1
|
Thill A, Cammaerts MC, Balmori A. Biological effects of electromagnetic fields on insects: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:853-869. [PMID: 37990587 DOI: 10.1515/reveh-2023-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/04/2023] [Indexed: 11/23/2023]
Abstract
Worldwide, insects are declining at an alarming rate. Among other causes, the use of pesticides and modern agricultural practices play a major role in this. Cumulative effects of multiple low-dose toxins and the distribution of toxicants in nature have only started to be investigated in a methodical way. Existing research indicates another factor of anthropogenic origin that could have subtle harmful effects: the increasingly frequent use of electromagnetic fields (EMF) from man-made technologies. This systematic review summarizes the results of studies investigating the toxicity of electromagnetic fields in insects. The main objective of this review is to weigh the evidence regarding detrimental effects on insects from the increasing technological infrastructure, with a particular focus on power lines and the cellular network. The next generation of mobile communication technologies, 5G, is being deployed - without having been tested in respect of potential toxic effects. With humanity's quest for pervasiveness of technology, even modest effects of electromagnetic fields on organisms could eventually reach a saturation level that can no longer be ignored. An overview of reported effects and biological mechanisms of exposure to electromagnetic fields, which addresses new findings in cell biology, is included. Biological effects of non-thermal EMF on insects are clearly proven in the laboratory, but only partly in the field, thus the wider ecological implications are still unknown. There is a need for more field studies, but extrapolating from the laboratory, as is common practice in ecotoxicology, already warrants increasing the threat level of environmental EMF impact on insects.
Collapse
|
2
|
Trus M, Atlas D. Non-ionotropic voltage-gated calcium channel signaling. Channels (Austin) 2024; 18:2341077. [PMID: 38601983 PMCID: PMC11017947 DOI: 10.1080/19336950.2024.2341077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.
Collapse
Affiliation(s)
- Michael Trus
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Lewis AH, Cronin ME, Grandl J. Piezo1 ion channels are capable of conformational signaling. Neuron 2024; 112:3161-3175.e5. [PMID: 39043183 PMCID: PMC11427155 DOI: 10.1016/j.neuron.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Piezo1 is a mechanically activated ion channel that senses forces with short latency and high sensitivity. Piezos undergo large conformational changes, induce far-reaching deformation onto the membrane, and modulate the function of two-pore potassium (K2P) channels. Taken together, this led us to hypothesize that Piezos may be able to signal their conformational state to other nearby proteins. Here, we use chemical control to acutely restrict Piezo1 conformational flexibility and show that Piezo1 conformational changes, but not ion permeation through them, are required for modulating the K2P channel K2P2.1 (TREK1). Super-resolution imaging and stochastic simulations further reveal that both channels do not co-localize, which implies that modulation is not mediated through direct binding interactions; however, at high Piezo1 densities, most TREK1 channels are within the predicted Piezo1 membrane footprint, suggesting that the footprint may underlie conformational signaling. We speculate that physiological roles originally attributed to Piezo1 ionotropic function could, alternatively, involve conformational signaling.
Collapse
Affiliation(s)
- Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marie E Cronin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Lewis AH, Cronin ME, Grandl J. Piezo1 ion channels are capable of conformational signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596257. [PMID: 38854150 PMCID: PMC11160644 DOI: 10.1101/2024.05.28.596257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Piezo1 is a mechanically activated ion channel that senses forces with short latency and high sensitivity. Piezos undergo large conformational changes, induce far-reaching deformation onto the membrane, and modulate the function of two-pore potassium (K2P) channels. Taken together, this led us to hypothesize that Piezos may be able to signal their conformational state to other nearby proteins. Here, we use chemical control to acutely restrict Piezo1 conformational flexibility and show that Piezo1 conformational changes, but not ion permeation through it, are required for modulating the K2P channel TREK1. Super-resolution imaging and stochastic simulations further reveal that both channels do not co-localize, which implies that modulation is not mediated through direct binding interactions; however, at high Piezo1 densities, most TREK1 channels are within the predicted Piezo1 membrane footprint, suggesting the footprint may underlie conformational signaling. We speculate that physiological roles originally attributed to Piezo1 ionotropic function could, alternatively, involve conformational signaling.
Collapse
Affiliation(s)
- Amanda H. Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marie E. Cronin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Sandoval A, Duran P, Corzo-López A, Fernández-Gallardo M, Muñoz-Herrera D, Leyva-Leyva M, González-Ramírez R, Felix R. The role of voltage-gated calcium channels in the pathogenesis of Parkinson's disease. Int J Neurosci 2024; 134:452-461. [PMID: 35993158 DOI: 10.1080/00207454.2022.2115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Aim: Voltage-gated calcium (CaV) channels play an essential role in maintaining calcium homeostasis and regulating numerous physiological processes in neurons. Therefore, dysregulation of calcium signaling is relevant in many neurological disorders, including Parkinson's disease (PD). This review aims to introduce the role of CaV channels in PD and discuss some novel aspects of channel regulation and its impact on the molecular pathophysiology of the disease. Methods: an exhaustive search of the literature in the field was carried out using the PubMed database of The National Center for Biotechnology Information. Systematic searches were performed from the initial date of publication to May 2022. Results: Although α-synuclein aggregates are the main feature of PD, L-type calcium (CaV1) channels seem to play an essential role in the pathogenesis of PD. Changes in the functional expression of CaV1.3 channels alter Calcium homeostasis and contribute to the degeneration of dopaminergic neurons. Furthermore, recent studies suggest that CaV channel trafficking towards the cell membrane depends on the activity of the ubiquitin-proteasome system (UPS). In PD, there is an increase in the expression of L-type channels associated with a decrease in the expression of Parkin, an E3 enzyme of the UPS. Therefore, a link between Parkin and CaV channels could play a fundamental role in the pathogenesis of PD and, as such, could be a potentially attractive target for therapeutic intervention. Conclusion: The study of alterations in the functional expression of CaV channels will provide a framework to understand better the neurodegenerative processes that occur in PD and a possible path toward identifying new therapeutic targets to treat this condition.
Collapse
Affiliation(s)
- Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Paz Duran
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | | | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
6
|
Levchenko A, Plotnikova M. Genomic regulatory sequences in the pathogenesis of bipolar disorder. Front Psychiatry 2023; 14:1115924. [PMID: 36824672 PMCID: PMC9941178 DOI: 10.3389/fpsyt.2023.1115924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The lifetime prevalence of bipolar disorder is estimated to be about 2%. Epigenetics defines regulatory mechanisms that determine relatively stable patterns of gene expression by controlling all key steps, from DNA to messenger RNA to protein. This Mini Review highlights recent discoveries of modified epigenetic control resulting from genetic variants associated with bipolar disorder in genome-wide association studies. The revealed epigenetic abnormalities implicate gene transcription and post-transcriptional regulation. In the light of these discoveries, the Mini Review focuses on the genes PACS1, MCHR1, DCLK3, HAPLN4, LMAN2L, TMEM258, GNL3, LRRC57, CACNA1C, CACNA1D, and NOVA2 and their potential biological role in the pathogenesis of bipolar disorder. Molecular mechanisms under control of these genes do not translate into a unified picture and substantially more research is needed to fill the gaps in knowledge and to solve current limitations in prognosis and treatment of bipolar disorder. In conclusion, the genetic and functional studies confirm the complex nature of bipolar disorder and indicate future research directions to explore possible targeted treatment options, eventually working toward a personalized approach.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Maria Plotnikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
7
|
Zhou K, Luo W, Liu T, Ni Y, Qin Z. Neurotoxins Acting at Synaptic Sites: A Brief Review on Mechanisms and Clinical Applications. Toxins (Basel) 2022; 15:18. [PMID: 36668838 PMCID: PMC9865788 DOI: 10.3390/toxins15010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotoxins generally inhibit or promote the release of neurotransmitters or bind to receptors that are located in the pre- or post-synaptic membranes, thereby affecting physiological functions of synapses and affecting biological processes. With more and more research on the toxins of various origins, many neurotoxins are now widely used in clinical treatment and have demonstrated good therapeutic outcomes. This review summarizes the structural properties and potential pharmacological effects of neurotoxins acting on different components of the synapse, as well as their important clinical applications, thus could be a useful reference for researchers and clinicians in the study of neurotoxins.
