degradation involves both proteasomal and vacuolar activity, with a mixture of bulk and selective autophagy delivering many of the vacuolar substrates. Although these pathways are known to be generally important for such remodeling, their relative contributions have not been reported on a proteome-wide basis. To assess this, we developed a method to pulse-label the methylotrophic yeast Komagataella phaffii (i.e. Pichia pastoris) with isotopically labeled nutrients, which, when coupled to quantitative proteomics, allowed us to globally monitor protein degradation on a protein-by-protein basis following an environmental perturbation. Using genetic ablations, we found that a targeted combination of bulk and selective autophagy drove the vast majority of the observed proteome remodeling activity, with minimal non-autophagic contributions. Cytosolic proteins and protein complexes, including ribosomes, were degraded via Atg11-independent bulk autophagy, whereas proteins targeted to the peroxisome and mitochondria were primarily degraded in an Atg11-dependent manner. Notably, these degradative pathways were independently regulated by environmental cues. Taken together, our new approach greatly increases the range of known autophagic substrates and highlights the outsized impact of autophagy on proteome remodeling. Moreover, the resulting datasets, which we have packaged in an accessible online database, constitute a rich resource for identifying proteins and pathways involved in fungal proteome remodeling.
Collapse
Affiliation(s)
- Bertina Telusma
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Jean-Claude Farre
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Danica S. Cui
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Suresh Subramani
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Joseph H. Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
4
|
Clausen L, Okarmus J, Voutsinos V, Meyer M, Lindorff-Larsen K, Hartmann-Petersen R. PRKN-linked familial Parkinson's disease: cellular and molecular mechanisms of disease-linked variants. Cell Mol Life Sci 2024; 81:223. [PMID: 38767677 PMCID: PMC11106057 DOI: 10.1007/s00018-024-05262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is a common and incurable neurodegenerative disorder that arises from the loss of dopaminergic neurons in the substantia nigra and is mainly characterized by progressive loss of motor function. Monogenic familial PD is associated with highly penetrant variants in specific genes, notably the PRKN gene, where homozygous or compound heterozygous loss-of-function variants predominate. PRKN encodes Parkin, an E3 ubiquitin-protein ligase important for protein ubiquitination and mitophagy of damaged mitochondria. Accordingly, Parkin plays a central role in mitochondrial quality control but is itself also subject to a strict protein quality control system that rapidly eliminates certain disease-linked Parkin variants. Here, we summarize the cellular and molecular functions of Parkin, highlighting the various mechanisms by which PRKN gene variants result in loss-of-function. We emphasize the importance of high-throughput assays and computational tools for the clinical classification of PRKN gene variants and how detailed insights into the pathogenic mechanisms of PRKN gene variants may impact the development of personalized therapeutics.
Collapse
Affiliation(s)
- Lene Clausen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
| | - Vasileios Voutsinos
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000, Odense, Denmark
- Department of Clinical Research, BRIDGE, Brain Research Inter Disciplinary Guided Excellence, University of Southern Denmark, 5230, Odense, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
5
|
Kumar A, Mathew V, Stirling PC. Dynamics of DNA damage-induced nuclear inclusions are regulated by SUMOylation of Btn2. Nat Commun 2024; 15:3215. [PMID: 38615096 PMCID: PMC11016081 DOI: 10.1038/s41467-024-47615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024] Open
Abstract
Spatial compartmentalization is a key facet of protein quality control that serves to store disassembled or non-native proteins until triage to the refolding or degradation machinery can occur in a regulated manner. Yeast cells sequester nuclear proteins at intranuclear quality control bodies (INQ) in response to various stresses, although the regulation of this process remains poorly understood. Here we reveal the SUMO modification of the small heat shock protein Btn2 under DNA damage and place Btn2 SUMOylation in a pathway promoting protein clearance from INQ structures. Along with other chaperones, and degradation machinery, Btn2-SUMO promotes INQ clearance from cells recovering from genotoxic stress. These data link small heat shock protein post-translational modification to the regulation of protein sequestration in the yeast nucleus.
Collapse
Affiliation(s)
- Arun Kumar
- Terry Fox Laboratory, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Veena Mathew
- Terry Fox Laboratory, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z1L3, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| |
Collapse
|
6
|
Fiore APZP, Maity S, Jeffery L, An D, Rendleman J, Iannitelli D, Choi H, Mazzoni E, Vogel C. Identification of molecular signatures defines the differential proteostasis response in induced spinal and cranial motor neurons. Cell Rep 2024; 43:113885. [PMID: 38457337 PMCID: PMC11018139 DOI: 10.1016/j.celrep.2024.113885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Amyotrophic lateral sclerosis damages proteostasis, affecting spinal and upper motor neurons earlier than a subset of cranial motor neurons. To aid disease understanding, we exposed induced cranial and spinal motor neurons (iCrMNs and iSpMNs) to proteotoxic stress, under which iCrMNs showed superior survival, quantifying the transcriptome and proteome for >8,200 genes at 0, 12, and 36 h. Two-thirds of the proteome showed cell-type differences. iSpMN-enriched proteins related to DNA/RNA metabolism, and iCrMN-enriched proteins acted in the endoplasmic reticulum (ER)/ER chaperone complex, tRNA aminoacylation, mitochondria, and the plasma/synaptic membrane, suggesting that iCrMNs expressed higher levels of proteins supporting proteostasis and neuronal function. When investigating the increased proteasome levels in iCrMNs, we showed that the activity of the 26S proteasome, but not of the 20S proteasome, was higher in iCrMNs than in iSpMNs, even after a stress-induced decrease. We identified Ublcp1 as an iCrMN-specific regulator of the nuclear 26S activity.
Collapse
Affiliation(s)
| | - Shuvadeep Maity
- New York University, Department of Biology, New York, NY 10003, USA; Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Lauren Jeffery
- New York University, Department of Biology, New York, NY 10003, USA
| | - Disi An
- New York University, Department of Biology, New York, NY 10003, USA
| | - Justin Rendleman
- New York University, Department of Biology, New York, NY 10003, USA
| | - Dylan Iannitelli
- New York University, Department of Biology, New York, NY 10003, USA
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Esteban Mazzoni
- New York University, Department of Biology, New York, NY 10003, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christine Vogel
- New York University, Department of Biology, New York, NY 10003, USA.
| |
Collapse
|
7
|
Le TK, Hirano Y, Asakawa H, Okamoto K, Fukagawa T, Haraguchi T, Hiraoka Y. A ubiquitin-proteasome pathway degrades the inner nuclear membrane protein Bqt4 to maintain nuclear membrane homeostasis. J Cell Sci 2023; 136:jcs260930. [PMID: 37694715 DOI: 10.1242/jcs.260930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Aberrant accumulation of inner nuclear membrane (INM) proteins is associated with deformed nuclear morphology and mammalian diseases. However, the mechanisms underlying the maintenance of INM homeostasis remain poorly understood. In this study, we explored the degradation mechanisms of the INM protein Bqt4 in the fission yeast Schizosaccharomyces pombe. We have previously shown that Bqt4 interacts with the transmembrane protein Bqt3 at the INM and is degraded in the absence of Bqt3. Here, we reveal that excess Bqt4, unassociated with Bqt3, is targeted for degradation by the ubiquitin-proteasome system localized in the nucleus and Bqt3 antagonizes this process. The degradation process involves the Doa10 E3 ligase complex at the INM. Bqt4 is a tail-anchored protein and the Cdc48 complex is required for its degradation. The C-terminal transmembrane domain of Bqt4 was necessary and sufficient for proteasome-dependent protein degradation. Accumulation of Bqt4 at the INM impaired cell viability with nuclear envelope deformation, suggesting that quantity control of Bqt4 plays an important role in nuclear membrane homeostasis.
Collapse
Affiliation(s)
- Toan Khanh Le
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasuhiro Hirano
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Haruhiko Asakawa
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tokuko Haraguchi
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasushi Hiraoka
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
8
|
Chen H, Li Y, Gao J, Cheng Q, Liu L, Cai R. Activation of Pgk1 Results in Reduced Protein Aggregation in Diverse Neurodegenerative Conditions. Mol Neurobiol 2023; 60:5090-5101. [PMID: 37249790 DOI: 10.1007/s12035-023-03389-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023]
Abstract
The prevention of protein condensates has emerged as a new drug target to treat diverse neurodegenerative disorders. We previously reported that terazosin (TZ), a prescribed antagonist of the α1 adrenergic receptor, is an activator of phosphoglycerate kinase 1 (Pgk1) and Hsp90. In this study, we aimed to determine whether TZ prevents the formation of diverse pathological condensates in cell cultures and animal disease models. In primary neuron culture, TZ treatment reduced both the protein density and abundance of fused in sarcoma (FUS)-P525L-GFP, a disease-associated mutant form of FUS. Regarding the mechanism, we found that increased intracellular ATP levels were critical for the reduction in protein aggregate density. In addition, Hsp90 activation by TZ enhanced Hsp90 interaction with ULK1, a master regulator of autophagy. Through in vivo studies, we examined neuron-specific overexpression of tau in Drosophila, mouse models of APP/PS1 Alzheimer's disease (AD), and a rat model of multiple system atrophy (MSA) via the viral expression of α-synuclein in the striatum. TZ prevented and reversed the formation of pathological protein condensates. Together, our results suggest that activation of Pgk1 in cytosol may dissolve pathological protein aggregates via increased ATP levels and degrade these proteins via autophagy; the FUS-P525L degradation pathway in nucleus is unclear.