Collapse
Affiliation(s)
- Kunming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Yong Ni
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Hou S, Zhang J, Wu Y, Junmin C, Yuyu H, He B, Yang Y, Hong Y, Chen J, Yang J, Li S. FGF22 deletion causes hidden hearing loss by affecting the function of inner hair cell ribbon synapses. Front Mol Neurosci 2022; 15:922665. [PMID: 35966010 PMCID: PMC9366910 DOI: 10.3389/fnmol.2022.922665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Ribbon synapses are important structures in transmitting auditory signals from the inner hair cells (IHCs) to their corresponding spiral ganglion neurons (SGNs). Over the last few decades, deafness has been primarily attributed to the deterioration of cochlear hair cells rather than ribbon synapses. Hearing dysfunction that cannot be detected by the hearing threshold is defined as hidden hearing loss (HHL). The relationship between ribbon synapses and FGF22 deletion remains unknown. In this study, we used a 6-week-old FGF22 knockout mice model (Fgf22–/–) and mainly focused on alteration in ribbon synapses by applying the auditory brainstem response (ABR) test, the immunofluorescence staining, the patch-clamp recording, and quantitative real-time PCR. In Fgf22–/– mice, we found the decreased amplitude of ABR wave I, the reduced vesicles of ribbon synapses, and the decreased efficiency of exocytosis, which was suggested by a decrease in the capacitance change. Quantitative real-time PCR revealed that Fgf22–/– led to dysfunction in ribbon synapses by downregulating SNAP-25 and Gipc3 and upregulating MEF2D expression, which was important for the maintenance of ribbon synapses’ function. Our research concluded that FGF22 deletion caused HHL by affecting the function of IHC ribbon synapses and may offer a novel therapeutic target to meet an ever-growing demand for deafness treatment.
Collapse
Affiliation(s)
- Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jifang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yan Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Chen Junmin
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huang Yuyu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yan Yang
- Liaoning Medical Device Test Institute, Shenyang, China
| | - Yuren Hong
- Laboratory of Electron Microscope Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiarui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jiarui Chen,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Jun Yang,
| | - Shuna Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Shuna Li,
| |
Collapse
|
9
|
Atlas D. Revisiting the molecular basis of synaptic transmission. Prog Neurobiol 2022; 216:102312. [PMID: 35760141 DOI: 10.1016/j.pneurobio.2022.102312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Measurements of the time elapsed during synaptic transmission has shown that synaptic vesicle (SV) fusion lags behind Ca2+-influx by approximately 60 microseconds (µsec). The conventional model cannot explain this extreme rapidity of the release event. Synaptic transmission occurs at the active zone (AZ), which comprises of two pools of SV, non-releasable "tethered" vesicles, and a readily-releasable pool of channel-associated Ca2+-primed vesicles, "RRP". A recent TIRF study at cerebellar-mossy fiber-terminal, showed that subsequent to an action potential, newly "tethered" vesicles, became fusion-competent in a Ca2+-dependent manner, 300-400 milliseconds after tethering, but were not fused. This time resolution may correspond to priming of tethered vesicles through Ca2+-binding to Syt1/Munc13-1/complexin. It confirms that Ca2+-priming and Ca2+-influx-independent fusion, are two distinct events. Notably, we have established that Ca2+ channel signals evoked-release in an ion flux-independent manner, demonstrated by Ca2+-impermeable channel, or a Ca2+ channel in which Ca2+ is replaced by impermeable La3+. Thus, conformational changes in a channel coupled to RRP appear to directly activate the release machinery and account for a µsec Ca2+-influx-independent vesicle fusion. Rapid vesicle fusion driven by non-ionotropic channel signaling strengthens a conformational-coupling mechanism of synaptic transmission, and contributes to better understanding of neuronal communication vital for brain function.
Collapse
Affiliation(s)
- Daphne Atlas
- Dept. of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel.
| |
Collapse
|
10
|
Atlas D. Emerging therapeutic opportunities of novel thiol-amides, NAC-amide (AD4/NACA) and thioredoxin mimetics (TXM-Peptides) for neurodegenerative-related disorders. Free Radic Biol Med 2021; 176:120-141. [PMID: 34481041 DOI: 10.1016/j.freeradbiomed.2021.08.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022]
Abstract
Understanding neurodegenerative diseases have challenged scientists for decades. It has become apparent that a decrease in life span is often correlated with the development of neurodegenerative disorders. Oxidative stress and the subsequent inflammatory damages appear to contribute to the different molecular and biochemical mechanisms associated with neurodegeneration. In this review, I examine the protective properties of novel amino acid based compounds, comprising the AD series (AD1-AD7) in particular N-acetylcysteine amide, AD4, also called NACA, and the series of thioredoxin mimetic (TXM) peptides, TXM-CB3-TXM-CB16. Designed to cross the blood-brain-barrier (BBB) and permeate the cell membrane, these antioxidant/anti-inflammatory compounds may enable effective treatment of neurodegenerative related disorders. The review addresses the molecular mechanism of cellular protection exhibited by these new reagents, focusing on the reversal of oxidative stress, mitochondrial stress, inflammatory damages, and prevention of premature cell death. In addition, it will cover the outlook of the clinical prospects of AD4/NACA and the thioredoxin-mimetic peptides, which are currently in development.
Collapse
Affiliation(s)
- Daphne Atlas
- Professor of Neurochemistry, Dept. of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
11
|
Shi M, Chen F, Chen Z, Yang W, Yue S, Zhang J, Chen X. Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Front Cell Neurosci 2021; 15:685201. [PMID: 34658788 PMCID: PMC8515188 DOI: 10.3389/fncel.2021.685201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The sigma-1 receptor (Sig-1R) is a chaperone receptor that primarily resides at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) and acts as a dynamic pluripotent modulator regulating cellular pathophysiological processes. Multiple pharmacological studies have confirmed the beneficial effects of Sig-1R activation on cellular calcium homeostasis, excitotoxicity modulation, reactive oxygen species (ROS) clearance, and the structural and functional stability of the ER, mitochondria, and MAM. The Sig-1R is expressed broadly in cells of the central nervous system (CNS) and has been reported to be involved in various neurological disorders. Traumatic brain injury (TBI)-induced secondary injury involves complex and interrelated pathophysiological processes such as cellular apoptosis, glutamate excitotoxicity, inflammatory responses, endoplasmic reticulum stress, oxidative stress, and mitochondrial dysfunction. Thus, given the pluripotent modulation of the Sig-1R in diverse neurological disorders, we hypothesized that the Sig-1R may affect a series of pathophysiology after TBI. This review summarizes the current knowledge of the Sig-1R, its mechanistic role in various pathophysiological processes of multiple CNS diseases, and its potential therapeutic role in TBI.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fanglian Chen
- Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
12
|
Gandini MA, Zamponi GW. Voltage‐gated calcium channel nanodomains: molecular composition and function. FEBS J 2021; 289:614-633. [DOI: 10.1111/febs.15759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Maria A. Gandini
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| |
Collapse
|
13
|
Yang J, Yang Q. Identification of Core Genes and Screening of Potential Targets in Glioblastoma Multiforme by Integrated Bioinformatic Analysis. Front Oncol 2021; 10:615976. [PMID: 33718116 PMCID: PMC7943725 DOI: 10.3389/fonc.2020.615976] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme is the most common primary intracranial malignancy, but its etiology and pathogenesis are still unclear. With the deepening of human genome research, the research of glioma subtype screening based on core molecules has become more in-depth. In the present study, we screened out differentially expressed genes (DEGs) through reanalyzing the glioblastoma multiforme (GBM) datasets GSE90598 from the Gene Expression Omnibus (GEO), the GBM dataset TCGA-GBM and the low-grade glioma (LGG) dataset TCGA-LGG from the Cancer Genome Atlas (TCGA). A total of 150 intersecting DEGs were found, of which 48 were upregulated and 102 were downregulated. These DEGs from GSE90598 dataset were enriched using the overrepresentation method, and multiple enriched gene ontology (GO) function terms were significantly correlated with neural cell signal transduction. DEGs between GBM and LGG were analyzed by gene set enrichment analysis (GSEA), and the significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in synapse signaling and oxytocin signaling pathways. Then, a protein-protein interaction (PPI) network was constructed to assess the interaction of proteins encoded by the DEGs. MCODE identified 2 modules from the PPI network. The 11 genes with the highest degrees in module 1 were designated as core molecules, namely, GABRD, KCNC1, KCNA1, SYT1, CACNG3, OPALIN, CD163, HPCAL4, ANK3, KIF5A, and MS4A6A, which were mainly enriched in ionic signaling-related pathways. Survival analysis of the GSE83300 dataset verified the significant relationship between expression levels of the 11 core genes and survival. Finally, the core molecules of GBM and the DrugBank database were assessed by a hypergeometric test to identify 10 drugs included tetrachlorodecaoxide related to cancer and neuropsychiatric diseases. Further studies are required to explore these core genes for their potentiality in diagnosis, prognosis, and targeted therapy and explain the relationship among ionic signaling-related pathways, neuropsychiatric diseases and neurological tumors.
Collapse
Affiliation(s)
- Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Marcantoni A, Calorio C, Hidisoglu E, Chiantia G, Carbone E. Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome. Pflugers Arch 2020; 472:775-789. [PMID: 32621084 DOI: 10.1007/s00424-020-02430-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Cav1.2 L-type calcium channels play key roles in long-term synaptic plasticity, sensory transduction, muscle contraction, and hormone release. De novo mutations in the gene encoding Cav1.2 (CACNA1C) causes two forms of Timothy syndrome (TS1, TS2), characterized by a multisystem disorder inclusive of cardiac arrhythmias, long QT, autism, and adrenal gland dysfunction. In both TS1 and TS2, the missense mutation G406R is on the alternatively spliced exon 8 and 8A coding for the IS6-helix of Cav1.2 and is responsible for the penetrant form of autism in most TS individuals. The mutation causes specific gain-of-function changes to Cav1.2 channel gating: a "leftward shift" of voltage-dependent activation, reduced voltage-dependent inactivation, and a "leftward shift" of steady-state inactivation. How this occurs and how Cav1.2 gating changes alter neuronal firing and synaptic plasticity is still largely unexplained. Trying to better understanding the molecular basis of Cav1.2 gating dysfunctions leading to autism, here, we will present and discuss the properties of recently reported typical and atypical TS phenotypes and the effective gating changes exhibited by missense mutations associated with long QTs without extracardiac symptoms, unrelated to TS. We will also discuss new emerging views achieved from using iPSCs-derived neurons and the newly available autistic TS2-neo mouse model, both appearing promising for understanding neuronal mistuning in autistic TS patients. We will also analyze and describe recent proposals of molecular pathways that might explain mistuned Ca2+-mediated and Ca2+-independent excitation-transcription signals to the nucleus. Briefly, we will also discuss possible pharmacological approaches to treat autism associated with L-type channelopathies.
Collapse
Affiliation(s)
- Andrea Marcantoni
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Chiara Calorio
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Enis Hidisoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Giuseppe Chiantia
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
15
|
Servili E, Trus M, Atlas D. Ion occupancy of the channel pore is critical for triggering excitation-transcription (ET) coupling. Cell Calcium 2019; 84:102102. [DOI: 10.1016/j.ceca.2019.102102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022]
|
16
|
Fawley JA, Andresen MC. Distinct Calcium Sources Define Compartmentalized Synaptic Signaling Domains. Neuroscientist 2019; 25:408-419. [PMID: 31375041 DOI: 10.1177/1073858419863771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nervous system communication relies on neurotransmitter release for synaptic transmission between neurons. Neurotransmitter is contained within vesicles in presynaptic terminals and intraterminal calcium governs the fundamental step of their release into the synaptic cleft. Despite a common dependence on calcium, synaptic transmission and its modulation varies highly across the nervous system. The precise mechanisms that underlie this heterogeneity, however, remain unclear. The present review highlights recent data that reveal vesicles sourced from separate pools define discrete modes of release. A rich diversity of regulatory machinery may further distinguish the different forms of vesicle release, including presynaptic proteins involved in trafficking, alignment, and exocytosis. These multiple vesicle release mechanisms and vesicle pools likely depend on the arrangement of vesicles in relation to specific calcium entry pathways that create compartmentalized spheres of calcium influence (i.e., domains). This diversity permits release specialization. This review details examples of how individual neurons rely on multiple calcium sources and unique regulatory schemes to provide differential release and discrete modulation of neurotransmitter release from specific vesicle pools-as part of network signal integration.
Collapse
Affiliation(s)
- Jessica A Fawley
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Michael C Andresen
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
17
|
5-HT 3R-sourced calcium enhances glutamate release from a distinct vesicle pool. Brain Res 2019; 1721:146346. [PMID: 31348913 DOI: 10.1016/j.brainres.2019.146346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/18/2019] [Accepted: 07/21/2019] [Indexed: 01/01/2023]
Abstract
The serotonin 3 receptor (5-HT3R) is a calcium-permeant channel heterogeneously expressed in solitary tract (ST) afferents. ST afferents synapse in the nucleus of the solitary tract (NTS) and rely on a mix of voltage-dependent calcium channels (CaVs) to control synchronous glutamate release (ST-EPSCs). CaV activation triggers additional, delayed release of glutamate (asynchronous EPSCs) that trails after the ST-EPSCs but only from afferents expressing the calcium-permeable, transient receptor potential vanilloid type 1 receptor (TRPV1). Most afferents express TRPV1 and have high rates of spontaneous glutamate release (sEPSCs) that is independent of CaVs. Here, we tested whether 5-HT3R-sourced calcium contributes to these different forms of glutamate release in horizontal NTS slices from rats. The 5-HT3R selective agonist, m-chlorophenyl biguanide hydrochloride (PBG), enhanced sEPSCs and/or delayed the arrival times of ST-EPSCs (i.e. increased latency). The specific 5-HT3R antagonist, ondansetron, attenuated these effects consistent with direct activation of 5-HT3Rs. PBG did not alter ST-EPSC amplitude or asynchronous EPSCs. These independent actions suggest two distinct 5-HT3R locations; axonal expression that impedes conduction and terminal expression that mobilizes a spontaneous vesicle pool. Calcium chelation with EGTA-AM attenuated the frequency of 5-HT3R-activated sEPSCs by half. The mixture of chelation-sensitive and resistant sEPSCs suggests that 5-HT3R-activated vesicles span calcium diffusion distances that are both distal (micro-) and proximal (nanodomains) to the channel. Our results demonstrate that the calcium domains of 5-HT3Rs do not overlap other calcium sources or their respective vesicle pools. 5-HT3Rs add a unique calcium source on ST afferents as part of multiple independent synaptic signaling mechanisms.
Collapse
|
18
|
Oh J, Lee C, Kaang BK. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:237-249. [PMID: 31297008 PMCID: PMC6609268 DOI: 10.4196/kjpp.2019.23.4.237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.
Collapse
Affiliation(s)
- Jihae Oh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chiwoo Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
19
|
Serra SA, Gené GG, Elorza-Vidal X, Fernández-Fernández JM. Cross talk between β subunits, intracellular Ca 2+ signaling, and SNAREs in the modulation of Ca V 2.1 channel steady-state inactivation. Physiol Rep 2019; 6. [PMID: 29380539 PMCID: PMC5789719 DOI: 10.14814/phy2.13557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 01/05/2023] Open
Abstract
Modulation of CaV2.1 channel activity plays a key role in interneuronal communication and synaptic plasticity. SNAREs interact with a specific synprint site at the second intracellular loop (LII‐III) of the CaV2.1 pore‐forming α1A subunit to optimize neurotransmitter release from presynaptic terminals by allowing secretory vesicles docking near the Ca2+ entry pathway, and by modulating the voltage dependence of channel steady‐state inactivation. Ca2+ influx through CaV2.1 also promotes channel inactivation. This process seems to involve Ca2+‐calmodulin interaction with two adjacent sites in the α1A carboxyl tail (C‐tail) (the IQ‐like motif and the Calmodulin‐Binding Domain (CBD) site), and contributes to long‐term potentiation and spatial learning and memory. Besides, binding of regulatory β subunits to the α interaction domain (AID) at the first intracellular loop (LI‐II) of α1A determines the degree of channel inactivation by both voltage and Ca2+. Here, we explore the cross talk between β subunits, Ca2+, and syntaxin‐1A‐modulated CaV2.1 inactivation, highlighting the α1A domains involved in such process. β3‐containing CaV2.1 channels show syntaxin‐1A‐modulated but no Ca2+‐dependent steady‐state inactivation. Conversely, β2a‐containing CaV2.1 channels show Ca2+‐dependent but not syntaxin‐1A‐modulated steady‐state inactivation. A LI‐II deletion confers Ca2+‐dependent inactivation and prevents modulation by syntaxin‐1A in β3‐containing CaV2.1 channels. Mutation of the IQ‐like motif, unlike CBD deletion, abolishes Ca2+‐dependent inactivation and confers modulation by syntaxin‐1A in β2a‐containing CaV2.1 channels. Altogether, these results suggest that LI‐II structural modifications determine the regulation of CaV2.1 steady‐state inactivation either by Ca2+ or by SNAREs but not by both.