Collapse
Affiliation(s)
- Hao Chen
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Yajie Li
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Jingwen Gao
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Qi Cheng
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China.
| | - Rong Cai
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
9
|
Sun Y, Li J, Zhang L, Lin R. Regulation of chloroplast protein degradation. J Genet Genomics 2023; 50:375-384. [PMID: 36863685 DOI: 10.1016/j.jgg.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Chloroplasts are unique organelles that not only provide sites for photosynthesis and many metabolic processes, but also are sensitive to various environmental stresses. Chloroplast proteins are encoded by genes from both nuclear and chloroplast genomes. During chloroplast development and responses to stresses, the robust protein quality control systems are essential for regulation of protein homeostasis and the integrity of chloroplast proteome. In this review, we summarize the regulatory mechanisms of chloroplast protein degradation refer to protease system, ubiquitin-proteasome system, and the chloroplast autophagy. These mechanisms symbiotically play a vital role in chloroplast development and photosynthesis under both normal or stress conditions.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China.
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
10
|
Li M, Li S, Zhang L. Phosphorylation Promotes the Accumulation of PERIOD Protein Foci. RESEARCH (WASHINGTON, D.C.) 2023; 6:0139. [PMID: 37223461 PMCID: PMC10202380 DOI: 10.34133/research.0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Circadian clock drives the 24-h rhythm in our behavior and physiology. The molecular clock consists of a series of transcriptional/translational feedback loops operated by a number of clock genes. A very recent study reported that the clock protein PERIOD (PER) is organized into discrete foci at the nuclear envelope in fly circadian neurons, which is believed to be important for controlling the subcellular localization of clock genes. Loss of inner nuclear membrane protein lamin B receptor (LBR) leads to disruption of these foci, but how they are regulated is yet unknown. Here, we found that PER foci are likely phase-separated condensates, the formation of which is mediated by intrinsically disordered region in PER. Phosphorylation promotes the accumulation of these foci. Protein phosphatase 2A, which is known to dephosphorylate PER, hampers the accumulation of the foci. On the other hand, the circadian kinase DOUBLETIME (DBT) which phosphorylates PER enhances the accumulation of the foci. LBR likely facilitates PER foci accumulation by destabilizing the catalytic subunit of protein phosphatase 2A, MICROTUBULE STAR (MTS). In conclusion, here, we demonstrate a key role for phosphorylation in promoting the accumulation of PER foci, while LBR modulates this process by impinging on the circadian phosphatase MTS.
Collapse
Affiliation(s)
- Mengna Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shujing Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, Hubei 430022, China
| |
Collapse
|
11
|
Johansson KE, Mashahreh B, Hartmann-Petersen R, Ravid T, Lindorff-Larsen K. Prediction of Quality-control Degradation Signals in Yeast Proteins. J Mol Biol 2023; 435:167915. [PMID: 36495918 DOI: 10.1016/j.jmb.2022.167915] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Effective proteome homeostasis is key to cellular and organismal survival, and cells therefore contain efficient quality control systems to monitor and remove potentially toxic misfolded proteins. Such general protein quality control to a large extent relies on the efficient and robust delivery of misfolded or unfolded proteins to the ubiquitin-proteasome system. This is achieved via recognition of so-called degradation motifs-degrons-that are assumed to become exposed as a result of protein misfolding. Despite their importance, the nature and sequence properties of quality-control degrons remain elusive. Here, we have used data from a yeast-based screen of 23,600 17-residue peptides to build a predictor of quality-control degrons. The resulting model, QCDPred (Quality Control Degron Prediction), achieves good accuracy using only the sequence composition of the peptides as input. Our analysis reveals that strong degrons are enriched in hydrophobic amino acids and depleted in negatively charged amino acids, in line with the expectation that they are buried in natively folded proteins. We applied QCDPred to the yeast proteome, enabling us to analyse more widely the potential effects of degrons. As an example, we show a correlation between cellular abundance and degron potential in disordered regions of proteins. Together with recent results on membrane proteins, our work suggest that the recognition of exposed hydrophobic residues is a key and generic mechanism for proteome homeostasis. QCDPred is freely available as open source code and via a web interface.
Collapse
Affiliation(s)
- Kristoffer E Johansson
- Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Copenhagen, Denmark. https://twitter.com/kristofferenoee
| | - Bayan Mashahreh
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Copenhagen, Denmark. https://twitter.com/rasmushartmannp
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Ghosh DK, Pande S, Kumar J, Yesodharan D, Nampoothiri S, Radhakrishnan P, Reddy CG, Ranjan A, Girisha KM. The E262K mutation in Lamin A links nuclear proteostasis imbalance to laminopathy-associated premature aging. Aging Cell 2022; 21:e13688. [PMID: 36225129 PMCID: PMC9649601 DOI: 10.1111/acel.13688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023] Open
Abstract
Deleterious, mostly de novo, mutations in the lamin A (LMNA) gene cause spatio-functional nuclear abnormalities that result in several laminopathy-associated progeroid conditions. In this study, exome sequencing in a sixteen-year-old male with manifestations of premature aging led to the identification of a mutation, c.784G>A, in LMNA, resulting in a missense protein variant, p.Glu262Lys (E262K), that aggregates in nucleoplasm. While bioinformatic analyses reveal the instability and pathogenicity of LMNAE262K , local unfolding of the mutation-harboring helical region drives the structural collapse of LMNAE262K into aggregates. The E262K mutation also disrupts SUMOylation of lysine residues by preventing UBE2I binding to LMNAE262K , thereby reducing LMNAE262K degradation, aggregated LMNAE262K sequesters nuclear chaperones, proteasomal proteins, and DNA repair proteins. Consequently, aggregates of LMNAE262K disrupt nuclear proteostasis and DNA repair response. Thus, we report a structure-function association of mutant LMNAE262K with toxicity, which is consistent with the concept that loss of nuclear proteostasis causes early aging in laminopathies.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Shruti Pande
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Jeevan Kumar
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Periyasamy Radhakrishnan
- Suma Genomics Private Limited, Manipal Center for Biotherapeutics Research and Department of Reproductive Science, Manipal Academy of Higher Education, Manipal, India
| | - Chilakala Gangi Reddy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Katta M Girisha
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| |
Collapse
|
13
|
The Proteostasis Network: A Global Therapeutic Target for Neuroprotection after Spinal Cord Injury. Cells 2022; 11:cells11213339. [PMID: 36359735 PMCID: PMC9658791 DOI: 10.3390/cells11213339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023] Open
Abstract
Proteostasis (protein homeostasis) is critical for cellular as well as organismal survival. It is strictly regulated by multiple conserved pathways including the ubiquitin-proteasome system, autophagy, the heat shock response, the integrated stress response, and the unfolded protein response. These overlapping proteostasis maintenance modules respond to various forms of cellular stress as well as organismal injury. While proteostasis restoration and ultimately organism survival is the main evolutionary driver of such a regulation, unresolved disruption of proteostasis may engage pro-apoptotic mediators of those pathways to eliminate defective cells. In this review, we discuss proteostasis contributions to the pathogenesis of traumatic spinal cord injury (SCI). Most published reports focused on the role of proteostasis networks in acute/sub-acute tissue damage post-SCI. Those reports reveal a complex picture with cell type- and/or proteostasis mediator-specific effects on loss of neurons and/or glia that often translate into the corresponding modulation of functional recovery. Effects of proteostasis networks on such phenomena as neuro-repair, post-injury plasticity, as well as systemic manifestations of SCI including dysregulation of the immune system, metabolism or cardiovascular function are currently understudied. However, as potential interventions that target the proteostasis networks are expected to impact many cell types across multiple organ systems that are compromised after SCI, such therapies could produce beneficial effects across the wide spectrum of highly variable human SCI.
Collapse
|
14
|
Kumar A, Mathew V, Stirling PC. Nuclear protein quality control in yeast: the latest INQuiries. J Biol Chem 2022; 298:102199. [PMID: 35760103 PMCID: PMC9305344 DOI: 10.1016/j.jbc.2022.102199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
The nucleus is a highly organized organelle with an intricate substructure of chromatin, RNAs, and proteins. This environment represents a challenge for maintaining protein quality control, since non-native proteins may interact inappropriately with other macromolecules and thus interfere with their function. Maintaining a healthy nuclear proteome becomes imperative during times of stress, such as upon DNA damage, heat shock, or starvation, when the proteome must be remodeled to effect cell survival. This is accomplished with the help of nuclear-specific chaperones, degradation pathways, and specialized structures known as protein quality control (PQC) sites that sequester proteins to help rapidly remodel the nuclear proteome. In this review, we focus on the current knowledge of PQC sites in Saccharomyces cerevisiae, particularly on a specialized nuclear PQC site called the intranuclear quality control site, a poorly understood nuclear inclusion that coordinates dynamic proteome triage decisions in yeast.