Collapse
Affiliation(s)
- Selma Angèlica Serra
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gemma G Gené
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xabier Elorza-Vidal
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - José M Fernández-Fernández
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
20
|
Small-molecule Ca Vα 1⋅Ca Vβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking. Proc Natl Acad Sci U S A 2018; 115:E10566-E10575. [PMID: 30355767 DOI: 10.1073/pnas.1813157115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Extracellular calcium flow through neuronal voltage-gated CaV2.2 calcium channels converts action potential-encoded information to the release of pronociceptive neurotransmitters in the dorsal horn of the spinal cord, culminating in excitation of the postsynaptic central nociceptive neurons. The CaV2.2 channel is composed of a pore-forming α1 subunit (CaVα1) that is engaged in protein-protein interactions with auxiliary α2/δ and β subunits. The high-affinity CaV2.2α1⋅CaVβ3 protein-protein interaction is essential for proper trafficking of CaV2.2 channels to the plasma membrane. Here, structure-based computational screening led to small molecules that disrupt the CaV2.2α1⋅CaVβ3 protein-protein interaction. The binding mode of these compounds reveals that three substituents closely mimic the side chains of hot-spot residues located on the α-helix of CaV2.2α1 Site-directed mutagenesis confirmed the critical nature of a salt-bridge interaction between the compounds and CaVβ3 Arg-307. In cells, compounds decreased trafficking of CaV2.2 channels to the plasma membrane and modulated the functions of the channel. In a rodent neuropathic pain model, the compounds suppressed pain responses. Small-molecule α-helical mimetics targeting ion channel protein-protein interactions may represent a strategy for developing nonopioid analgesia and for treatment of other neurological disorders associated with calcium-channel trafficking.
Collapse
|
21
|
β-Subunit of the voltage-gated Ca 2+ channel Cav1.2 drives signaling to the nucleus via H-Ras. Proc Natl Acad Sci U S A 2018; 115:E8624-E8633. [PMID: 30150369 DOI: 10.1073/pnas.1805380115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Depolarization-induced signaling to the nucleus by the L-type voltage-gated calcium channel Cav1.2 is widely assumed to proceed by elevating intracellular calcium. The apparent lack of quantitative correlation between Ca2+ influx and gene activation suggests an alternative activation pathway. Here, we demonstrate that membrane depolarization of HEK293 cells transfected with α11.2/β2b/α2δ subunits (Cav1.2) triggers c-Fos and MeCP2 activation via the Ras/ERK/CREB pathway. Nuclear signaling is lost either by absence of the intracellular β2 subunit or by transfecting the cells with the channel mutant α11.2W440A/β2b/α2δ, a mutation that disrupts the interaction between α11.2 and β2 subunits. Pulldown assays in neuronal SH-SY5Y cells and in vitro binding of recombinant H-Ras and β2 confirmed the importance of the intracellular β2 subunit for depolarization-induced gene activation. Using a Ca2+-impermeable mutant channel α11.2L745P/β2b/α2δ or disrupting Ca2+/calmodulin binding to the channel using the channel mutant α11.2I1624A/β2b/α2δ, we demonstrate that depolarization-induced c-Fos and MeCP2 activation does not depend on Ca2+ transport by the channel. Thus, in contrast to the paradigm that elevated intracellular Ca2+ drives nuclear signaling, we show that Cav1.2-triggered c-Fos or MeCP2 is dependent on extracellular Ca2+ and Ca2+ occupancy of the open channel pore, but is Ca2+-influx independent. An indispensable β-subunit interaction with H-Ras, which is triggered by conformational changes at α11.2 independently of Ca2+ flux, brings to light a master regulatory role of β2 in transcriptional activation via the ERK/CREB pathway. This mode of H-Ras activation could have broad implications for understanding the coupling of membrane depolarization to the rapid induction of gene transcription.
Collapse
|
22
|
He R, Zhang J, Yu Y, Jizi L, Wang W, Li M. New Insights Into Interactions of Presynaptic Calcium Channel Subtypes and SNARE Proteins in Neurotransmitter Release. Front Mol Neurosci 2018; 11:213. [PMID: 30061813 PMCID: PMC6054978 DOI: 10.3389/fnmol.2018.00213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Action potential (AP) induces presynaptic membrane depolarization and subsequent opening of Ca2+ channels, and then triggers neurotransmitter release at the active zone of presynaptic terminal. Presynaptic Ca2+ channels and SNARE proteins (SNAREs) interactions form a large signal transfer complex, which are core components for exocytosis. Ca2+ channels serve to regulate the activity of Ca2+ channels through direct binding and indirect activation of active zone proteins and SNAREs. The activation of Ca2+ channels promotes synaptic vesicle recruitment, docking, priming, fusion and neurotransmission release. Intracellular calcium increase is a key step for the initiation of vesicle fusion. Various voltage-gated calcium channel (VGCC) subtypes exert different physiological functions. Until now, it has not been clear how different subtypes of calcium channels integrally regulate the release of neurotransmitters within 200 μs of the AP arriving at the active zone of synaptic terminal. In this mini review, we provide a brief overview of the structure and physiological function of Ca2+ channel subtypes, interactions of Ca2+ channels and SNAREs in neurotransmitter release, and dynamic fine-tune Ca2+ channel activities by G proteins (Gβγ), multiple protein kinases and Ca2+ sensor (CaS) proteins.
Collapse
Affiliation(s)
- Rongfang He
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Infectious Disease Department, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Juan Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yiyan Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Laluo Jizi
- Department of Neurology, Liangshan Hospital of Integrated Traditional and Western Medicine, Xichang, China
| | - Weizhong Wang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
The remembrance of the things past: Conserved signalling pathways link protozoa to mammalian nervous system. Cell Calcium 2018; 73:25-39. [DOI: 10.1016/j.ceca.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/01/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
|
24
|
Optogenetic Control of Voltage-Gated Calcium Channels. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Ma G, Liu J, Ke Y, Liu X, Li M, Wang F, Han G, Huang Y, Wang Y, Zhou Y. Optogenetic Control of Voltage-Gated Calcium Channels. Angew Chem Int Ed Engl 2018; 57:7019-7022. [PMID: 29569306 PMCID: PMC6032918 DOI: 10.1002/anie.201713080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 11/11/2022]
Abstract
Voltage‐gated Ca2+ (CaV) channels mediate Ca2+ entry into excitable cells to regulate a myriad of cellular events following membrane depolarization. We report the engineering of RGK GTPases, a class of genetically encoded CaV channel modulators, to enable photo‐tunable modulation of CaV channel activity in excitable mammalian cells. This optogenetic tool (designated optoRGK) tailored for CaV channels could find broad applications in interrogating a wide range of CaV‐mediated physiological processes.
Collapse
Affiliation(s)
- Guolin Ma
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Jindou Liu
- Beijing Key Laboratory of Gene Resource and Molecular, Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuepeng Ke
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Xin Liu
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong, 250012, China
| | - Fen Wang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yun Huang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular, Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA.,Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, TX, 76504, USA
| |
Collapse
|
26
|
Kanatani S, Fuks JM, Olafsson EB, Westermark L, Chambers B, Varas-Godoy M, Uhlén P, Barragan A. Voltage-dependent calcium channel signaling mediates GABAA receptor-induced migratory activation of dendritic cells infected by Toxoplasma gondii. PLoS Pathog 2017; 13:e1006739. [PMID: 29216332 PMCID: PMC5720541 DOI: 10.1371/journal.ppat.1006739] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/08/2017] [Indexed: 11/22/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii exploits cells of the immune system to disseminate. Upon T. gondii-infection, γ–aminobutyric acid (GABA)/GABAA receptor signaling triggers a hypermigratory phenotype in dendritic cells (DCs) by unknown signal transduction pathways. Here, we demonstrate that calcium (Ca2+) signaling in DCs is indispensable for T. gondii-induced DC hypermotility and transmigration in vitro. We report that activation of GABAA receptors by GABA induces transient Ca2+ entry in DCs. Murine bone marrow-derived DCs preferentially expressed the L-type voltage-dependent Ca2+ channel (VDCC) subtype Cav1.3. Silencing of Cav1.3 by short hairpin RNA or selective pharmacological antagonism of VDCCs abolished the Toxoplasma-induced hypermigratory phenotype. In a mouse model of toxoplasmosis, VDCC inhibition of adoptively transferred Toxoplasma-infected DCs delayed the appearance of cell-associated parasites in the blood circulation and reduced parasite dissemination to target organs. The present data establish that T. gondii-induced hypermigration of DCs requires signaling via VDCCs and that Ca2+ acts as a second messenger to GABAergic signaling via the VDCC Cav1.3. The findings define a novel motility-related signaling axis in DCs and unveil that interneurons and DCs share common GABAergic motogenic pathways. T. gondii employs GABAergic non-canonical pathways to induce host cell migration and facilitate dissemination. Dendritic cells are considered the gatekeepers of the immune system but can, paradoxically, also function as ‘Trojan horses’ to mediate dissemination of the common intracellular parasite Toxoplasma gondii. Previous work has shown that Toxoplasma hijacks the migratory machinery of dendritic cells by inducing secretion of the neurotransmitter GABA and by activating GABAergic signaling pathways, thereby making infected dendritic cells hypermigratory in vitro and in vivo. Here, we show that the signaling molecule calcium plays a central role for this migratory activation and that signal transduction is preferentially mediated through a subtype of voltage-gated calcium channel (Cav1.3). This study functionally implicates Cav1.3 channels in a, hitherto uncharacterized, calcium signaling axis by which dendritic cells are induced to become migratory. The studies show how an obligate intracellular pathogen takes advantage of non-canonical signaling pathways in immune cells to modulate their migratory properties, and thereby facilitate the dissemination of the parasite.
Collapse
Affiliation(s)
- Sachie Kanatani
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jonas M. Fuks
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Einar B. Olafsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Linda Westermark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Benedict Chambers
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Varas-Godoy
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- Centro de Investigacion Biomedica, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Per Uhlén
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
27
|
The L-type Voltage-Gated Calcium Channel co-localizes with Syntaxin 1A in nano-clusters at the plasma membrane. Sci Rep 2017; 7:11350. [PMID: 28900128 PMCID: PMC5595989 DOI: 10.1038/s41598-017-10588-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022] Open
Abstract
The secretory signal elicited by membrane depolarization traverses from the Ca2+-bound α11.2 pore-forming subunit of the L-type Ca2+-channel (Cav1.2) to syntaxin 1 A (Sx1A) via an intra-membrane signaling mechanism. Here, we report the use of two-color Photo-Activated-Localization-Microscopy (PALM) to determine the relation between Cav1.2 and Sx1A in single-molecule detail. We observed nanoscale co-clusters of PAmCherry-tagged Sx1A and Dronpa-tagged α11.2 at a ~1:1 ratio. PAmCherry-tagged Sx1AC145A, or PAmCherry-tagged Sx2, an inactive Cav1.2 modulator, in which Cys145 is a Ser residue, showed no co-clustering. These results are consistent with the crucial role of the single cytosolic Sx1ACys145 in clustering with Cav1.2. Cav1.2 and the functionally inactive transmembrane-domain double mutant Sx1AC271V/C272V engendered clusters with a ~2:1 ratio. A higher extent of co-clustering, which coincides with compromised depolarization-evoked transmitter-release, was observed also by oxidation of Sx1ACys271 and Cys272. Our super-resolution-imaging results set the stage for studying co-clustering of the channel with other exocytotic proteins at a single-molecule level.
Collapse
|
28
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
29
|
Distinct Calcium Sources Support Multiple Modes of Synaptic Release from Cranial Sensory Afferents. J Neurosci 2017; 36:8957-66. [PMID: 27559176 DOI: 10.1523/jneurosci.1028-16.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/09/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Most craniosensory afferents have unmyelinated axons expressing TRP Vanilloid 1 (TRPV1) receptors in synaptic terminals at the solitary tract nucleus (NTS). Neurotransmission from these synapses is characterized by substantial asynchronous EPSCs following action potential-synched EPSCs and high spontaneous rates that are thermally sensitive. The present studies blocked voltage-activated calcium channels (CaV) using the nonselective CaV blocker Cd(2+) or the specific N-type blocker ω-conotoxin GVIA to examine the calcium dependence of the synchronous, asynchronous, spontaneous, and thermally gated modes of release. In rat brainstem slices containing caudal NTS, shocks to the solitary tract (ST) triggered synchronous ST-EPSCs and trailing asynchronous EPSCs. Cd(2+) or GVIA efficiently reduced both synchronous and asynchronous EPSCs without altering spontaneous or thermal-evoked transmission. Activation of TRPV1 with either the selective agonist resiniferatoxin (150 pm) or temperature augmented basal sEPSC rates but failed to alter the synchronous or asynchronous modes of release. These data indicate that calcium sourced through TRPV1 has no access to the synchronous or asynchronous release mechanism(s) and conversely that CaV-sourced calcium does not interact with the thermally evoked mode of release. Buffering intracellular calcium with EGTA-AM or BAPTA-AM reduced asynchronous EPSC rates earlier and to a greater extent than synchronous ST-EPSC amplitudes without altering sEPSCs or thermal sensitivity. Buffering therefore distinguishes asynchronous vesicles as possessing a highly sensitive calcium sensor located perhaps more distant from CaV than synchronous vesicles or thermally evoked vesicles from TRPV1. Together, our findings suggest separate mechanisms of release for spontaneous, asynchronous and synchronous vesicles that likely reside in unique, spatially separated vesicle domains. SIGNIFICANCE STATEMENT Most craniosensory fibers release glutamate using calcium entry from two sources: CaVs and TRPV1. We demonstrate that calcium segregation distinguishes three vesicle release mechanisms. Most surprisingly, asynchronous release is associated with CaV and not TRPV1 calcium entry. This reveals that asynchronous release is an additional and separate phenotypic marker of unmyelinated afferents rather than operated by TRPV1. The functional independence of the two calcium sources expands the regulatory repertoire of transmission and imbues these inputs with additional modulation targets for synaptic release not present at conventional CaV synapses. Peptides and lipid mediators may target one or both of these calcium sources at afferent terminals within the solitary tract nucleus to independently modify release from distinct, functionally segregated vesicle pools.
Collapse
|
30
|
Yao CK, Liu YT, Lee IC, Wang YT, Wu PY. A Ca2+ channel differentially regulates Clathrin-mediated and activity-dependent bulk endocytosis. PLoS Biol 2017; 15:e2000931. [PMID: 28414717 PMCID: PMC5393565 DOI: 10.1371/journal.pbio.2000931] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) are two predominant forms of synaptic vesicle (SV) endocytosis, elicited by moderate and strong stimuli, respectively. They are tightly coupled with exocytosis for sustained neurotransmission. However, the underlying mechanisms are ill defined. We previously reported that the Flower (Fwe) Ca2+ channel present in SVs is incorporated into the periactive zone upon SV fusion, where it triggers CME, thus coupling exocytosis to CME. Here, we show that Fwe also promotes ADBE. Intriguingly, the effects of Fwe on CME and ADBE depend on the strength of the stimulus. Upon mild stimulation, Fwe controls CME independently of Ca2+ channeling. However, upon strong stimulation, Fwe triggers a Ca2+ influx that initiates ADBE. Moreover, knockout of rodent fwe in cultured rat hippocampal neurons impairs but does not completely abolish CME, similar to the loss of Drosophila fwe at the neuromuscular junction, suggesting that Fwe plays a regulatory role in regulating CME across species. In addition, the function of Fwe in ADBE is conserved at mammalian central synapses. Hence, Fwe exerts different effects in response to different stimulus strengths to control two major modes of endocytosis.
Collapse
Affiliation(s)
- Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Neuroscience Program in Academia Sinica, Academia Sinica, Nankang, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| | - Yu-Tzu Liu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - I-Chi Lee
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - You-Tung Wang
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ping-Yen Wu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
31
|
Sartore RC, Cardoso SC, Lages YVM, Paraguassu JM, Stelling MP, Madeiro da Costa RF, Guimaraes MZ, Pérez CA, Rehen SK. Trace elements during primordial plexiform network formation in human cerebral organoids. PeerJ 2017; 5:e2927. [PMID: 28194309 PMCID: PMC5301978 DOI: 10.7717/peerj.2927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.