Collapse
Affiliation(s)
- Arun Kumar
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada
| | - Veena Mathew
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada.
| |
Collapse
|
15
|
Kampmeyer C, Larsen-Ledet S, Wagnkilde MR, Michelsen M, Iversen HKM, Nielsen SV, Lindemose S, Caregnato A, Ravid T, Stein A, Teilum K, Lindorff-Larsen K, Hartmann-Petersen R. Disease-linked mutations cause exposure of a protein quality control degron. Structure 2022; 30:1245-1253.e5. [PMID: 35700725 DOI: 10.1016/j.str.2022.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/08/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
More than half of disease-causing missense variants are thought to lead to protein degradation, but the molecular mechanism of how these variants are recognized by the cell remains enigmatic. Degrons are stretches of amino acids that help mediate recognition by E3 ligases and thus confer protein degradation via the ubiquitin-proteasome system. While degrons that mediate controlled degradation of, for example, signaling components and cell-cycle regulators are well described, so-called protein-quality-control degrons that mediate the degradation of destabilized proteins are poorly understood. Here, we show that disease-linked dihydrofolate reductase (DHFR) missense variants are structurally destabilized and chaperone-dependent proteasome targets. We find two regions in DHFR that act as degrons, and the proteasomal turnover of one of these was dependent on the molecular chaperone Hsp70. Structural analyses by nuclear magnetic resonance (NMR) and hydrogen/deuterium exchange revealed that this degron is buried in wild-type DHFR but becomes transiently exposed in the disease-linked missense variants.
Collapse
Affiliation(s)
- Caroline Kampmeyer
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Sven Larsen-Ledet
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Morten Rose Wagnkilde
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Mathias Michelsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Henriette K M Iversen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Sofie V Nielsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Søren Lindemose
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Alberto Caregnato
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, 91904 Jerusalem, Israel
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Kaare Teilum
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| |
Collapse
|
16
|
Targeting HIF-1α Function in Cancer through the Chaperone Action of NQO1: Implications of Genetic Diversity of NQO1. J Pers Med 2022; 12:jpm12050747. [PMID: 35629169 PMCID: PMC9146583 DOI: 10.3390/jpm12050747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
HIF-1α is a master regulator of oxygen homeostasis involved in different stages of cancer development. Thus, HIF-1α inhibition represents an interesting target for anti-cancer therapy. It was recently shown that the HIF-1α interaction with NQO1 inhibits proteasomal degradation of the former, thus suggesting that targeting the stability and/or function of NQO1 could lead to the destabilization of HIF-1α as a therapeutic approach. Since the molecular interactions of NQO1 with HIF-1α are beginning to be unraveled, in this review we discuss: (1) Structure–function relationships of HIF-1α; (2) our current knowledge on the intracellular functions and stability of NQO1; (3) the pharmacological modulation of NQO1 by small ligands regarding function and stability; (4) the potential effects of genetic variability of NQO1 in HIF-1α levels and function; (5) the molecular determinants of NQO1 as a chaperone of many different proteins including cancer-associated factors such as HIF-1α, p53 and p73α. This knowledge is then further discussed in the context of potentially targeting the intracellular stability of HIF-1α by acting on its chaperone, NQO1. This could result in novel anti-cancer therapies, always considering that the substantial genetic variability in NQO1 would likely result in different phenotypic responses among individuals.
Collapse
|
17
|
Boudreault S, Durand M, Martineau CA, Perreault JP, Lemay G, Bisaillon M. Reovirus μ2 protein modulates host cell alternative splicing by reducing protein levels of U5 snRNP core components. Nucleic Acids Res 2022; 50:5263-5281. [PMID: 35489070 PMCID: PMC9122528 DOI: 10.1093/nar/gkac272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family presenting a promising activity as an oncolytic virus. Recent studies have underlined MRV’s ability to alter cellular alternative splicing (AS) during infection, with a limited understanding of the mechanisms at play. In this study, we investigated how MRV modulates AS. Using a combination of cell biology and reverse genetics experiments, we demonstrated that the M1 gene segment, encoding the μ2 protein, is the primary determinant of MRV’s ability to alter AS, and that the amino acid at position 208 in μ2 is critical to induce these changes. Moreover, we showed that the expression of μ2 by itself is sufficient to trigger AS changes, and its ability to enter the nucleus is not required for all these changes. Moreover, we identified core components of the U5 snRNP (i.e. EFTUD2, PRPF8, and SNRNP200) as interactors of μ2 that are required for MRV modulation of AS. Finally, these U5 snRNP components are reduced at the protein level by both MRV infection and μ2 expression. Our findings identify the reduction of U5 snRNP components levels as a new mechanism by which viruses alter cellular AS.
Collapse
Affiliation(s)
- Simon Boudreault
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Mathieu Durand
- Plateforme de RNomique, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Carole-Anne Martineau
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Martin Bisaillon
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
18
|
Predicting protein shelf lives from mean first passage times. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Padovani C, Jevtić P, Rapé M. Quality control of protein complex composition. Mol Cell 2022; 82:1439-1450. [PMID: 35316660 DOI: 10.1016/j.molcel.2022.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells possess hundreds of protein complexes that contain multiple subunits and must be formed at the correct time and place during development. Despite specific assembly pathways, cells frequently encounter complexes with missing or aberrant subunits that can disrupt important signaling events. Cells, therefore, employ several ubiquitin-dependent quality control pathways that can prevent, correct, or degrade flawed complexes. In this review, we will discuss our emerging understanding of such quality control of protein complex composition.
Collapse
Affiliation(s)
- Chris Padovani
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Predrag Jevtić
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
SIRT6 stabilization and cytoplasmic localization in macrophages regulates acute and chronic inflammation in mice. J Biol Chem 2022; 298:101711. [PMID: 35150745 PMCID: PMC8913316 DOI: 10.1016/j.jbc.2022.101711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/09/2023] Open
Abstract
Acute and chronic inflammations are key homeostatic events in health and disease. Sirtuins (SIRTs), a family of NAD-dependent protein deacylases, play a pivotal role in the regulation of these inflammatory responses. Indeed, SIRTs have anti-inflammatory effects through a myriad of signaling cascades, including histone deacetylation and gene silencing, p65/RelA deacetylation and inactivation, and nucleotide‑binding oligomerization domain, leucine rich repeat, and pyrin domain‑containing protein 3 inflammasome inhibition. Nevertheless, recent findings show that SIRTs, specifically SIRT6, are also necessary for mounting an active inflammatory response in macrophages. SIRT6 has been shown to positively regulate tumor necrosis factor alpha (TNFα) secretion by demyristoylating pro-TNFα in the cytoplasm. However, how SIRT6, a nuclear chromatin-binding protein, fulfills this function in the cytoplasm is currently unknown. Herein, we show by Western blot and immunofluorescence that in macrophages and fibroblasts there is a subpopulation of SIRT6 that is highly unstable and quickly degraded via the proteasome. Upon lipopolysaccharide stimulation in Raw 264.7, bone marrow, and peritoneal macrophages, this population of SIRT6 is rapidly stabilized and localizes in the cytoplasm, specifically in the vicinity of the endoplasmic reticulum, promoting TNFα secretion. Furthermore, we also found that acute SIRT6 inhibition dampens TNFα secretion both in vitro and in vivo, decreasing lipopolysaccharide-induced septic shock. Finally, we tested SIRT6 relevance in systemic inflammation using an obesity-induced chronic inflammatory in vivo model, where TNFα plays a key role, and we show that short-term genetic deletion of SIRT6 in macrophages of obese mice ameliorated systemic inflammation and hyperglycemia, suggesting that SIRT6 plays an active role in inflammation-mediated glucose intolerance during obesity.
Collapse
|
21
|
Guo X. Localized Proteasomal Degradation: From the Nucleus to Cell Periphery. Biomolecules 2022; 12:biom12020229. [PMID: 35204730 PMCID: PMC8961600 DOI: 10.3390/biom12020229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
The proteasome is responsible for selective degradation of most cellular proteins. Abundantly present in the cell, proteasomes not only diffuse in the cytoplasm and the nucleus but also associate with the chromatin, cytoskeleton, various membranes and membraneless organelles/condensates. How and why the proteasome gets to these specific subcellular compartments remains poorly understood, although increasing evidence supports the hypothesis that intracellular localization may have profound impacts on the activity, substrate accessibility and stability/integrity of the proteasome. In this short review, I summarize recent advances on the functions, regulations and targeting mechanisms of proteasomes, especially those localized to the nuclear condensates and membrane structures of the cell, and I discuss the biological significance thereof in mediating compartmentalized protein degradation.
Collapse
Affiliation(s)
- Xing Guo
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| |
Collapse
|
22
|
Mochida K, Otani T, Katsumata Y, Kirisako H, Kakuta C, Kotani T, Nakatogawa H. Atg39 links and deforms the outer and inner nuclear membranes in selective autophagy of the nucleus. J Cell Biol 2022; 221:212974. [PMID: 35061008 PMCID: PMC8789198 DOI: 10.1083/jcb.202103178] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023] Open
Abstract
In selective autophagy of the nucleus (hereafter nucleophagy), nucleus-derived double-membrane vesicles (NDVs) are formed, sequestered within autophagosomes, and delivered to lysosomes or vacuoles for degradation. In Saccharomyces cerevisiae, the nuclear envelope (NE) protein Atg39 acts as a nucleophagy receptor, which interacts with Atg8 to target NDVs to the forming autophagosomal membranes. In this study, we revealed that Atg39 is anchored to the outer nuclear membrane via its transmembrane domain and also associated with the inner nuclear membrane via membrane-binding amphipathic helices (APHs) in its perinuclear space region, thereby linking these membranes. We also revealed that autophagosome formation-coupled Atg39 crowding causes the NE to protrude toward the cytoplasm, and the tips of the protrusions are pinched off to generate NDVs. The APHs of Atg39 are crucial for Atg39 crowding in the NE and subsequent NE protrusion. These findings suggest that the nucleophagy receptor Atg39 plays pivotal roles in NE deformation during the generation of NDVs to be degraded by nucleophagy.
Collapse
Affiliation(s)
- Keisuke Mochida
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshifumi Otani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuto Katsumata
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiromi Kirisako
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Chika Kakuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Kotani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
23
|
Barman P, Sen R, Kaja A, Ferdoush J, Guha S, Govind CK, Bhaumik SR. Genome-Wide Regulations of the Preinitiation Complex Formation and Elongating RNA Polymerase II by an E3 Ubiquitin Ligase, San1. Mol Cell Biol 2022; 42:e0036821. [PMID: 34661445 PMCID: PMC8773080 DOI: 10.1128/mcb.00368-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
San1 ubiquitin ligase is involved in nuclear protein quality control via its interaction with intrinsically disordered proteins for ubiquitylation and proteasomal degradation. Since several transcription/chromatin regulatory factors contain intrinsically disordered domains and can be inhibitory to transcription when in excess, San1 might be involved in transcription regulation. To address this, we analyzed the role of San1 in the genome-wide association of TATA box binding protein (TBP; which nucleates preinitiation complex [PIC] formation for transcription initiation) and RNA polymerase II (Pol II). Our results reveal the roles of San1 in regulating TBP recruitment to the promoters and Pol II association with the coding sequences and, hence, PIC formation and coordination of elongating Pol II, respectively. Consistently, transcription is altered in the absence of San1. Such transcriptional alteration is associated with impaired ubiquitylation and proteasomal degradation of Spt16 and gene association of Paf1 but not the incorporation of centromeric histone, Cse4, into the active genes in the Δsan1 strain. Collectively, our results demonstrate distinct functions of a nuclear protein quality control factor in regulating the genome-wide PIC formation and elongating Pol II (and hence transcription), thus unraveling new gene regulatory mechanisms.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Rwik Sen
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Jannatul Ferdoush
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Chhabi K. Govind
- Department of Biological Sciences, Oakland University, Rochester, Minnesota, USA
| | - Sukesh R. Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| |
Collapse
|
24
|
Degradation of nuclear components via different autophagy pathways. Trends Cell Biol 2022; 32:574-584. [DOI: 10.1016/j.tcb.2021.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022]
|
25
|
Borgert L, Mishra S, den Brave F. Quality control of cytoplasmic proteins inside the nucleus. Comput Struct Biotechnol J 2022; 20:4618-4625. [PMID: 36090811 PMCID: PMC9440239 DOI: 10.1016/j.csbj.2022.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022] Open
Abstract
A complex network of molecular chaperones and proteolytic machinery safeguards the proteins which comprise the proteome, from the time they are synthesized on ribosomes to their destruction via proteolysis. Impaired protein quality control results in the accumulation of aberrant proteins, which may undergo unwanted spurious interactions with other proteins, thereby interfering with a broad range of cellular functions. To protect the cellular environment, such proteins are degraded or sequestered into inclusions in different subcellular compartments. Recent findings demonstrate that aberrant or mistargeted proteins from different cytoplasmic compartments are removed from their environment by transporting them into the nucleus. These proteins are degraded by the nuclear ubiquitin–proteasome system or sequestered into intra-nuclear inclusions. Here, we discuss the emerging role of the nucleus as a cellular quality compartment based on recent findings in the yeast Saccharomyces cerevisiae. We describe the current knowledge on cytoplasmic substrates of nuclear protein quality control, the mechanism of nuclear import of such proteins, as well as possible advantages and risks of nuclear sequestration of aberrant proteins.
Collapse
|
26
|
den Brave F, Gupta A, Becker T. Protein Quality Control at the Mitochondrial Surface. Front Cell Dev Biol 2021; 9:795685. [PMID: 34926473 PMCID: PMC8678412 DOI: 10.3389/fcell.2021.795685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria contain two membranes, the outer and inner membrane. The outer membrane fulfills crucial functions for the communication of mitochondria with the cellular environment like exchange of lipids via organelle contact sites, the transport of metabolites and the formation of a signaling platform in apoptosis and innate immunity. The translocase of the outer membrane (TOM complex) forms the entry gate for the vast majority of precursor proteins that are produced on cytosolic ribosomes. Surveillance of the functionality of outer membrane proteins is critical for mitochondrial functions and biogenesis. Quality control mechanisms remove defective and mistargeted proteins from the outer membrane as well as precursor proteins that clog the TOM complex. Selective degradation of single proteins is also an important mode to regulate mitochondrial dynamics and initiation of mitophagy pathways. Whereas inner mitochondrial compartments are equipped with specific proteases, the ubiquitin-proteasome system is a central player in protein surveillance on the mitochondrial surface. In this review, we summarize our current knowledge about the molecular mechanisms that govern quality control of proteins at the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Arushi Gupta
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Ubiquitin Ligase Redundancy and Nuclear-Cytoplasmic Localization in Yeast Protein Quality Control. Biomolecules 2021; 11:biom11121821. [PMID: 34944465 PMCID: PMC8698790 DOI: 10.3390/biom11121821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The diverse functions of proteins depend on their proper three-dimensional folding and assembly. Misfolded cellular proteins can potentially harm cells by forming aggregates in their resident compartments that can interfere with vital cellular processes or sequester important factors. Protein quality control (PQC) pathways are responsible for the repair or destruction of these abnormal proteins. Most commonly, the ubiquitin-proteasome system (UPS) is employed to recognize and degrade those proteins that cannot be refolded by molecular chaperones. Misfolded substrates are ubiquitylated by a subset of ubiquitin ligases (also called E3s) that operate in different cellular compartments. Recent research in Saccharomyces cerevisiae has shown that the most prominent ligases mediating cytoplasmic and nuclear PQC have overlapping yet distinct substrate specificities. Many substrates have been characterized that can be targeted by more than one ubiquitin ligase depending on their localization, and cytoplasmic PQC substrates can be directed to the nucleus for ubiquitylation and degradation. Here, we review some of the major yeast PQC ubiquitin ligases operating in the nucleus and cytoplasm, as well as current evidence indicating how these ligases can often function redundantly toward substrates in these compartments.
Collapse
|
28
|
Kumar AV, Lapierre LR. Location, location, location: subcellular protein partitioning in proteostasis and aging. Biophys Rev 2021; 13:931-941. [PMID: 35047088 PMCID: PMC8724496 DOI: 10.1007/s12551-021-00890-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
Somatic maintenance and cell survival rely on proper protein homeostasis to ensure reliable functions across the cell and to prevent proteome collapse. Maintaining protein folding and solubility is central to proteostasis and is coordinated by protein synthesis, chaperoning, and degradation capacities. An emerging aspect that influences proteostasis is the dynamic protein partitioning across different subcellular structures and compartments. Here, we review recent literature related to nucleocytoplasmic partitioning of proteins, nuclear and cytoplasmic quality control mechanisms, and their impact on the development of age-related diseases. We also highlight new points of entry to modulate spatially-regulated proteostatic mechanisms to delay aging.