Collapse
Affiliation(s)
- Rafaela C Sartore
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Simone C Cardoso
- Physics Institute, Federal University of Rio de Janeiro , Brazil
| | - Yury V M Lages
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Julia M Paraguassu
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Mariana P Stelling
- Federal Institute of Education, Science and Technology of Rio de Janeiro , Brazil
| | | | - Marilia Z Guimaraes
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Carlos A Pérez
- Brazilian Synchrotron Light Laboratory , São Paulo , Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Wang L, Xu SW, Xu HR, Song YL, Liu JT, Luo JP, Cai XX. Spatio-temporally resolved measurement of quantal exocytosis from single cells using microelectrode array modified with poly l-lysine and poly dopamine. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Li B, Tadross MR, Tsien RW. Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression. Science 2016; 351:863-7. [PMID: 26912895 DOI: 10.1126/science.aad3647] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Voltage-gated CaV1.2 channels (L-type calcium channel α1C subunits) are critical mediators of transcription-dependent neural plasticity. Whether these channels signal via the influx of calcium ion (Ca(2+)), voltage-dependent conformational change (VΔC), or a combination of the two has thus far been equivocal. We fused CaV1.2 to a ligand-gated Ca(2+)-permeable channel, enabling independent control of localized Ca(2+) and VΔC signals. This revealed an unexpected dual requirement: Ca(2+) must first mobilize actin-bound Ca(2+)/calmodulin-dependent protein kinase II, freeing it for subsequent VΔC-mediated accumulation. Neither signal alone sufficed to activate transcription. Signal order was crucial: Efficiency peaked when Ca(2+) preceded VΔC by 10 to 20 seconds. CaV1.2 VΔC synergistically augmented signaling by N-methyl-d-aspartate receptors. Furthermore, VΔC mistuning correlated with autistic symptoms in Timothy syndrome. Thus, nonionic VΔC signaling is vital to the function of CaV1.2 in synaptic and neuropsychiatric processes.
Collapse
Affiliation(s)
- Boxing Li
- Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA
| | - Michael R Tadross
- Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Richard W Tsien
- Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA. Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Xie L, Dolai S, Kang Y, Liang T, Xie H, Qin T, Yang L, Chen L, Gaisano HY. Syntaxin-3 Binds and Regulates Both R- and L-Type Calcium Channels in Insulin-Secreting INS-1 832/13 Cells. PLoS One 2016; 11:e0147862. [PMID: 26848587 PMCID: PMC4743851 DOI: 10.1371/journal.pone.0147862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022] Open
Abstract
Syntaxin (Syn)-1A mediates exocytosis of predocked insulin-containing secretory granules (SGs) during first-phase glucose-stimulated insulin secretion (GSIS) in part via its interaction with plasma membrane (PM)-bound L-type voltage-gated calcium channels (Cav). In contrast, Syn-3 mediates exocytosis of newcomer SGs that accounts for second-phase GSIS. We now hypothesize that the newcomer SG Syn-3 preferentially binds and modulates R-type Cav opening, which was postulated to mediate second-phase GSIS. Indeed, glucose-stimulation of pancreatic islet β-cell line INS-1 induced a predominant increase in interaction between Syn-3 and Cavα1 pore-forming subunits of R-type Cav2.3 and to lesser extent L-type Cavs, while confirming the preferential interactions between Syn-1A with L-type (Cav1.2, Cav1.3) Cavs. Consistently, direct binding studies employing heterologous HEK cells confirmed that Syn-3 preferentially binds Cav2.3, whereas Syn-1A prefers L-type Cavs. We then used siRNA knockdown (KD) of Syn-3 in INS-1 to study the endogenous modulatory actions of Syn-3 on Cav channels. Syn-3 KD enhanced Ca2+ currents by 46% attributed mostly to R- and L-type Cavs. Interestingly, while the transmembrane domain of Syn-1A is the putative functional domain modulating Cav activity, it is the cytoplasmic domain of Syn-3 that appears to modulate Cav activity. We conclude that Syn-3 may mimic Syn-1A in the ability to bind and modulate Cavs, but preferring Cav2.3 to perhaps participate in triggering fusion of newcomer insulin SGs during second-phase GSIS.
Collapse
Affiliation(s)
- Li Xie
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Subhankar Dolai
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Youhou Kang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tao Liang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Huanli Xie
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tairan Qin
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lu Yang
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Liangyi Chen
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Herbert Y. Gaisano
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
35
|
Demaurex N, Nunes P. The role of STIM and ORAI proteins in phagocytic immune cells. Am J Physiol Cell Physiol 2016; 310:C496-508. [PMID: 26764049 PMCID: PMC4824159 DOI: 10.1152/ajpcell.00360.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytic cells, such as neutrophils, macrophages, and dendritic cells, migrate to sites of infection or damage and are integral to innate immunity through two main mechanisms. The first is to directly neutralize foreign agents and damaged or infected cells by secreting toxic substances or ingesting them through phagocytosis. The second is to alert the adaptive immune system through the secretion of cytokines and the presentation of the ingested materials as antigens, inducing T cell maturation into helper, cytotoxic, or regulatory phenotypes. While calcium signaling has been implicated in numerous phagocyte functions, including differentiation, maturation, migration, secretion, and phagocytosis, the molecular components that mediate these Ca(2+) signals have been elusive. The discovery of the STIM and ORAI proteins has allowed researchers to begin clarifying the mechanisms and physiological impact of store-operated Ca(2+) entry, the major pathway for generating calcium signals in innate immune cells. Here, we review evidence from cell lines and mouse models linking STIM and ORAI proteins to the control of specific innate immune functions of neutrophils, macrophages, and dendritic cells.
Collapse
Affiliation(s)
- Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
36
|
Notomi T, Kuno M, Hiyama A, Ezura Y, Honma M, Ishizuka T, Ohura K, Yawo H, Noda M. Membrane depolarization regulates intracellular RANKL transport in non-excitable osteoblasts. Bone 2015. [PMID: 26211991 DOI: 10.1016/j.bone.2015.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (VD3) are important factors in Ca(2+) homeostasis, and promote osteoclastogenesis by modulating receptor activator of nuclear factor kappa-B ligand (RANKL) mRNA expression. However, their contribution to RANKL intracellular transport (RANKLiT), including the trigger for RANKL lysosomal vesicle (RANKL-lv) fusion to the cell membrane, is unclear. In neurons, depolarization of membrane potential increases the intracellular Ca(2+) level ([Ca(2+)]i) and promotes neurotransmitter release via fusion of the synaptic vesicles to the cell membrane. To determine whether membrane depolarization also regulates cellular processes such as RANKLiT in MC3T3-E1 osteoblasts (OBs), we generated a light-sensitive OB cell line and developed a system for altering their membrane potential via delivery of a blue light stimulus. In the membrane fraction of RANKL-overexpressing OBs, PTH and VD3 increased the membrane-bound RANKL (mbRANKL) level at 10 min after application without affecting the mRNA expression level, and depolarized the cell membrane while transiently increasing [Ca(2+)]i. In our novel OB line stably expressing the channelrhodopsin-wide receiver, blue light-induced depolarization increased the mbRANKL level, which was reversed by treatment of blockers for L-type voltage-gated Ca(2+) channels and Ca(2+) release from the endoplasmic reticulum. In co-cultures of osteoclast precursor-like RAW264.7 cells and light-sensitive OBs overexpressing RANKL, light stimulation induced an increase in tartrate-resistant acid phosphatase activity and promoted osteoclast differentiation. These results indicate that depolarization of the cell membrane is a trigger for RANKL-lv fusion to the membrane and that membrane potential contributes to the function of OBs. In addition, the non-genomic action of VD3-induced RANKL-lv fusion included the membrane-bound VD3 receptor (1,25D3-MARRS receptor). Elucidating the mechanism of RANKLiT regulation by PTH and VD3 will be useful for the development of drugs to prevent bone loss in osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Takuya Notomi
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan; Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan; Global Center of Excellence Program for Molecular Science for Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan; Department of Physiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan.
| | - Miyuki Kuno
- Department of Physiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan
| | - Akiko Hiyama
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Kiyoshi Ohura
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan; Global Center of Excellence Program for Molecular Science for Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
37
|
Li YT, Zhang SH, Wang XY, Zhang XW, Oleinick AI, Svir I, Amatore C, Huang WH. Real-time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials within Self-reconstructed Neuromuscular Junctions. Angew Chem Int Ed Engl 2015; 54:9313-8. [PMID: 26079517 DOI: 10.1002/anie.201503801] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Indexed: 01/09/2023]
Abstract
Chemical synaptic transmission is central to the brain functions. In this regard, real-time monitoring of chemical synaptic transmission during neuronal communication remains a great challenge. In this work, in vivo-like oriented neural networks between superior cervical ganglion (SCG) neurons and their effector smooth muscle cells (SMC) were assembled in a microfluidic device. This allowed amperometric detection of individual neurotransmitter release events inside functional SCG-SMC synapse with carbon fiber nanoelectrodes as well as recording of postsynaptic potential using glass nanopipette electrodes. The high vesicular release activities essentially involved complex events arising from flickering fusion pores as quantitatively established based on simulations. This work allowed for the first time monitoring in situ chemical synaptic transmission under conditions close to those found in vivo, which may yield important and new insights into the nature of neuronal communications.