Collapse
Affiliation(s)
- Anita V. Kumar
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912 USA
| | - Louis R. Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912 USA
| |
Collapse
|
29
|
Jiang CF, Xie YX, Qian YC, Wang M, Liu LZ, Shu YQ, Bai XM, Jiang BH. TBX15/miR-152/KIF2C pathway regulates breast cancer doxorubicin resistance via promoting PKM2 ubiquitination. Cancer Cell Int 2021; 21:542. [PMID: 34663310 PMCID: PMC8522147 DOI: 10.1186/s12935-021-02235-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 02/14/2023] Open
Abstract
Background Chemoresistance is a critical risk problem for breast cancer treatment. However, mechanisms by which chemoresistance arises remains to be elucidated. The expression of T-box transcription factor 15 (TBX-15) was found downregulated in some cancer tissues. However, role and mechanism of TBX15 in breast cancer chemoresistance is unknown. Here we aimed to identify the effects and mechanisms of TBX15 in doxorubicin resistance in breast cancer. Methods As measures of Drug sensitivity analysis, MTT and IC50 assays were used in DOX-resistant breast cancer cells. ECAR and OCR assays were used to analyze the glycolysis level, while Immunoblotting and Immunofluorescence assays were used to analyze the autophagy levels in vitro. By using online prediction software, luciferase reporter assays, co-Immunoprecipitation, Western blotting analysis and experimental animals models, we further elucidated the mechanisms. Results We found TBX15 expression levels were decreased in Doxorubicin (DOX)-resistant breast cancer cells. Overexpression of TBX15 reversed the DOX resistance by inducing microRNA-152 (miR-152) expression. We found that KIF2C levels were highly expressed in DOX-resistant breast cancer tissues and cells, and KIF2C was a potential target of miR-152. TBX15 and miR-152 overexpression suppressed autophagy and glycolysis in breast cancer cells, while KIF2C overexpression reversed the process. Overexpression of KIF2C increased DOX resistance in cancer cells. Furthermore, KIF2C directly binds with PKM2 for inducing the DOX resistance. KIF2C can prevent the ubiquitination of PKM2 and increase its protein stability. In addition, we further identified that Domain-2 of KIF2C played a major role in the binding with PKM2 and preventing PKM2 ubiquitination, which enhanced DOX resistance by promoting autophagy and glycolysis. Conclusions Our data identify a new mechanism by which TBX15 abolishes DOX chemoresistance in breast cancer, and suggest that TBX15/miR-152/KIF2C axis is a novel signaling pathway for mediating DOX resistance in breast cancer through regulating PKM2 ubiquitination and decreasing PKM2 stability. This finding suggests new therapeutic target and/or novel strategy development for cancer treatment to overcome drug resistance in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02235-w.
Collapse
Affiliation(s)
- Cheng-Fei Jiang
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yun-Xia Xie
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ying-Chen Qian
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Min Wang
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xiao-Ming Bai
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China. .,Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
30
|
Blumenstock S, Schulz-Trieglaff EK, Voelkl K, Bolender AL, Lapios P, Lindner J, Hipp MS, Hartl FU, Klein R, Dudanova I. Fluc-EGFP reporter mice reveal differential alterations of neuronal proteostasis in aging and disease. EMBO J 2021; 40:e107260. [PMID: 34410010 PMCID: PMC8488555 DOI: 10.15252/embj.2020107260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
The cellular protein quality control machinery is important for preventing protein misfolding and aggregation. Declining protein homeostasis (proteostasis) is believed to play a crucial role in age‐related neurodegenerative disorders. However, how neuronal proteostasis capacity changes in different diseases is not yet sufficiently understood, and progress in this area has been hampered by the lack of tools to monitor proteostasis in mammalian models. Here, we have developed reporter mice for in vivo analysis of neuronal proteostasis. The mice express EGFP‐fused firefly luciferase (Fluc‐EGFP), a conformationally unstable protein that requires chaperones for proper folding, and that reacts to proteotoxic stress by formation of intracellular Fluc‐EGFP foci and by reduced luciferase activity. Using these mice, we provide evidence for proteostasis decline in the aging brain. Moreover, we find a marked reaction of the Fluc‐EGFP sensor in a mouse model of tauopathy, but not in mouse models of Huntington’s disease. Mechanistic investigations in primary neuronal cultures demonstrate that different types of protein aggregates have distinct effects on the cellular protein quality control. Thus, Fluc‐EGFP reporter mice enable new insights into proteostasis alterations in different diseases.
Collapse
Affiliation(s)
- Sonja Blumenstock
- Department of Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | | | - Kerstin Voelkl
- Department of Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Anna-Lena Bolender
- Department of Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Paul Lapios
- Department of Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Jana Lindner
- Department of Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Rüdiger Klein
- Department of Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Irina Dudanova
- Department of Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
31
|
Zhao S, Huang D, Peng J. Nucleolus-localized Def-CAPN3 protein degradation pathway and its role in cell cycle control and ribosome biogenesis. J Genet Genomics 2021; 48:955-960. [PMID: 34452850 DOI: 10.1016/j.jgg.2021.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022]
Abstract
The nucleolus, as the 'nucleus of the nucleus', is a prominent subcellular organelle in a eukaryocyte. The nucleolus serves as the centre for ribosome biogenesis, as well as an important site for cell-cycle regulation, cellular senescence, and stress response. The protein composition of the nucleolus changes dynamically through protein turnover to meet the needs of cellular activities or stress responses. Recent studies have identified a nucleolus-localized protein degradation pathway in zebrafish and humans, namely the Def-CAPN3 pathway, which is essential to ribosome production and cell-cycle progression, by controlling the turnover of multiple substrates (e.g., ribosomal small-subunit [SSU] processome component Mpp10, transcription factor p53, check-point proteins Chk1 and Wee1). This pathway relies on the Ca2+-dependent cysteine proteinase CAPN3 and is independent of the ubiquitin-mediated proteasome pathway. CAPN3 is recruited by nucleolar protein Def from cytoplasm to nucleolus, where it proteolyzes its substrates which harbor a CAPN3 recognition-motif. Def depletion leads to the exclusion of CAPN3 and accumulation of p53, Wee1, Chk1, and Mpp10 in the nucleolus that result in cell-cycle arrest and rRNA processing abnormality. Here, we summarize the discovery of the Def-CAPN3 pathway and propose its biological role in cell-cycle control and ribosome biogenesis.
Collapse
Affiliation(s)
- Shuyi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Delai Huang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
32
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
33
|
Kong KYE, Coelho JPL, Feige MJ, Khmelinskii A. Quality control of mislocalized and orphan proteins. Exp Cell Res 2021; 403:112617. [PMID: 33930402 DOI: 10.1016/j.yexcr.2021.112617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/10/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022]
Abstract
A healthy and functional proteome is essential to cell physiology. However, this is constantly being challenged as most steps of protein metabolism are error-prone and changes in the physico-chemical environment can affect protein structure and function, thereby disrupting proteome homeostasis. Among a variety of potential mistakes, proteins can be targeted to incorrect compartments or subunits of protein complexes may fail to assemble properly with their partners, resulting in the formation of mislocalized and orphan proteins, respectively. Quality control systems are in place to handle these aberrant proteins, and to minimize their detrimental impact on cellular functions. Here, we discuss recent findings on quality control mechanisms handling mislocalized and orphan proteins. We highlight common principles involved in their recognition and summarize how accumulation of these aberrant molecules is associated with aging and disease.
Collapse
Affiliation(s)
| | - João P L Coelho
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Matthias J Feige
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
34
|
Radzinski M, Oppenheim T, Metanis N, Reichmann D. The Cys Sense: Thiol Redox Switches Mediate Life Cycles of Cellular Proteins. Biomolecules 2021; 11:469. [PMID: 33809923 PMCID: PMC8004198 DOI: 10.3390/biom11030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis is an essential component of proper cellular function; however, sustaining protein health is a challenging task, especially during the aerobic lifestyle. Natural cellular oxidants may be involved in cell signaling and antibacterial defense; however, imbalanced levels can lead to protein misfolding, cell damage, and death. This merges together the processes of protein homeostasis and redox regulation. At the heart of this process are redox-regulated proteins or thiol-based switches, which carefully mediate various steps of protein homeostasis across folding, localization, quality control, and degradation pathways. In this review, we discuss the "redox code" of the proteostasis network, which shapes protein health during cell growth and aging. We describe the sources and types of thiol modifications and elaborate on diverse strategies of evolving antioxidant proteins in proteostasis networks during oxidative stress conditions. We also highlight the involvement of cysteines in protein degradation across varying levels, showcasing the importance of cysteine thiols in proteostasis at large. The individual examples and mechanisms raised open the door for extensive future research exploring the interplay between the redox and protein homeostasis systems. Understanding this interplay will enable us to re-write the redox code of cells and use it for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Tal Oppenheim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Norman Metanis
- Institute of Chemistry, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| |
Collapse
|
35
|
Shakya VP, Barbeau WA, Xiao T, Knutson CS, Schuler MH, Hughes AL. A nuclear-based quality control pathway for non-imported mitochondrial proteins. eLife 2021; 10:61230. [PMID: 33734083 PMCID: PMC7993989 DOI: 10.7554/elife.61230] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial import deficiency causes cellular toxicity due to the accumulation of non-imported mitochondrial precursor proteins, termed mitoprotein-induced stress. Despite the burden mis-localized mitochondrial precursors place on cells, our understanding of the systems that dispose of these proteins is incomplete. Here, we cataloged the location and steady-state abundance of mitochondrial precursor proteins during mitochondrial impairment in Saccharomyces cerevisiae. We found that a number of non-imported mitochondrial proteins localize to the nucleus, where they are subjected to proteasome-dependent degradation through a process we term nuclear-associated mitoprotein degradation (mitoNUC). Recognition and destruction of mitochondrial precursors by the mitoNUC pathway requires the presence of an N-terminal mitochondrial targeting sequence and is mediated by combined action of the E3 ubiquitin ligases San1, Ubr1, and Doa10. Impaired breakdown of precursors leads to alternative sequestration in nuclear-associated foci. These results identify the nucleus as an important destination for the disposal of non-imported mitochondrial precursors.