Collapse
Affiliation(s)
- Yu-Tao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Shu-Hui Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Xue-Ying Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Alexander I Oleinick
- Ecole Normale Supérieure, Département de Chimie, UMR 8640 (CNRS-ENS-UPMC and LIA NanoBioCatEchem, 24 rue Lhomond, 75005 Paris(France)
| | - Irina Svir
- Ecole Normale Supérieure, Département de Chimie, UMR 8640 (CNRS-ENS-UPMC and LIA NanoBioCatEchem, 24 rue Lhomond, 75005 Paris(France)
| | - Christian Amatore
- Ecole Normale Supérieure, Département de Chimie, UMR 8640 (CNRS-ENS-UPMC and LIA NanoBioCatEchem, 24 rue Lhomond, 75005 Paris(France).
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China).
| |
Collapse
|
38
|
Li YT, Zhang SH, Wang XY, Zhang XW, Oleinick AI, Svir I, Amatore C, Huang WH. Real-time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials within Self-reconstructed Neuromuscular Junctions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Tian X, Gala U, Zhang Y, Shang W, Nagarkar Jaiswal S, di Ronza A, Jaiswal M, Yamamoto S, Sandoval H, Duraine L, Sardiello M, Sillitoe RV, Venkatachalam K, Fan H, Bellen HJ, Tong C. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis. PLoS Biol 2015; 13:e1002103. [PMID: 25811491 PMCID: PMC4374850 DOI: 10.1371/journal.pbio.1002103] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 02/11/2015] [Indexed: 01/03/2023] Open
Abstract
Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.
Collapse
Affiliation(s)
- Xuejun Tian
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Upasana Gala
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yongping Zhang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Weina Shang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Sonal Nagarkar Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marco Sardiello
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Roy V. Sillitoe
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kartik Venkatachalam
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, Texas, United States of America
| | - Hengyu Fan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chao Tong
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
N-Methyl-d-aspartate Preconditioning Prevents Quinolinic Acid-Induced Deregulation of Glutamate and Calcium Homeostasis in Mice Hippocampus. Neurotox Res 2014; 27:118-28. [DOI: 10.1007/s12640-014-9496-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
41
|
Chua JJE. Macromolecular complexes at active zones: integrated nano-machineries for neurotransmitter release. Cell Mol Life Sci 2014; 71:3903-16. [PMID: 24912984 PMCID: PMC11113288 DOI: 10.1007/s00018-014-1657-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023]
Abstract
The release of neurotransmitters from synaptic vesicles exocytosing at presynaptic nerve terminals is a critical event in the initiation of synaptic transmission. This event occurs at specialized sites known as active zones. The task of faithfully executing various steps in the process is undertaken by careful orchestration of overlapping sets of molecular nano-machineries upon a core macromolecular scaffold situated at active zones. However, their composition remains incompletely elucidated. This review provides an overview of the role of the active zone in mediating neurotransmitter release and summarizes the recent progress using neuroproteomic approaches to decipher their composition. Key proteins of these nano-machineries are highlighted.
Collapse
Affiliation(s)
- John Jia En Chua
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany,
| |
Collapse
|
42
|
Abstract
Evolution has exploited the chemical properties of Ca(2+), which facilitate its reversible binding to the sites of irregular geometry offered by biological macromolecules, to select it as a carrier of cellular signals. A number of proteins bind Ca(2+) to specific sites: those intrinsic to membranes play the most important role in the spatial and temporal regulation of the concentration and movements of Ca(2+) inside cells. Those which are soluble, or organized in non-membranous structures, also decode the Ca(2+) message to be then transmitted to the targets of its regulation. Since Ca(2+) controls the most important processes in the life of cells, it must be very carefully controlled within the cytoplasm, where most of the targets of its signaling function reside. Membrane channels (in the plasma membrane and in the organelles) mediate the entrance of Ca(2+) into the cytoplasm, ATPases, exchangers, and the mitochondrial Ca(2+) uptake system remove Ca(2+) from it. The concentration of Ca(2+) in the external spaces, which is controlled essentially by its dynamic exchanges in the bone system, is much higher than inside cells, and can, under conditions of pathology, generate a situation of dangerous internal Ca(2+) overload. When massive and persistent, the Ca(2+) overload culminates in the death of the cell. Subtle conditions of cellular Ca(2+) dyshomeostasis that affect individual systems that control Ca(2+), generate cell disease phenotypes that are particularly severe in tissues in which the signaling function of Ca(2+) has special importance, e.g., the nervous system.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy,
| | | | | | | |
Collapse
|
43
|
Bachnoff N, Cohen-Kutner M, Trus M, Atlas D. Intra-membrane signaling between the voltage-gated Ca2+-channel and cysteine residues of syntaxin 1A coordinates synchronous release. Sci Rep 2014; 3:1620. [PMID: 23567899 PMCID: PMC3621091 DOI: 10.1038/srep01620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/26/2013] [Indexed: 11/28/2022] Open
Abstract
The interaction of syntaxin 1A (Sx1A) with voltage-gated calcium channels (VGCC) is required for depolarization-evoked release. However, it is unclear how the signal is transferred from the channel to the exocytotic machinery and whether assembly of Sx1A and the calcium channel is conformationally linked to triggering synchronous release. Here we demonstrate that depolarization-evoked catecholamine release was decreased in chromaffin cells infected with semliki forest viral vectors encoding Sx1A mutants, Sx1AC271V, or Sx1AC272V, or by direct oxidation of these Sx1A transmembrane (TM) cysteine residues. Mutating or oxidizing these highly conserved Sx1A Cys271 and Cys272 equally disrupted the Sx1A interaction with the channel. The results highlight the functional link between the VGCC and the exocytotic machinery, and attribute the redox sensitivity of the release process to the Sx1A TM C271 and C272. This unique intra-membrane signal-transduction pathway enables fast signaling, and triggers synchronous release by conformational-coupling of the channel with Sx1A.
Collapse
Affiliation(s)
- Niv Bachnoff
- The Hebrew University of Jerusalem, Institute of Life Sciences, Department of Biological Chemistry, Givat-Ram, Jerusalem, Israel
| | | | | | | |
Collapse
|
44
|
Duan JH, Hodgdon KE, Hingtgen CM, Nicol GD. N-type calcium current, Cav2.2, is enhanced in small-diameter sensory neurons isolated from Nf1+/- mice. Neuroscience 2014; 270:192-202. [PMID: 24755485 PMCID: PMC4075288 DOI: 10.1016/j.neuroscience.2014.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 02/07/2023]
Abstract
Major aspects of neuronal function are regulated by Ca(2+) including neurotransmitter release, excitability, developmental plasticity, and gene expression. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/-) exhibited both greater excitability and evoked release of neuropeptides compared to wildtype mice. Furthermore, augmented voltage-dependent sodium currents but not potassium currents contribute to the enhanced excitability. To determine the mechanisms giving rise to the enhanced release of substance P and calcitonin gene-related peptide in the Nf1+/- sensory neurons, the potential differences in the total voltage-dependent calcium current (ICa) as well as the contributions of individual Ca(2+) channel subtypes were assessed. Whole-cell patch-clamp recordings from small-diameter capsaicin-sensitive sensory neurons demonstrated that the average peak ICa densities were not different between the two genotypes. However, by using selective blockers of channel subtypes, the current density of N-type (Cav2.2) ICa was significantly larger in Nf1+/- neurons compared to wildtype neurons. In contrast, there were no significant differences in L-, P/Q- and R-type currents between the two genotypes. Quantitative real-time polymerase chain reaction measurements made from the isolated but intact dorsal root ganglia indicated that N-type (Cav2.2) and P/Q-type (Cav2.1) Ca(2+) channels exhibited the highest mRNA expression levels although there were no significant differences in the levels of mRNA expression between the genotypes. These results suggest that the augmented N-type (Cav2.2) ICa observed in the Nf1+/- sensory neurons does not result from genomic differences but may reflect post-translational or some other non-genomic modifications. Thus, our results demonstrate that sensory neurons from Nf1+/- mice, exhibit increased N-type ICa and likely account for the increased release of substance P and calcitonin gene-related peptide that occurs in Nf1+/- sensory neurons.
Collapse
Affiliation(s)
- J-H Duan
- Department of Pharmacology & Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - K E Hodgdon
- Department of Pharmacology & Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - C M Hingtgen
- Department of Pharmacology & Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - G D Nicol
- Department of Pharmacology & Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
45
|
Renigunta V, Fischer T, Zuzarte M, Kling S, Zou X, Siebert K, Limberg MM, Rinné S, Decher N, Schlichthörl G, Daut J. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1. Mol Biol Cell 2014; 25:1877-91. [PMID: 24743596 PMCID: PMC4055267 DOI: 10.1091/mbc.e13-10-0592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
SNARE proteins can have functions unrelated to membrane fusion. The unassembled form of the SNARE protein syntaxin-8 interacts with the K+ channel TASK-1; both proteins are internalized via clathrin-mediated endocytosis in a cooperative manner. This is a novel mechanism for the control of endocytosis by cargo proteins. The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion.