Collapse
Affiliation(s)
- Viplendra Ps Shakya
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - William A Barbeau
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Tianyao Xiao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Christina S Knutson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Max H Schuler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
36
|
Hickey CM, Breckel C, Zhang M, Theune WC, Hochstrasser M. Protein quality control degron-containing substrates are differentially targeted in the cytoplasm and nucleus by ubiquitin ligases. Genetics 2021; 217:1-19. [PMID: 33683364 PMCID: PMC8045714 DOI: 10.1093/genetics/iyaa031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Intracellular proteolysis by the ubiquitin-proteasome system regulates numerous processes and contributes to protein quality control (PQC) in all eukaryotes. Covalent attachment of ubiquitin to other proteins is specified by the many ubiquitin ligases (E3s) expressed in cells. Here we determine the E3s in Saccharomyces cerevisiae that function in degradation of proteins bearing various PQC degradation signals (degrons). The E3 Ubr1 can function redundantly with several E3s, including nuclear-localized San1, endoplasmic reticulum/nuclear membrane-embedded Doa10, and chromatin-associated Slx5/Slx8. Notably, multiple degrons are targeted by more ubiquitylation pathways if directed to the nucleus. Degrons initially assigned as exclusive substrates of Doa10 were targeted by Doa10, San1, and Ubr1 when directed to the nucleus. By contrast, very short hydrophobic degrons-typical targets of San1-are shown here to be targeted by Ubr1 and/or San1, but not Doa10. Thus, distinct types of PQC substrates are differentially recognized by the ubiquitin system in a compartment-specific manner. In human cells, a representative short hydrophobic degron appended to the C-terminus of GFP-reduced protein levels compared with GFP alone, consistent with a recent study that found numerous natural hydrophobic C-termini of human proteins can act as degrons. We also report results of bioinformatic analyses of potential human C-terminal degrons, which reveal that most peptide substrates of Cullin-RING ligases (CRLs) are of low hydrophobicity, consistent with previous data showing CRLs target degrons with specific sequences. These studies expand our understanding of PQC in yeast and human cells, including the distinct but overlapping PQC E3 substrate specificity of the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Carolyn Breckel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Mengwen Zhang
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - William C Theune
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
37
|
Zhou X, Chen X, Hong T, Zhang M, Cai Y, Cui L. TTC3-Mediated Protein Quality Control, A Potential Mechanism for Cognitive Impairment. Cell Mol Neurobiol 2021; 42:1659-1669. [PMID: 33638766 PMCID: PMC9239942 DOI: 10.1007/s10571-021-01060-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/11/2021] [Indexed: 01/14/2023]
Abstract
The tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.
Collapse
Affiliation(s)
- Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China.
| |
Collapse
|
38
|
Erez N, Israitel L, Bitman-Lotan E, Wong WH, Raz G, Cornelio-Parra DV, Danial S, Flint Brodsly N, Belova E, Maksimenko O, Georgiev P, Druley T, Mohan RD, Orian A. A Non-stop identity complex (NIC) supervises enterocyte identity and protects from premature aging. eLife 2021; 10:62312. [PMID: 33629655 PMCID: PMC7936876 DOI: 10.7554/elife.62312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
A hallmark of aging is loss of differentiated cell identity. Aged Drosophila midgut differentiated enterocytes (ECs) lose their identity, impairing tissue homeostasis. To discover identity regulators, we performed an RNAi screen targeting ubiquitin-related genes in ECs. Seventeen genes were identified, including the deubiquitinase Non-stop (CG4166). Lineage tracing established that acute loss of Non-stop in young ECs phenocopies aged ECs at cellular and tissue levels. Proteomic analysis unveiled that Non-stop maintains identity as part of a Non-stop identity complex (NIC) containing E(y)2, Sgf11, Cp190, (Mod) mdg4, and Nup98. Non-stop ensured chromatin accessibility, maintaining the EC-gene signature, and protected NIC subunit stability. Upon aging, the levels of Non-stop and NIC subunits declined, distorting the unique organization of the EC nucleus. Maintaining youthful levels of Non-stop in wildtype aged ECs safeguards NIC subunits, nuclear organization, and suppressed aging phenotypes. Thus, Non-stop and NIC, supervise EC identity and protects from premature aging.
Collapse
Affiliation(s)
- Neta Erez
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lena Israitel
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eliya Bitman-Lotan
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Wing H Wong
- Division of Pediatric Hematology and Oncology, Washington University, Saint-Louis, United States
| | - Gal Raz
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dayanne V Cornelio-Parra
- Department of Genetics, Developmental & Evolutionary Biology, School of Biological and Chemical Sciences University of Missouri, Kansas City, United States
| | - Salwa Danial
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Na'ama Flint Brodsly
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elena Belova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
| | - Oksana Maksimenko
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
| | - Todd Druley
- Division of Pediatric Hematology and Oncology, Washington University, Saint-Louis, United States
| | - Ryan D Mohan
- Department of Genetics, Developmental & Evolutionary Biology, School of Biological and Chemical Sciences University of Missouri, Kansas City, United States
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
39
|
Puri D, Swamy CVB, Dhawan J, Mishra RK. Comparative nuclear matrix proteome analysis of skeletal muscle cells in different cellular states. Cell Biol Int 2021; 45:580-598. [PMID: 33200434 DOI: 10.1002/cbin.11499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/01/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
The nuclear matrix (NuMat) serves as the structural framework for organizing and maintaining nuclear architecture, however, the mechanisms by which this non-chromatin compartment is constructed and regulated are poorly understood. This study presents a proteomic analysis of the NuMat isolated from cultured skeletal muscle cells in three distinct cellular states- proliferating myoblasts (MBs), terminally differentiated myotubes (MTs), and mitotically quiescent (G0) myoblasts. About 40% of the proteins identified were found to be common in the NuMat proteome of these morphologically and functionally distinct cell states. These proteins, termed as the "core NuMat," define the stable, conserved, structural constituent of the nucleus, with functions such as RNA splicing, cytoskeletal organization, and chromatin modification, while the remaining NuMat proteins showed cell-state specificity, consistent with a more dynamic and potentially regulatory function. Specifically, myoblast NuMat was enriched in cell cycle, DNA replication and repair proteins, myotube NuMat in muscle differentiation and muscle function proteins, while G0 NuMat was enriched in metabolic, transcription, and transport proteins. These findings offer a new perspective for a cell-state-specific role of nuclear architecture and spatial organization, integrated with diverse cellular processes, and implicate NuMat proteins in the control of the cell cycle, lineage commitment, and differentiation.
Collapse
Affiliation(s)
- Deepika Puri
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Ch V B Swamy
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| |
Collapse
|
40
|
Nuclear Ubiquitin-Proteasome Pathways in Proteostasis Maintenance. Biomolecules 2021; 11:biom11010054. [PMID: 33406777 PMCID: PMC7824755 DOI: 10.3390/biom11010054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Protein homeostasis, or proteostasis, is crucial for the functioning of a cell, as proteins that are mislocalized, present in excessive amounts, or aberrant due to misfolding or other type of damage can be harmful. Proteostasis includes attaining the correct protein structure, localization, and the formation of higher order complexes, and well as the appropriate protein concentrations. Consequences of proteostasis imbalance are evident in a range of neurodegenerative diseases characterized by protein misfolding and aggregation, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. To protect the cell from the accumulation of aberrant proteins, a network of protein quality control (PQC) pathways identifies the substrates and direct them towards refolding or elimination via regulated protein degradation. The main pathway for degradation of misfolded proteins is the ubiquitin-proteasome system. PQC pathways have been first described in the cytoplasm and the endoplasmic reticulum, however, accumulating evidence indicates that the nucleus is an important PQC compartment for ubiquitination and proteasomal degradation of not only nuclear, but also cytoplasmic proteins. In this review, we summarize the nuclear ubiquitin-proteasome pathways involved in proteostasis maintenance in yeast, focusing on inner nuclear membrane-associated degradation (INMAD) and San1-mediated protein quality control.
Collapse
|
41
|
Stress-Specific Spatiotemporal Responses of RNA-Binding Proteins in Human Stem-Cell-Derived Motor Neurons. Int J Mol Sci 2020; 21:ijms21218346. [PMID: 33172210 PMCID: PMC7664327 DOI: 10.3390/ijms21218346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) have been shown to play a key role in the pathogenesis of a variety of neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is an exemplar neurodegenerative disease characterised by rapid progression and relatively selective motor neuron loss. Nuclear-to-cytoplasmic mislocalisation and accumulation of RBPs have been identified as a pathological hallmark of the disease, yet the spatiotemporal responses of RBPs to different extrinsic stressors in human neurons remain incompletely understood. Here, we used healthy induced pluripotent stem cell (iPSC)-derived motor neurons to model how different types of cellular stress affect the nucleocytoplasmic localisation of key ALS-linked RBPs. We found that osmotic stress robustly induced nuclear loss of TDP-43, SPFQ, FUS, hnRNPA1 and hnRNPK, with characteristic changes in nucleocytoplasmic localisation in an RBP-dependent manner. Interestingly, we found that RBPs displayed stress-dependent characteristics, with unique responses to both heat and oxidative stress. Alongside nucleocytoplasmic protein distribution changes, we identified the formation of stress- and RBP-specific nuclear and cytoplasmic foci. Furthermore, the kinetics of nuclear relocalisation upon recovery from extrinsic stressors was also found to be both stress- and RBP-specific. Importantly, these experiments specifically highlight TDP-43 and FUS, two of the most recognised RBPs in ALS pathogenesis, as exhibiting delayed nuclear relocalisation following stress in healthy human motor neurons as compared to SFPQ, hnRNPA1 and hnRNPK. Notably, ALS-causing valosin containing protein (VCP) mutations did not disrupt the relocalisation dynamics of TDP-43 or FUS in human motor neurons following stress. An increased duration of TDP-43 and FUS within the cytoplasm after stress may render the environment more aggregation-prone, which may be poorly tolerated in the context of ALS and related neurodegenerative disorders. In summary, our study addresses stress-specific spatiotemporal responses of neurodegeneration-related RBPs in human motor neurons. The insights into the nucleocytoplasmic dynamics of RBPs provided here may be informative for future studies examining both disease mechanisms and therapeutic strategy.
Collapse
|
42
|
Abstract
![]()
The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore have been studied extensively. Despite their expected
general thiol reactivity, these compounds display considerable degrees
of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570,
RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these
compounds is their targeting of the ubiquitin–proteasome system
(UPS), known to be essential for the viability of tumor cells. Gene
expression profiling experiments have shown induction of responses
characteristic of UPS inhibition, and experiments using cellular reporter
proteins have shown that proteasome inhibition is associated with
cell death. Other mechanisms of action such as reactivation of mutant
p53, stimulation of steroid receptor coactivators, and induction of
protein cross-linking have also been described. Although unsuitable
as biological probes due to widespread reactivity, dienone compounds
are cytotoxic to apoptosis-resistant tumor cells and show activity
in animal tumor models.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-58183 Linköping, Sweden.,Department of Oncology and Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| |
Collapse
|
43
|
Singh A, Vashistha N, Heck J, Tang X, Wipf P, Brodsky JL, Hampton RY. Direct involvement of Hsp70 ATP hydrolysis in Ubr1-dependent quality control. Mol Biol Cell 2020; 31:2669-2686. [PMID: 32966159 PMCID: PMC7927186 DOI: 10.1091/mbc.e20-08-0541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chaperones can mediate both protein folding and degradation. This process is referred to as protein triage, which demands study to reveal mechanisms of quality control for both basic scientific and translational purposes. In yeast, many misfolded proteins undergo chaperone-dependent ubiquitination by the action of the E3 ligases Ubr1 and San1, allowing detailed study of protein triage. In cells, both HSP70 and HSP90 mediated substrate ubiquitination, and the canonical ATP cycle was required for HSP70’s role: we have found that ATP hydrolysis by HSP70, the nucleotide exchange activity of Sse1, and the action of J-proteins are all needed for Ubr1-mediated quality control. To discern whether chaperones were directly involved in Ubr1-mediated ubiquitination, we developed a bead-based assay with covalently immobilized but releasable misfolded protein to obviate possible chaperone effects on substrate physical state or transport. In this in vitro assay, only HSP70 was required, along with its ATPase cycle and relevant cochaperones, for Ubr1-mediated ubiquitination. The requirement for the HSP70 ATP cycle in ubiquitination suggests a possible model of triage in which efficiently folded proteins are spared, while slow-folding or nonfolding proteins are iteratively tagged with ubiquitin for subsequent degradation.
Collapse
Affiliation(s)
- Amanjot Singh
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Nidhi Vashistha
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Jarrod Heck
- Adaptive Biotechnologies Corp., Seattle, WA 98102
| | - Xin Tang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Randolph Y Hampton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| |
Collapse
|
44
|
Deegan TD, Mukherjee PP, Fujisawa R, Polo Rivera C, Labib K. CMG helicase disassembly is controlled by replication fork DNA, replisome components and a ubiquitin threshold. eLife 2020; 9:e60371. [PMID: 32804080 PMCID: PMC7462611 DOI: 10.7554/elife.60371] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
The eukaryotic replisome assembles around the CMG helicase, which stably associates with DNA replication forks throughout elongation. When replication terminates, CMG is ubiquitylated on its Mcm7 subunit and disassembled by the Cdc48/p97 ATPase. Until now, the regulation that restricts CMG ubiquitylation to termination was unknown, as was the mechanism of disassembly. By reconstituting these processes with purified budding yeast proteins, we show that ubiquitylation is tightly repressed throughout elongation by the Y-shaped DNA structure of replication forks. Termination removes the repressive DNA structure, whereupon long K48-linked ubiquitin chains are conjugated to CMG-Mcm7, dependent on multiple replisome components that bind to the ubiquitin ligase SCFDia2. This mechanism pushes CMG beyond a '5-ubiquitin threshold' that is inherent to Cdc48, which specifically unfolds ubiquitylated Mcm7 and thereby disassembles CMG. These findings explain the exquisite regulation of CMG disassembly and provide a general model for the disassembly of ubiquitylated protein complexes by Cdc48.
Collapse
Affiliation(s)
- Tom D Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Progya P Mukherjee
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Cristian Polo Rivera
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
45
|
Dong C, Chen SJ, Melnykov A, Weirich S, Sun K, Jeltsch A, Varshavsky A, Min J. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2020; 117:14158-14167. [PMID: 32513738 PMCID: PMC7322002 DOI: 10.1073/pnas.2007085117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic N-degron pathways are proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal (Nt) degradation signals called N-degrons, and to target these proteins for degradation by the 26S proteasome or autophagy. GID4, a subunit of the GID ubiquitin ligase, is the main recognition component of the proline (Pro)/N-degron pathway. GID4 targets proteins through their Nt-Pro residue or a Pro at position 2, in the presence of specific downstream sequence motifs. Here we show that human GID4 can also recognize hydrophobic Nt-residues other than Pro. One example is the sequence Nt-IGLW, bearing Nt-Ile. Nt-IGLW binds to wild-type human GID4 with a Kd of 16 μM, whereas the otherwise identical Nt-Pro-bearing sequence PGLW binds to GID4 more tightly, with a Kd of 1.9 μM. Despite this difference in affinities of GID4 for Nt-IGLW vs. Nt-PGLW, we found that the GID4-mediated Pro/N-degron pathway of the yeast Saccharomyces cerevisiae can target an Nt-IGLW-bearing protein for rapid degradation. We solved crystal structures of human GID4 bound to a peptide bearing Nt-Ile or Nt-Val. We also altered specific residues of human GID4 and measured the affinities of resulting mutant GID4s for Nt-IGLW and Nt-PGLW, thereby determining relative contributions of specific GID4 residues to the GID4-mediated recognition of Nt-Pro vs. Nt-residues other than Pro. These and related results advance the understanding of targeting by the Pro/N-degron pathway and greatly expand the substrate recognition range of the GID ubiquitin ligase in both human and yeast cells.
Collapse
Affiliation(s)
- Cheng Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Kelly Sun
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
| | - Jinrong Min
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, People's Republic of China
| |
Collapse
|
46
|
Cell cycle-dependent localization of the proteasome to chromatin. Sci Rep 2020; 10:5801. [PMID: 32242037 PMCID: PMC7118148 DOI: 10.1038/s41598-020-62697-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/12/2020] [Indexed: 11/08/2022] Open
Abstract
An integrative understanding of nuclear events including transcription in normal and cancer cells requires comprehensive and quantitative measurement of protein dynamics that underlie such events. However, the low abundance of most nuclear proteins hampers their detailed functional characterization. We have now comprehensively quantified the abundance of nuclear proteins with the use of proteomics approaches in both normal and transformed human diploid fibroblasts. We found that subunits of the 26S proteasome complex were markedly down-regulated in the nuclear fraction of the transformed cells compared with that of the wild-type cells. The intranuclear proteasome abundance appeared to be inversely related to the rate of cell cycle progression, with restraint of the cell cycle being associated with an increase in the amount of proteasome subunits in the nucleus, suggesting that the nuclear proteasome content is dependent on the cell cycle. Furthermore, chromatin enrichment for proteomics (ChEP) analysis revealed enrichment of the proteasome in the chromatin fraction of quiescent cells and its apparent dissociation from chromatin in transformed cells. Our results thus suggest that translocation of the nuclear proteasome to chromatin may play an important role in control of the cell cycle and oncogenesis through regulation of chromatin-associated transcription factors.