Collapse
Affiliation(s)
- Vijay Renigunta
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Thomas Fischer
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Marylou Zuzarte
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Stefan Kling
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Xinle Zou
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Kai Siebert
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Maren M Limberg
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Günter Schlichthörl
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Jürgen Daut
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| |
Collapse
|
46
|
Wong FK, Nath AR, Chen RHC, Gardezi SR, Li Q, Stanley EF. Synaptic vesicle tethering and the CaV2.2 distal C-terminal. Front Cell Neurosci 2014; 8:71. [PMID: 24639630 PMCID: PMC3945931 DOI: 10.3389/fncel.2014.00071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/18/2014] [Indexed: 01/18/2023] Open
Abstract
Evidence that synaptic vesicles (SVs) can be gated by a single voltage sensitive calcium channel (CaV2.2) predict a molecular linking mechanism or "tether" (Stanley, 1993). Recent studies have proposed that the SV binds to the distal C-terminal on the CaV2.2 calcium channel (Kaeser et al., 2011; Wong et al., 2013) while genetic analysis proposed a double tether mechanism via RIM: directly to the C terminus PDZ ligand domain or indirectly via a more proximal proline rich site (Kaeser et al., 2011). Using a novel in vitro SV pull down binding assay, we reported that SVs bind to a fusion protein comprising the C-terminal distal third (C3, aa 2137-2357; Wong et al., 2013). Here we limit the binding site further to the last 58 aa, beyond the proline rich site, by the absence of SV capture by a truncated C3 fusion protein (aa 2137-2299). To test PDZ-dependent binding we generated two C terminus-mutant C3 fusion proteins and a mimetic blocking peptide (H-WC, aa 2349-2357) and validated these by elimination of MINT-1 or RIM binding. Persistence of SV capture with all three fusion proteins or with the full length C3 protein but in the presence of blocking peptide, demonstrated that SVs can bind to the distal C-terminal via a PDZ-independent mechanism. These results were supported in situ by normal SV turnover in H-WC-loaded synaptosomes, as assayed by a novel peptide cryoloading method. Thus, SVs tether to the CaV2.2 C-terminal within a 49 aa region immediately prior to the terminus PDZ ligand domain. Long tethers that could reflect extended C termini were imaged by electron microscopy of synaptosome ghosts. To fully account for SV tethering we propose a model where SVs are initially captured, or "grabbed," from the cytoplasm by a binding site on the distal region of the channel C-terminal and are then retracted to be "locked" close to the channel by a second attachment mechanism in preparation for single channel domain gating.
Collapse
Affiliation(s)
- Fiona K Wong
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Arup R Nath
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Robert H C Chen
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Sabiha R Gardezi
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Qi Li
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Elise F Stanley
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| |
Collapse
|
47
|
Atlas D. Voltage-gated calcium channels function as Ca2+-activated signaling receptors. Trends Biochem Sci 2014; 39:45-52. [PMID: 24388968 DOI: 10.1016/j.tibs.2013.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/24/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
Voltage-gated calcium channels (VGCCs) are transmembrane cell surface proteins responsible for multifunctional signals. In response to voltage, VGCCs trigger synaptic transmission, drive muscle contraction, and regulate gene expression. Voltage perturbations open VGCCs enabling Ca(2+) binding to the low affinity Ca(2+) binding site of the channel pore. Subsequent to permeation, Ca(2+) targets selective proteins to activate diverse signaling pathways. It is becoming apparent that the Ca(2+)-bound channel triggers secretion in excitable cells and drives contraction in cardiomyocytes prior to Ca(2+) permeation. Here, I highlight recent data implicating receptor-like function of the Ca(2+)-bound channel in converting external Ca(2+) into an intracellular signal. The two sequential mechanistic perspectives of VGCC function are discussed in the context of the prevailing and long-standing current models of depolarization-evoked secretion and cardiac contraction.
Collapse
Affiliation(s)
- Daphne Atlas
- Department of Biological Chemistry, The Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel.
| |
Collapse
|
48
|
Cardiac functions of voltage-gated Ca(2+) channels: role of the pharmacoresistant type (E-/R-Type) in cardiac modulation and putative implication in sudden unexpected death in epilepsy (SUDEP). Rev Physiol Biochem Pharmacol 2014; 167:115-39. [PMID: 25280639 DOI: 10.1007/112_2014_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Voltage-gated Ca(2+) channels (VGCCs) are ubiquitous in excitable cells. These channels play key roles in many physiological events like cardiac regulation/pacemaker activity due to intracellular Ca(2+) transients. In the myocardium, the Cav1 subfamily (L-type: Cav1.2 and Cav1.3) is the main contributor to excitation-contraction coupling and/or pacemaking, whereas the Cav3 subfamily (T-type: Cav3.1 and Cav3.2) is important in rhythmically firing of the cardiac nodal cells. No established cardiac function has been attributed to the Cav2 family (E-/R-type: Cav2.3) despite accumulating evidence of cardiac dysregulation observed upon deletion of the Cav2.3 gene, the only member of this family so far detected in cardiomyocytes. In this review, we summarize the pathophysiological changes observed after ablation of the E-/R-type VGCC and propose a cardiac mechanism of action for this channel. Also, considering the role played by this channel in epilepsy and its reported sensitivity to antiepileptic drugs, a putative involvement of this channel in the cardiac mechanism of sudden unexpected death in epilepsy is also discussed.
Collapse
|
49
|
Feldman P, Khanna R. Challenging the catechism of therapeutics for chronic neuropathic pain: Targeting CaV2.2 interactions with CRMP2 peptides. Neurosci Lett 2013; 557 Pt A:27-36. [PMID: 23831344 PMCID: PMC3849117 DOI: 10.1016/j.neulet.2013.06.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 11/25/2022]
Abstract
Chronic neuropathic pain management is a worldwide concern. Pharmaceutical companies globally have historically targeted ion channels as the therapeutic catechism with many blockbuster successes. Remarkably, no new pain therapeutic has been approved by European or American regulatory agencies over the last decade. This article will provide an overview of an alternative approach to ion channel drug discovery: targeting regulators of ion channels, specifically focusing on voltage-gated calcium channels. We will highlight the discovery of an anti-nociceptive peptide derived from a novel calcium channel interacting partner - the collapsin response mediator protein 2 (CRMP2). In vivo administration of this peptide reduces pain behavior in a number of models of neuropathic pain without affecting sympathetic-associated cardiovascular activity, memory retrieval, sensorimotor function, or depression. A CRMP2-derived peptide analgesic, with restricted access to the CNS, represents a completely novel approach to the treatment of severe pain with an improved safety profile. As peptides now represent one of the fastest growing classes of new drugs, it is expected that peptide targeting of protein interactions within the calcium channel complex may be a paradigm shift in ion channel drug discovery.
Collapse
Affiliation(s)
- Polina Feldman
- Sophia Therapeutics LLC, 351 West 10th Street, Indianapolis, IN 46202, USA
| | - Rajesh Khanna
- Sophia Therapeutics LLC, 351 West 10th Street, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, 950 West Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
50
|
Ju W, Li Q, Wilson SM, Brittain JM, Meroueh L, Khanna R. SUMOylation alters CRMP2 regulation of calcium influx in sensory neurons. Channels (Austin) 2013; 7:153-9. [PMID: 23510938 DOI: 10.4161/chan.24224] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The axon/dendrite specification collapsin response mediator protein 2 (CRMP2) bidirectionally modulates N-type voltage-gated Ca ( 2+) channels (CaV2.2). Here we demonstrate that small ubiquitin-like modifier (SUMO) protein modifies CRMP2 via the SUMO E2-conjugating enzyme Ubc9 in vivo. Removal of a SUMO conjugation site KMD in CRMP2 (K374A/M375A/D376A; CRMP2AAA) resulted in loss of SUMOylated CRMP2 without compromising neurite branching, a canonical hallmark of CRMP2 function. Increasing SUMOylation levels correlated inversely with calcium influx in sensory neurons. CRMP2 deSUMOylation by SUMO proteases SENP1 and SENP2 normalized calcium influx to those in the CRMP2AAA mutant. Thus, our results identify a novel role for SUMO modification in CRMP2/CaV2.2 signaling pathway.
Collapse
Affiliation(s)
- Weina Ju
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|