Collapse
|
47
|
Berryman K, Buhimschi CS, Zhao G, Axe M, Locke M, Buhimschi IA. Proteasome Levels and Activity in Pregnancies Complicated by Severe Preeclampsia and Hemolysis, Elevated Liver Enzymes, and Thrombocytopenia (HELLP) Syndrome. Hypertension 2019; 73:1308-1318. [PMID: 31067191 DOI: 10.1161/hypertensionaha.118.12437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Excessive accumulation of misfolded proteins was recently demonstrated in preeclampsia. We examined levels and activity of circulatory proteasome and immunoproteasome (inflammatory subtype) in preeclampsia and hemolysis, elevated liver enzymes, and thrombocytopenia (HELLP) syndrome. We analyzed samples from women with hypertensive pregnancy disorders (n=115), including preeclampsia with severe features (sPE) and HELLP syndrome, and normotensive controls (n=45). Plasma proteasome and immunoproteasome immunoreactivity were determined by quantifying the α-subunit of the 20S core and β5i (proteasome subunit beta 8 [PSMB8]), respectively. Plasma proteasome activity was analyzed with fluorogenic substrates. MG132, lactacystin, and ONX0914 were used to inhibit the circulating proteasome and immunoproteasome, respectively. Plasma cytokine profiles were evaluated by multiplex immunoassay. Placental expression of β5 (constitutive proteasome) and β5i (immunoproteasome) was interrogated by immunohistochemistry. Women with sPE had increased plasma 20S levels ( P<0.001) and elevated lytic activities (chymotrypsin-like 7-fold, caspase-like 4.2-fold, trypsin-like 2.2-fold; P <0.001 for all) compared with pregnant controls. Women with features of HELLP displayed the highest plasma proteasome levels and activity, which correlated with decreased IFN-γ (interferon-γ), and increased IL (interleukin)-8 and IL-10. In sPE and HELLP, chymotrypsin-like activity was suppressed by proteasome inhibitors including ONX0914. Compared with gestational age-matched controls, sPE placentas harbored increased β5 and β5i immunostaining in trophoblasts. β5i signal was elevated in HELLP with predominant staining in villous core, extravillous trophoblasts in placental islands, and extracellular vesicles in intervillous spaces. Pregnancy represents a state of increased proteostatic stress. sPE and HELLP were characterized by significant upregulation in circulating levels and lytic activity of the proteasome that was partially explained by placental immunoproteasome upregulation.
Collapse
Affiliation(s)
- Kathryn Berryman
- From the Department of Obstetrics and Gynecology (K.B., C.S.B.), The Ohio State University College of Medicine, Columbus
| | - Catalin S Buhimschi
- From the Department of Obstetrics and Gynecology (K.B., C.S.B.), The Ohio State University College of Medicine, Columbus.,Department of Pediatrics (C.S.B., I.A.B.), The Ohio State University College of Medicine, Columbus
| | - Guomao Zhao
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| | - Michelle Axe
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| | - Megan Locke
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| | - Irina A Buhimschi
- Department of Pediatrics (C.S.B., I.A.B.), The Ohio State University College of Medicine, Columbus.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| |
Collapse
|
48
|
Abildgaard AB, Stein A, Nielsen SV, Schultz-Knudsen K, Papaleo E, Shrikhande A, Hoffmann ER, Bernstein I, Gerdes AM, Takahashi M, Ishioka C, Lindorff-Larsen K, Hartmann-Petersen R. Computational and cellular studies reveal structural destabilization and degradation of MLH1 variants in Lynch syndrome. eLife 2019; 8:e49138. [PMID: 31697235 PMCID: PMC6837844 DOI: 10.7554/elife.49138] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Defective mismatch repair leads to increased mutation rates, and germline loss-of-function variants in the repair component MLH1 cause the hereditary cancer predisposition disorder known as Lynch syndrome. Early diagnosis is important, but complicated by many variants being of unknown significance. Here we show that a majority of the disease-linked MLH1 variants we studied are present at reduced cellular levels. We show that destabilized MLH1 variants are targeted for chaperone-assisted proteasomal degradation, resulting also in degradation of co-factors PMS1 and PMS2. In silico saturation mutagenesis and computational predictions of thermodynamic stability of MLH1 missense variants revealed a correlation between structural destabilization, reduced steady-state levels and loss-of-function. Thus, we suggest that loss of stability and cellular degradation is an important mechanism underlying many MLH1 variants in Lynch syndrome. Combined with analyses of conservation, the thermodynamic stability predictions separate disease-linked from benign MLH1 variants, and therefore hold potential for Lynch syndrome diagnostics.
Collapse
Affiliation(s)
- Amanda B Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Amelie Stein
- Department of Biology, The Linderstrøm-Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Sofie V Nielsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Katrine Schultz-Knudsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Elena Papaleo
- Department of Biology, The Linderstrøm-Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Amruta Shrikhande
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Inge Bernstein
- Department of Surgical GastroenterologyAalborg University HospitalAalborgDenmark
| | | | - Masanobu Takahashi
- Department of Medical OncologyTohoku University Hospital, Tohoku UniversitySendaiJapan
| | - Chikashi Ishioka
- Department of Medical OncologyTohoku University Hospital, Tohoku UniversitySendaiJapan
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
49
|
Mellai M, Annovazzi L, Boldorini R, Bertero L, Cassoni P, De Blasio P, Biunno I, Schiffer D. SEL1L plays a major role in human malignant gliomas. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 6:17-29. [PMID: 31111685 PMCID: PMC6966709 DOI: 10.1002/cjp2.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Suppressor of Lin-12-like (C. elegans) (SEL1L) participates in the endoplasmic reticulum-associated protein degradation pathway, malignant transformation and stem cell biology. We explored the role of SEL1L in 110 adult gliomas, of different molecular subtype and grade, in relation to cell proliferation, stemness, glioma-associated microglia/macrophages (GAMs), prognostic markers and clinical outcome. SEL1L protein expression was assessed by immunohistochemistry and Western blotting. Genetic and epigenetic alterations were detected by molecular genetics techniques. SEL1L was overexpressed in anaplastic gliomas (World Health Organization [WHO] grade III) and in glioblastoma (GB, WHO grade IV) with the highest labelling index (LI) in the latter. Immunoreactivity was significantly associated with histological grade (p = 0.002) and cell proliferation index Ki-67/MIB-1 (p = 0.0001). In GB, SEL1L co-localised with stemness markers Nestin and Sox2. Endothelial cells and vascular pericytes of proliferative tumour blood vessels expressed SEL1L suggesting a role in tumour neo-vasculature. GAMs consistently expressed SEL1L. SEL1L overexpression was significantly associated with TERT promoter mutations (p = 0.0001), EGFR gene amplification (p = 0.0013), LOH on 10q (p = 0.0012) but was mutually exclusive with IDH1/2 mutations (p = 0.0001). SEL1L immunoreactivity correlated with tumour progression and cell proliferation, conditioning poor patient survival and response to therapy. This study emphasises SEL1L as a potential biomarker for the most common subgroup of TERT mutant/EGFR amplified/IDH-WT GBs.
Collapse
Affiliation(s)
- Marta Mellai
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale "A. Avogadro", Novara, Italy.,Fondazione Edo ed Elvo Tempia Valenta - ONLUS, Biella, Italy
| | - Laura Annovazzi
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Vercelli, Italy
| | - Renzo Boldorini
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Luca Bertero
- Dipartimento di Scienze Mediche, Università degli Studi di Torino/Città della Salute e della Scienza, Torino, Italy
| | - Paola Cassoni
- Dipartimento di Scienze Mediche, Università degli Studi di Torino/Città della Salute e della Scienza, Torino, Italy
| | | | - Ida Biunno
- ISENET Biobanking, Milano, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Davide Schiffer
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Vercelli, Italy
| |
Collapse
|
50
|
Melnykov A, Chen SJ, Varshavsky A. Gid10 as an alternative N-recognin of the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2019; 116:15914-15923. [PMID: 31337681 PMCID: PMC6689949 DOI: 10.1073/pnas.1908304116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, N-degron pathways (formerly "N-end rule pathways") comprise a set of proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal degradation signals called N-degrons, thereby causing degradation of these proteins by the 26S proteasome or autophagy. Gid4, a subunit of the GID ubiquitin ligase in the yeast Saccharomyces cerevisiae, is the recognition component (N-recognin) of the GID-mediated Pro/N-degron pathway. Gid4 targets proteins by recognizing their N-terminal Pro residues or a Pro at position 2, in the presence of distinct adjoining sequence motifs. Under conditions of low or absent glucose, cells make it through gluconeogenesis. When S. cerevisiae grows on a nonfermentable carbon source, its gluconeogenic enzymes Fbp1, Icl1, Mdh2, and Pck1 are expressed and long-lived. Transition to a medium containing glucose inhibits the synthesis of these enzymes and induces their degradation by the Gid4-dependent Pro/N-degron pathway. While studying yeast Gid4, we identified a similar but uncharacterized yeast protein (YGR066C), which we named Gid10. A screen for N-terminal peptide sequences that can bind to Gid10 showed that substrate specificities of Gid10 and Gid4 overlap but are not identical. Gid10 is not expressed under usual (unstressful) growth conditions, but is induced upon starvation or osmotic stresses. Using protein binding analyses and degradation assays with substrates of GID, we show that Gid10 can function as a specific N-recognin of the Pro/N-degron pathway.
Collapse
Affiliation(s)
- Artem Melnykov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|